Programming Fundamentals- |

Rao Muhammad Umer
Lecturer,
Web: raoumer.github.io
Department of Computer Science & IT,
The University of Lahore.

http://raoumer.github.io/

Administrative Stuff

= Course related stuff will be available soon

(coming Monday) on “PIAZZA” discussion
forum

"= Due Date for submission of bonus mark coding
problem (i.e. calculate money per second /
minute a student pays to university) is
Tuesday 25, 2016 at 2:00 pm.

= Please strictly follow Plagiarism Rules

Data Types

Data Typesin C

We must declare the type of every variable we use in C.

Every variable has a type (e.g. int) and a name (e.g.
no_students), i.e. int no_students

Basic data types in C
— char: asingle byte, capable of holding one character

— int: an integer of fixed length, typically reflecting
the natural size of integers on the host machine
(i.e., 32 or 64 bits)

— float: single-precision floating point
— double: double precision floating point

Data Typesin C

* Floating-point variables represent numbers
with a decimal place—like 3.1415927,
0.0000625, and —10.2.

 They have both an integer part, to the left of
the decimal point, and a fractional part, to the
right.

* Floating-point variables represent what
mathematicians call real numbers.

Data Typesin C

Unsigned and signed

* Unsigned means that an int or char value can
only be positive. Signed means that it can be
positive or negative.

* long means that int, float or double have
more precision (and are larger) than short
means they have less.

Data Types in C

A typical 32-bit machine

Type Keyword Bytes
character char 1
integer int 4
short integer short 2
long integer long il
long long integer long long 8

unsigned character unsigned char 1
unsigned integer unsigned int 2
unsigned short integer unsigned short 2
unsigned long integer unsigned long 4
single-precision float 4
double-precision double 8

Range

-128...127
-2,147,483,648...2,147,438,647
-32768...32367
-2,147,483,648...2,147,438,647
-9223372036854775808 ...

0.

© oo

9223372036854775807

..255

..4,294,967,295

..65535
..4,294,967,295

1.2E-38...3.4E38
2.2E-308...1.8E308

Data Typesin C

* All types have a fixed size associated with
them

 These numbers are highly variable between C
compilers and computer architectures.

* Programs that rely on their sizes must be very
careful to make their code portable (i.e. Don’t
rely on the size of the predefined types)

Conversion Specifiers

Specifier
%cC
%d
%X
%f
%e
%s
%u
%%
%ld, %lld

Meaning
Single character
Signed decimal integer
Hexadecimal number
Decimal floating point number
Floating point in “scientific notation”
Character string (more on this later)
Unsigned decimal integer
Just print a % sign
long, and long long

 There must be one conversion specifier for each argument

being printed out.

* Ensure you use the correct specifier for the type of data

you are printing.

Data Types in C

Numeric Variable Types
* Integer lypes:
— Generally 32-bits or 64-bits in length
— Suppose an int has b-bits
* asigned intis in range -2°-1,.25-1-1
-32768 .. 32767
* an unsigned int is in range 0..2°-1
0..65535 (Total 65536)
* no error message is given on this "overflow"
* Floating-point Types:
— Only use floating point types when really required
* they do a lot of rounding which must be understood
well
* floating point operations tend to cost more than integer
operations

sizeof()

The sizeof() function returns the number of bytes in a data type.
Int main() {

printf("Size of char = %d byte(s)\n", sizeof(char));
printf("Size of short = %d byte(s)\n", sizeof(short));
printf("Size of int = %d byte(s)\n", sizeof(int));
printf(“Size of long long...... = %d byte(s)\n”, sizeof(long long));
printf("Size of long = %d byte(s)\n", sizeof(long));

printf("Size of unsigned char. = %d byte(s)\n", sizeof(unsigned char));
printf("Size of unsigned int.. = %d byte(s)\n", sizeof(unsigned int));
printf("Size of unsigned short = %d byte(s)\n", sizeof(unsigned short));
printf("Size of unsigned long. = %d byte(s)\n", sizeof(unsigned long));
printf("Size of float = %d byte(s)\n", sizeof(float));

printf("Size of double = %d byte(s)\n", sizeof(double));
printf("Size of long double .. = %d byte(s)\n", sizeof(long double));
return O;

}

More types: const

* const means a variable which doesn't vary
— useful for physical constants or things like pi or e
— You can also declare variables as being constants
— Use the const qualifier:

const double pi=3.1415926;
const long double e =2.718281828;
const int maxlength=2356;
const int val=(3*7+6)*5;

* (scientific) notation (mantissa/exponent)
const double Pl = 3.14159e2;

Constants

Constants
— Constants are useful for a number of reasons

e Tells the reader of the code that a value
does not change

* Tells the compiler that a value does not
change

—The compiler can potentially compile
faster code

* Use constants whenever appropriate

Reading Numeric Data with scanf

Examples:
scanf("%d", &x); /* reads a decimal integer */

scanf("%f", &rate); /* reads a floating point
value*/

Reading Numeric Data with scanf

* Reading more than one variable at a time:
— For example:
int nl, n2;
float f;
scanf("%d%d%f",&n1,&n2,&f);
— Use white spaces to separate numbers when input.
5 10 20.3
* Inthe format string:
— You can use other characters to separate the numbers
scanf("value=%d, ratio=%f", &value,&ratio);
* You must provide input like:
value =27, ratio=0.8

Type Conversion

C allows for conversions between the basic types, implicitly or explicitly. It
is also called casting.

Explicit conversion uses the cast operator.
Example 1:

int x=10;

floaty, z=3.14;

y = (float) x; /* y=10.0 */

X = (int) z; /* x=3 */

X = (int) (-z); /* x=-3 --rounded approaching zero */
Example 2:

int i;

short int j=1000;

i =j*j; /* wrong!!!l */

i = (int) j * (int) j; /* correct */

Casting between variables
* intx=14,y = 3;
* Trouble when we divide ints

* A castis a way of telling one variable type

to temporarily look like another.
int a= 3;
int b= 4; Cast ints a and b to be doubles

double c;
y hN
c= (dDubIgT;71dDuble]b;

By using (type) in front of a variable we tell the variable to
act like another type of variable. We can cast between any
type usually. However, the only reason to cast 1s to stop

ints being rounded by division.

Variable Declaration

e Generic Form

typename varnamel, varname?2, ...;
 Examples:

Int count;

float a;

double percent, total;

long int y;

unsigned longa 1,a 2,a 3;

Variable Declaration

Initialization

 ALWAYS initialize a variable before using it
— Failure to do so in Cis asking for trouble

— The value of an uninitialized variables is undefined in the C
standards

 Examples:
int count; /* Set aside storage space for count */
count = 0; /* Store 0 in count */
* This can be done at definition:
Int count = 0;
double percent = 10.0, rate = 0.56;

Example

#include <stdio.h>

int main ()

{

double radius, area;
printf("Enter radius ");

scanf("%f", &radius);

area = 3.14159 * radius * radius;
printf("\nArea= %d\n\n", area);
return O;

Example

#include <stdio.h>

int main ()

{
const float Pl = 3.14;
double radius, area;
printf("Enter radius ");
scanf("%f", &radius);
area = Pl * radius * radius;
printf("\nArea= %d\n\n", area);
return O;

Example

#include <stdio.h>

#define Pl 3.14

int main ()

{
double radius, area;
printf("Enter radius ");
scanf("%f", &radius);
area = Pl * radius * radius;
printf("\nArea= %d\n\n", area);
return O;

