
Programming Fundamentals- I

Rao Muhammad Umer
Lecturer,

Web: raoumer.github.io
Department of Computer Science & IT,

The University of Lahore.

http://raoumer.github.io/

Administrative Stuff

 Course related stuff will be available soon
(coming Monday) on “PIAZZA” discussion
forum

 Due Date for submission of bonus mark coding
problem (i.e. calculate money per second /
minute a student pays to university) is
Tuesday 25, 2016 at 2:00 pm.

 Please strictly follow Plagiarism Rules

Data Types

Data Types in C

• We must declare the type of every variable we use in C.

• Every variable has a type (e.g. int) and a name (e.g.
no_students), i.e. int no_students

• Basic data types in C

– char: a single byte, capable of holding one character

– int: an integer of fixed length, typically reflecting
 the natural size of integers on the host machine
 (i.e., 32 or 64 bits)

– float: single-precision floating point

– double: double precision floating point

Data Types in C

• Floating-point variables represent numbers
with a decimal place—like 3.1415927,
0.0000625, and –10.2.

• They have both an integer part, to the left of
the decimal point, and a fractional part, to the
right.

• Floating-point variables represent what
mathematicians call real numbers.

Data Types in C

Unsigned and signed

• Unsigned means that an int or char value can
only be positive. Signed means that it can be
positive or negative.

• long means that int, float or double have
more precision (and are larger) than short
means they have less.

Data Types in C

A typical 32-bit machine

Data Types in C

• All types have a fixed size associated with
them

• These numbers are highly variable between C
compilers and computer architectures.

• Programs that rely on their sizes must be very
careful to make their code portable (i.e. Don’t
rely on the size of the predefined types)

Conversion Specifiers

• There must be one conversion specifier for each argument
being printed out.

• Ensure you use the correct specifier for the type of data
you are printing.

Data Types in C

sizeof()
The sizeof() function returns the number of bytes in a data type.
Int main() {
printf("Size of char = %d byte(s)\n", sizeof(char));
printf("Size of short = %d byte(s)\n", sizeof(short));
printf("Size of int = %d byte(s)\n", sizeof(int));
printf(“Size of long long…… = %d byte(s)\n”, sizeof(long long));
printf("Size of long = %d byte(s)\n", sizeof(long));
printf("Size of unsigned char. = %d byte(s)\n", sizeof(unsigned char));
printf("Size of unsigned int.. = %d byte(s)\n", sizeof(unsigned int));
printf("Size of unsigned short = %d byte(s)\n", sizeof(unsigned short));
printf("Size of unsigned long. = %d byte(s)\n", sizeof(unsigned long));
printf("Size of float = %d byte(s)\n", sizeof(float));
printf("Size of double = %d byte(s)\n", sizeof(double));
printf("Size of long double .. = %d byte(s)\n", sizeof(long double));
return 0;
}

More types: const

• const means a variable which doesn't vary
– useful for physical constants or things like pi or e
– You can also declare variables as being constants
– Use the const qualifier:

 const double pi=3.1415926;
 const long double e = 2.718281828;
 const int maxlength=2356;
 const int val=(3*7+6)*5;
• (scientific) notation (mantissa/exponent)
 const double PI = 3.14159e2;

Constants

Constants

– Constants are useful for a number of reasons

• Tells the reader of the code that a value
does not change

• Tells the compiler that a value does not
change

–The compiler can potentially compile
faster code

• Use constants whenever appropriate

Reading Numeric Data with scanf

Examples:

scanf("%d", &x); /* reads a decimal integer */

scanf("%f", &rate); /* reads a floating point
value*/

Reading Numeric Data with scanf

• Reading more than one variable at a time:

– For example:

 int n1, n2;

 float f;

 scanf("%d%d%f",&n1,&n2,&f);

– Use white spaces to separate numbers when input.

 5 10 20.3

• In the format string:

– You can use other characters to separate the numbers

 scanf("value=%d, ratio=%f", &value,&ratio);

• You must provide input like:

 value =27, ratio=0.8

Type Conversion

• C allows for conversions between the basic types, implicitly or explicitly. It
is also called casting.

• Explicit conversion uses the cast operator.

• Example 1:

 int x=10;

 float y, z=3.14;

 y = (float) x; /* y=10.0 */

 x = (int) z; /* x=3 */

 x = (int) (-z); /* x=-3 --rounded approaching zero */

• Example 2:

 int i;

 short int j=1000;

 i = j*j; /* wrong!!! */

 i = (int) j * (int) j; /* correct */

Casting between variables

Variable Declaration

• Generic Form

 typename varname1, varname2, ...;

• Examples:

 int count;

 float a;

 double percent, total;

 long int y;

 unsigned long a_1, a_2, a_3;

Variable Declaration

Initialization
• ALWAYS initialize a variable before using it

– Failure to do so in C is asking for trouble
– The value of an uninitialized variables is undefined in the C

standards

• Examples:
 int count; /* Set aside storage space for count */
 count = 0; /* Store 0 in count */
• This can be done at definition:
 int count = 0;
 double percent = 10.0, rate = 0.56;

Example

#include <stdio.h>

int main ()

{

double radius, area;

printf("Enter radius ");

scanf("%f", &radius);

area = 3.14159 * radius * radius;

printf("\nArea= %d\n\n", area);

return 0;

}

Example

#include <stdio.h>

int main ()

{

 const float PI = 3.14;

double radius, area;

printf("Enter radius ");

scanf("%f", &radius);

area = PI * radius * radius;

printf("\nArea= %d\n\n", area);

return 0;

}

Example

#include <stdio.h>

#define PI 3.14

int main ()

{

double radius, area;

printf("Enter radius ");

scanf("%f", &radius);

area = PI * radius * radius;

printf("\nArea= %d\n\n", area);

return 0;

}

