
Programming Fundamentals- I

Rao Muhammad Umer
Lecturer,

Web: raoumer.github.io
Department of Computer Science & IT,

The University of Lahore.

http://raoumer.github.io/

Administrative Stuff

 Course related stuff is available on following
link:

https://piazza.com/uol.edu.pk/fall2016/cs1012/ho
me

https://piazza.com/uol.edu.pk/fall2016/cs1012/home
https://piazza.com/uol.edu.pk/fall2016/cs1012/home
https://piazza.com/uol.edu.pk/fall2016/cs1012/home

Comparison of C & C++

C++ Code:

#include <iostream>

int main()

{

 std::cout << "Welcome
to C++!\n";

getch();

 return 0;

 }

C Code:

#include <stdio.h>

int main ()

{

printf ("Hello
World!\n”);

getchar();

return 0;

}

Text Book

C++ How to Program

 By: Deitel & Deitel (8th or higher edition)

Machine Languages

Assembly Languages

High-Level Languages

+1300042774

+1400593419

+1200274027

LOAD A

ADD B

STORE C

C=A+B

Assembler
• Instructions written in assembly language

must be translated to machine language
instructions :
 Assembler does this

• One to one translation : One AL instruction is
mapped to one ML instruction.

• AL instructions are CPU specific.

Compiler
• Instructions written in high-level language also

must be translated to machine language
instructions :

 Compiler does this

• Generally one to many translation : One HL
instruction is mapped to many ML instruction.

• HL instructions are not CPU specific but
compiler is.

Interpreter
• An interpreter translates high-level instructions into

an intermediate form, which it then executes. In
contrast, a compiler translates high-level instructions
directly into machine language.

• Compiled programs generally run faster than
interpreted programs.

• The advantage of an interpreter, however, is that it does
not need to go through the compilation stage during which
machine instructions are generated. This process can be
time-consuming if the program is long. The interpreter, on
the other hand, can immediately execute high-level
programs. For this reason, interpreters are sometimes used
during the development of a program, when a programmer
wants to add small sections at a time and test them quickly.

http://www.webopedia.com/TERM/I/compiler.html
http://www.webopedia.com/TERM/I/machine_language.html
http://www.webopedia.com/TERM/I/machine_language.html
http://www.webopedia.com/TERM/I/machine_language.html
http://www.webopedia.com/TERM/I/programmer.html

Creating Programs

Control Statements

Conditional Tasks
• if it is the condition, then I will do task A

Real Life Examples:

• if it is the condition, then I will do task A, else(i.e.
otherwise), I will do task B.

Real Life Examples:

• if it is the condition, then I will do task A, else if it
is the condition then I will do task B, else I will do
task C.

Real Life Examples:

if statements

Example

#include <iostream>

using namespace std;

int main()

{

int age;

cout << "Please enter your age in years\n";

cin >> age;

if (age<=12)

 cout << "Please go to Child Specialist in Room 10\n";

cout << “Allah Hafiz";

getch();

return 0;

}

The if Selection Structure
Selection structure:
• Used to choose among alternative courses of

action
If (age<=12)
cout << "Please go to Child Specialist in Room 10\n";

• If condition true cout statement executed and
program goes on to next statement

• If false, print statement is ignored and the
program goes onto the next statement

• Indenting makes programs easier to read

The if Selection Structure
if structure is a single-entry/single-exit structure

Example
#include<stdio.h>

#include <stdafx.h>

int main()

{

int age;

cout << "Please enter your age in years\n";

cin >> age;

if (age<=12)

{

 cout << "Please go to Child Specialist in Room 10\n";

 cout << “ Fee is Rupees 400/=\n";

}

cout << “Allah Hafiz";

getch();

return 0;

}

The if Statement
• Form 1:

 if (expression)

 statement1;

 next statement;

Example
#include<stdio.h>

#include <stdafx.h>

int main()

{

int age;

cout << "Please enter your age in years\n";

cin >> age;

if (age<=12)

 cout << "Please go to Pediatrics in Room 10\n\n";

if (age>12)

 cout << "Please go to Medical Specialist in Room 15\n";

cout << “Allah Hafiz";

getch();

return 0;

}

if else statements

Example
#include<stdio.h>

#include <stdafx.h>

int main()

{

int age;

cout << "Please enter your age in years\n";

cin >> age;

if (age<=12)

 cout << "Please go to Pediatrics in Room 10\n\n";

else

 cout << "Please go to Medical Specialist in Room 15\n";

cout << “Allah Hafiz";

getch();

return 0;

}

The if Statement
• Form 1:
 if (expression)
 statement1;
 next statement;
• Form 2:
 if (expression)
 statement1;
 else
 statement2;
 next statement;

The if/else Selection Structure

• if

– Only performs an action if the condition is true

• if/else

– Specifies an action to be performed both when the condition is
true and when it is false

• Once again

 if (age<=12)

 cout << "Please go to Pediatrics in Room 10\n\n";

 else

 cout << "Please go to Med. Spec. in Room 15\n";

– Note spacing/indentation conventions

The if/else Selection Structure

Flow chart of the if/else selection structure

Example
#include<stdio.h>

#include <stdafx.h>

int main()

{

int age;

cout << "Please enter your age in years\n";

cin >> age;

if (age<=12)

 cout << "Please go to Child Specialist in Room 10, Fee is Rupees 400/=\n“;

if (age > 12 && age < 60)

 cout << "Please go to Medical Specialist in Room 15, Fee is Rupees 400/=\n";

if (age >= 60)

 cout << "Please go to Medical Specialist in Room 19, Fee is Rupees 200/=\n";

cout << “Allah Hafiz";

getch();

return 0;

}

if else if statements

Example
#include<stdio.h>

#include <stdafx.h>

int main()

{

int age;

cout << "Please enter your age in years\n";

cin >> age;

if (age<=12)

 cout << "Please go to Child Specialist in Room 10, Fee is Rupees 400/=\n“;

else if (age > 12 && age < 60)

 cout << "Please go to Medical Specialist in Room 15, Fee is Rupees 400/=\n";

else (age >= 60)

 cout << "Please go to Medical Specialist in Room 19, Fee is Rupees 200/=\n";

cout << “Allah Hafiz";

getch();

return 0;

}

The if/else Selection Structure

Example
#include <iostream>

int main ()

{

int x, y;

cout << "\nInputan integer value for x: ";

cin >> x;

cout << "\nInputan integer value for y: ";

cin >> y;

if (x == y)

 cout << "x is equal to y\n";

else if (x > y)

 cout << "x is greater than y\n";

else

 cout << "x is smaller than y\n";

return 0;

}

Sequential execution
• Sequential execution

– Statements executed one after the other in the
order written

– Sequence structures: Built into C/C++.

– Programs executed sequentially by default

Control Structures
• Transfer of control

– When the next statement executed is not the next
one in sequence

• Selection structures: C/C++ has three types:

 if, if/else, and switch

• Repetition structures: C/C++ has three types:

 while, do/while and for (Later)

Conditional Operator

Conditional Operator
if (a < b)

 c = a + 5;

else

 c = b + 8;

// We can do this in compact form as

c = a < b ? a + 5 : b + 8; //Ternary conditional
operator (?:)

Evaluate first expression. If true, evaluate second,

otherwise evaluate third.

Conditional Operator
• Ternary conditional operator (?:)

– Takes three arguments (condition, value if true,
value if false)

– Our pseudo code could be written:

 grade >= 60 ? cout << “Passed\n” :

 cout << “Failed\n” ;

Conditional Operator
• The conditional operator essentially allows

you to embed an “if” statement into an
expression

• Generic Form

Conditional Operator
• Example:

 z = (x > y) ? x : y;

• This is equivalent to:

 if (x > y)

 z = x;

 else

 z = y;

Relational Operators

Relational Operators
• Relational operators allow you to compare

variables.

– They return a 1 value for true and a 0 for false.

Example
#include<iostream>

using namesapce std;

void main()

{

int age;

cout << "Please enter your age in years\n";

cin >> age;

if (age<=12)

 cout << "Please go to Child Specialist in Room 10, Fee is Rupees 400/=\n“;

else if (age > 12 && age < 60)

 cout << "Please go to Medical Specialist in Room 15, Fee is Rupees 400/=\n";

else (age >= 60)

 cout << "Please go to Medical Specialist in Room 19, Fee is Rupees 200/=\n";

cout << “Allah Hafiz";

getch();

}

Logical Operators

Logical Operators
• && AND

• || OR

• ! NOT

Logical Operators

Be careful about Equality (==) and
Assignment (=) Operators

• Dangerous error

– Does not ordinarily cause syntax errors

 if (x == 4)

 cout << “You are happy\n";

• Checks value of x, if it is 4then it prints You are happy

– Example, replacing ==with =:

 if (x = 4)

 cout << “You are happy\n";

• This always prints You are happy

• 4is nonzero, so expression is true.

• Logic error, not a syntax error

 if (x = 0)

 cout << “You are happy\n";

 What’s output?

Operator Precedence

#include <iostream>

using namespace std;

int main()

{

int day;

cout << "The day number 1 means Monday\n";

cout << "Please enter the number of day. \n The number must be any

integer value from 1 to 7\n";

cin >> day;

if (day == 1)

 cout << "Monday\n";

else if (day == 2)

 cout << "Tuesday\n";

 else if (day == 3)

 cout << "Wednesday\n";

 // You may complete it yourself

}

The if/else Selection Structure

Nested if/else structures

• In previous example, the nested if/else structure
is to be used.

• Test for multiple cases by placing if/else selection
structures inside if/else selection structures

• Deep indentation usually not used in practice

• How can we solve this example more
conveniently?

• Switch statement is a convenient way for it.

switch statements

Switch Statement
If you have a large decision tree, and all the
decisions depend on the value of the same
variable, you will probably want to consider a
switch statement instead of a ladder of if...else
or else if constructions.

// Example of switch statement
#include <iostream>

using namespace std;

int main()

{

int day;

cout << "The day number 1 means Monday\n";

cout << "Please enter the number of day. \n The

number must be any integer value from 1 to 7\n";

cin >> day;

// Contd. (next page)

switch(day)

{

case 1:

 cout << "Monday\n";

 break;

case 2:

 cout << "Tuesday\n";

 break;

// please write cases 3 to 6 yourself

case 7:

 cout << "Sunday\n";

 break;

default:

 cout << "The number must be any integer value from 1 to 7\n";

 break;

}

getch();

return 0;

}

The switch Structure
• switch

– Useful when a variable or expression is tested for all the values which can
happen and different actions are taken

• Format

– Series of case labels and an optional default case

 switch (value)

 {

 case '1':

 actions

 case '2':

 actions

 default:

 actions

 }

– break; exits from structure

The switch Structure
• Flowchart of the switch structure

