
Programming Fundamentals - I

Basic Concepts

Fall-Semester 2016

Prepared By:

Rao Muhammad Umer

Lecturer,

Web: raoumer.github.io

Department of Computer Science & IT,

The University of Lahore.

http://raoumer.github.io/

What is computer?

The term "computer" was originally given to humans who performed numerical calculations

using mechanical calculators, such as the abacus and slide rule. The term was later given to a

mechanical device as they began replacing the human computers.

Today's computers are electronic devices that accept data such as numbers, text, sound, image,

animations, video, etc., (input), process that data (converts data to information) , produce output,

and then store (storage) the results.

A basic computer consists of 4 components:

1. Input devices

2. Central Processing Unit or CPU

3. Output devices

4. Memory

Input Devices are used to provide input to the computer basic input devices include keyboard,

mouse, touch screens etc.

Central Processing Unit acts like a brain, it processes all instructions and data in the computer,

the instructions are computer commands, these commands are given to CPU by input devices,

some of the instructions are generated by the computer itself

Output devices are used to receive computer output, the output, some basic output devices are

hard drive disk (HDD, commonly known as hard disk), printers, computer screens (Monitors and

LCDs)

The computer memory is a temporary storage area. It holds the data and instructions that the

Central Processing Unit (CPU) needs. Before a program can be run, the program is loaded from

some storage device such as into the memory, the CPU loads the program or part of the program

from the memory and executes it.

http://www.computerhope.com/jargon/a/abacus.htm
http://www.computerhope.com/jargon/i/input.htm
http://www.computerhope.com/jargon/o/output.htm
http://www.computerhope.com/jargon/s/stordevi.htm

Difference between memory and storage

A storage device keeps the data for long times, the data is not lost when the storage device or

computer is off, however the memory holds data for short intervals and this data is lost if the

computer is turned off. Storage devices are much slower than computer memory. To clarify the

difference consider storage devices as file cabinets (common in offices) and memory as work

desk (table usually). The file cabinet provides storage for all the files and information you need

in your office. When you come in to work, you take out the files you need from storage and put

them on your desk for easy access while you work on them. The desk is like memory in the

computer: it holds the information and data you need to have handy while you're working.

Imagine what it would be like if every time you wanted to look at a document or folder you had

to retrieve it from the file drawer. It would slow you down tremendously, same is the case with

storage and memory, as CPU works at high speeds it needs fast access to programs, that is why

programs and data are first loaded to computer memory and then CPU works on them.

Basic Components of Computer

 Hardware

 Software

o Operating System

o Application Programs

What is computer hardware?

Computer hardware refers to the physical parts or components of a computer such as the

monitor, mouse, keyboard, computer data storage, hard drive disk (HDD), system unit (sound

cards, memory, motherboard and chips), etc. all of which are physical objects that can be

touched (known as tangible).

What are computer software / programs?

Software is any set of instructions that tells the hardware what to do. It is what guides the

hardware and tells it how to accomplish each task. Some examples of software include web

browsers, games, and word processors such as Microsoft Word. Program or computer program is

a commonly used term for software.

What are Application Software / Programs?

An application program (sometimes shortened to application) is any program designed to

perform a specific function directly for the user or, in some cases, for another application

program. Examples of application programs include word processors; calculator, calendar,

database programs; Web browsers; development tools; drawing, paint, and image editing

programs; and communication programs. Application programs use the services of the

computer's operating system and other supporting programs.

What is Operating System?

A software or program that manage computer resources including software and hardware such as

hard drive disk, memory, printer, or application programs, it allows software and hardware to

communicate with each other. Most of the time, there are many different programs running at the

same time, and they all need to access your computer's central processing unit (CPU), memory,

and storage. The operating system coordinates all of this to make sure each program gets what it

needs. Without the operating system, the software wouldn't even be able to talk to the hardware,

and the computer would be useless. The operating system acts as an interface between the

hardware and the programs and allows you to communicate with the computer without knowing

how to speak the computer's "language."

In simple terms, an operating system is a manager. It manages all the available resources on a

computer. These resources can be the hard disk, a printer, or the monitor screen. Even memory is

a resource that needs to be managed. The three most common operating systems for personal

computers are Microsoft Windows, Mac OS X, and Linux however there are hundreds of

operating system in the world. Some operating systems are for personal computers while others

are for different types of computers and devices such as mobile phones, main-frame computers,

super computers etc.

Types of Operating Systems

1. Time-sharing operating systems

Time sharing is a technique which enables many people, located at various terminals, to use a

particular computer system at the same time. Processor's time which is shared among multiple

users simultaneously is termed as time-sharing. Multiple jobs are executed by the CPU by

switching between them, but the switches occur so frequently that the user feels an immediate

response.

Advantages of Timesharing operating systems are following

 Provide advantage of quick response.

 Avoids duplication of software.

 Reduces CPU idle time.

Disadvantages of Timesharing operating systems are following.

 Problem of reliability.

 Question of security and integrity of user programs and data.

 Problem of data communication.

2. Distributed operating System

Distributed systems use multiple central processors to serve multiple real time application and

multiple users. Data processing jobs are distributed among the processors accordingly to which

one can perform each job most efficiently.

The processors communicate with one another through various communication lines (such as

high-speed buses or telephone lines). These are referred as loosely coupled systems or distributed

systems. Processors in a distributed system may vary in size and function. These processors are

referred as sites, nodes, computers and so on.

The advantages of distributed systems are following.

 With resource sharing facility user at one site may be able to use the resources available

at another.

 Speedup the exchange of data with one another via electronic mail.

 If one site fails in a distributed system, the remaining sites can potentially continue

operating.

 Better service to the customers.

 Reduction of the load on the host computer.

 Reduction of delays in data processing.

3. Network operating System

Network Operating System runs on a server and provides server the capability to manage data,

users, groups, security, applications, and other networking functions. The primary purpose of the

network operating system is to allow shared file and printer access among multiple computers in

a network, typically a local area network (LAN), a private network or to other networks.

Examples of network operating systems are Microsoft Windows Server 2003, Microsoft

Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.

The advantages of network operating systems are following.

 Centralized servers are highly stable.

 Security is server managed.

 Upgrades to new technologies and hardwares can be easily integrated into the system.

 Remote access to servers is possible from different locations and types of systems.

The disadvantages of network operating systems are following.

 High cost of buying and running a server.

 Dependency on a central location for most operations.

 Regular maintenance and updates are required.

4. Real Time operating System

Real time system is defines as a data processing system in which the time interval required to

process and respond to inputs is so small that it controls the environment. Real time processing is

always on line whereas on line system need not be real time. The time taken by the system to

respond to an input and display of required updated information is termed as response time. So in

this method response time is very less as compared to the online processing.

Real-time systems are used when there are rigid time requirements on the operation of a

processor or the flow of data and real-time systems can be used as a control device in a dedicated

application. Real-time operating system has well-defined, fixed time constraints otherwise

system will fail. For example Scientific experiments, medical imaging systems, industrial control

systems, weapon systems, robots, and home-appliances controllers, Air traffic control system etc.

Windows CE, OS-9, Symbian and LynxOS are some of the commonly known real-time

operating systems.

Multi-user and Single-user Operating Systems:

Computer operating systems of this type allow multiple users to access a computer system

simultaneously. Time-sharing systems can be classified as multi-user systems as they enable a

multiple user access to a computer through time sharing. Single-user operating systems, as

opposed to a multi-user operating system, are usable by only one user at a time. Being able to

have multiple accounts on a Windows operating system does not make it a multi-user system.

Rather, only the network administrator is the real user.

Windows 95, Windows 2000, Mac OS and Palm OS are examples of single-user operating

systems. Unix and OpenVMS are examples of multi-user operating systems.

Multi-tasking and Single-tasking Operating Systems:

When a single program is allowed to run at a time, the system is grouped under the single tasking

system category, while in case the operating system allows for execution of multiple programs or

tasks at a time, it is classified as a multi-tasking operating system. Palm OS for Palm handheld is

a single-task operating system. Windows 9x support multi-tasking. DOS Plus is a relatively less-

known multi-tasking operating system. It can support the multi-tasking of a maximum of four

CP/M-86 programs.

Embedded System:

The operating systems designed for being used in embedded computer systems are known as

embedded operating systems. They are designed to operate on small machines like PDAs with

less autonomy. They are able to operate with a limited number of resources. They are very

compact and extremely efficient by design.

Windows CE, FreeBSD and Minix 3 are some examples of embedded operating systems. The

use of Linux in embedded computer systems is referred to as Embedded Linux.

Mobile Operating System:

Though not a functionally distinct kind of operating system, mobile OS is definitely an important

mention in the list of operating system types. A mobile OS controls a mobile device and its

design supports wireless communication and mobile applications. It has built-in support for

mobile multimedia formats. Tablet PCs and smartphones run on mobile operating systems.

Blackberry OS, Google's Android and Apple's iOS are some of the most known names of mobile

operating systems.

Batch Processing and Interactive Systems:

Batch processing refers to execution of computer programs in 'batches' without manual

intervention. In batch processing systems, programs are collected, grouped and processed on a

later date. There is no prompting the user for inputs as input data are collected in advance for

future processing. Input data are collected and processed in batches, hence the name batch

processing. IBM's z/OS has batch processing capabilities. As against this, interactive operating

requires user intervention. The process cannot be executed in the user's absence.

How computer programs are created?

Computer programs / software are created by programming languages, a programming language

provides set of instructions that human beings can understand, these instructions can be used to

instruct computer to perform some useful work, such as mathematical calculations. To create a

program these instructions are written according to certain rules and in some order. A special

program is used to convert these instruction into machine-readable form so that computer can

understand and execute these commands. There are two types of such conversion programs i.e.

compiler and interpreter.

What programs are used to develop a program?

There are many programming languages, and for each programming language there are many

software that help in writing, testing and executing a program. Following is a list of basic

programs that are required to write a program using any programming language

1-Editor: Editors are simple software that allows a user to create simple text files, a computer

program can be written in a text file, the program in this form is called “source code”.

2-Compiler: Compilers convert source code into machine code, this is required as computer

understands only machine code. For every language there must be a compiler or interpreter.

After compilation the source code becomes “executable code”.

3-Interpreter: An interpreter also converts the source code into machine code however it is

different from a compiler, a compiler takes source code and converts all of it to machine code in

one translation or conversion, an interpreter takes pieces from source code converts it to machine

code, an interpreter does not converts all of the source code to machine code in one translation.

4-Debugger: A debugger is a software program used to test and find bugs (errors) in other

programs, this helps the programmer to understand and trace program errors more easily.

Writing or creating, writing a or developing a program have same meanings, the person who

creates or writes computer programs is called programmer or software developer (commonly

used term is programmer and developer)

What is an IDE?

The term IDE stands for Integrated Development Environment; the term is used for software that

provides a collection of necessary programs to develop a computer program. An IDE usually

have an editor, compiler or debugger, and other programming tools.

What is Programming Language?

A "programming language" is a language designed to describe a set of consecutive actions

to be executed by a computer. A programming language is therefore a practical way for us

(humans) to give instructions to a computer.

Programming languages can be used to create programs to control the behavior of a machine or

to express algorithms.

Thousands of different programming languages have been created, mainly in the computer field,

and many more still are being created every year. Many programming languages require

computation to be specified in an imperative form (i.e., as a sequence of operations to

perform), while other languages utilize other forms of program specification such as the

declarative form (i.e. the desired result is specified, not how to achieve it).

Languages that computers use to communicate with each other, have nothing to do with

programming languages, they are referred to as communication protocols, these are two very

different concepts. A programming language is very strict:

“EACH instruction corresponds to ONE processor action.”

The language used by the processor is called machine code. The code that reaches the processor

consists of a series of 0s and 1s known as (binary data).

Machine code is therefore difficult for humans to understand, which is why intermediary

languages, which can be understood by humans, have been developed. The code written in

this type of language is transformed into machine code so that the processor can process it.

The assembler was the first programming language ever used. This is very similar to machine

code but can be understood by developers. Nonetheless, such a language is so similar to machine

code that it strictly depends on the type of processor used (each processor type may have its

own machine code). Thus a program developed for one machine may not be ported to

another type of machine. The term "portability" describes the ability to use a software program

on different types of machines. A software program written in assembler code, may sometimes

have to be completely rewritten to work on another type of computer!

A programming language has therefore several advantages:

 It is much more understandable than machine code;

 It allows greater portability, i.e. can be easily adapted to run on different types of

computers.

Programming languages enable users to write programs for specific computations/algorithms.

Imperative and functional programming languages

Programming languages are generally divided into two major groups according to how their

commands are processed:

 Imperative languages

 Functional languages

Imperative programming language

An imperative language programs using a series of commands, grouped into blocks and

comprising of conditional statements which allow the program to return to a block of

commands if the condition is met. These were the first programming languages in use, even

today many modern languages still use this principle.

Structured imperative languages suffer, however, from lack of flexibility due to the sequentially

of instructions.

Functional programming language

A functional programming language (often called procedural language) is a language which

creates programs using functions, returning to a new output state and receiving as input the result

of other functions. When a function invokes itself, we refer to this as recursion.

Interpretation and compilation

Programming languages may be roughly divided into two categories:

 Interpreted languages

 Compiled languages

Interpreted language

A programming language is by definition different to machine code This must therefore

be translated so that the processor can understand the code. A program written in an interpreted

language requires an extra program (the interpreter) which translates the programs

commands as needed.

Compiled language

A program written in a "compiled" language is translated by an additional program called

a compiler which in turn creates a new stand-alone file which does not require any other

program to execute itself, such a file is called an executable.

A program written in a compiled language has the advantage of not requiring an additional

program to run it once it has been compiled. Furthermore, as the translation only needs to be

done once, at compilation it executes much faster.

However, it is not as flexible as a program written in an interpreted language, as each

modification of the source file (the file understandable by humans: the file to be compiled)

means that the program must be recompiled for the changes to take effect.

On the other hand, a compiled program has the advantage of guaranteeing the security of

the source code. In effect, interpreted language, being a directly legible language, means that

anyone can find out the secrets of a program and thus copy or even modified the program. There

is therefore a risk of copyright violation. On the other hand, certain secure applications need

code confidentiality to avoid illegal copying (bank transactions, on-line payments, secure

communications...).

Intermediary languages

Some languages belong to both categories (LISP, Java, Python...) as the program written in

these languages may in certain cases undergo an intermediary compilation phase, into a file

written in a language different to the source file and non-executable (requiring an interpreter).

Java applets, small programs, often loaded in web pages, are compiled files, which can only be

executed from within a web browser (these are files with the .class extension). Basic Concepts of

any Programming Language

There are five basic concepts of any programming languages, as given below:

1. Variables

In computer programming, a variable is a storage location and an associated

symbolic name which contains some known or unknown quantity or information,

a value.

2. Control Structures

A control structure is a block of programming that analyzes variables and chooses

a direction in which to go based on given parameters. The term flow control

details the direction the program takes (which way program control “flows”).

Hence it is the basic decision-making process in computing; flow control

determines how a computer will respond when given certain conditions and

parameters.

3. Data Structures

In computer science, a data structure is a particular way of storing and organizing

data in a computer so that it can be used efficiently.

4. Syntax

In computer science, the syntax of a programming language is the set of rules

that define the combinations of symbols that are considered to be correctly

structured programs in that language.

5. Tools

In the real world, a tool is something (usually a physical object) that allows you to

get a certain job done in a more timely manner. Well, this holds true with the

programming world too. A tool in programming is a piece of software that,

when used while you code, allows you to get your program done faster!

Basic Concepts of C++ Language

C is a general-purpose high level language that was originally developed by Dennis Ritchie for

the UNIX operating system. It was first implemented on the Digital Equipment Corporation

PDP-11 computer in 1972. C++ is the improved version of C. Since C has only support of

procedural language, while, C++ has support of both Procedural and Object Oriented

Programming language.

The UNIX operating system and virtually all Unix applications are written in the C as well as

C++ language. C++ has now become a widely used professional language for various reasons.

 Easy to learn

 OOP language

 It produces efficient programs.

 It can handle low-level activities.

 It can be compiled on a variety of computers.

Why to use C++?

C++ was initially used for system development work, in particular the programs that make-up

the operating system. C++ was adopted as a system development language because it produces

code that runs nearly as fast as code written in assembly language. Some examples of the use of

C++ might be:

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Data Bases

 Language Interpreters

 Utilities

C++ Program File

All the C++ programs are written into text files with extension ".cpp" for example hello.cpp.

C++ Compilers

When you write any program in C++ language then to run that program you need to compile that

program using a C++ Compiler which converts your program into a language understandable by

a computer called machine language.

Variables

A variable is a symbolic name for (or reference to) information. The variable's name represents

what information the variable contains. They are called variables because the represented

information can change but the operations on the variable remain the same. In general, a program

should be written with "Symbolic" notation, such that a statement is always true symbolically.

For example if I want to know the average of two grades, We can write "average = (grade_1 +

grade_2) / 2.0;" and the variable average will then contain the average grade regardless of the

scores stored in the variables, grade_1 and grade_2.

Variables in a computer program are analogous to "Buckets" or "Envelopes" where information

can be maintained and referenced. On the outside of the bucket is a name. When referring to the

bucket, we use the name of the bucket, not the data stored in the bucket.

Variables are "Symbolic Names". This means the variable "stands in" for any possible values.

This is similar to mathematics, where it is always true that if given two positive numbers (lets

use the symbols 'a' and 'b' to represent them):

a + b > a

(i.e., if you add any two numbers, the sum is greater than one of the numbers by itself).

This is called Symbolic Expression, again meaning, when any possible (valid) values are used in

place of the variables, the expression is still true.

Another example, if we want to find the sum of ANY TWO NUMBERS we can write:

result = a + b;

Both 'a' and 'b' are variables. They are symbolic representations of any numbers. For example,

the variable 'a' could contain the number 5 and the variable 'b' could contain the number 10.

During execution of the program, the statement "a + b" is replaced by the Actual Values "5 + 10"

and the result becomes 15. The beauty (and responsibility) of variables is that the symbolic

operation should be true for any values.

Another example, if we want to find out how many centimeters tall a person is, we could use the

following formula: height in centimeters = height in inches * 2.54.

This formula is always true. It doesn't matter if its Joe's height in inches or Jane's height in

inches. The formula works regardless. In computer terminology we would use:

height_in_centimeters = height_in_inches * 2.54;

// the variable height_in_centimeters is assigned a

// new value based on the current value of "height_in_inches"

// multiplied by 2.54

Variable Properties

There are 6 properties associated with a variable. The first three are very important as you start to

program. The last three are important as you advance and improve your skills (and the

complexity of the programs you are creating).

Memorize These!

1. A Name

2. A Type

3. A Value

4. A Scope

5. A Life Time

6. A Location (in Memory)

Clarification of Properties

1. A Name

The name is Symbolic. It represents the "title" of the information that is being stored with the

variable.

The name is perhaps the most important property to the programmer, because this is how we

"access" the variable. Every variable must have a unique name!

2. A Type

The type represents what "kind" of data is stored with the variable. (See the Chapter on Data

Types).

3. A Value

A variable, by its very name, changes over time. Thus if the variable is jims_age and is assigned

the value 21. At another point, jims_age may be assigned the value 27.

4. A Scope

Good programs are "Chopped" into small self contained sections (called functions) much like a

good novel is broken into chapters, and a good chapter is broken into paragraphs, etc. A variable

that is seen and used in one function is NOT available in another function. This allows us to

reuse variable names, such as age. In one function 'age' could refer to the age of a student, and in

another function 'age' could refer to the vintage of a fine wine.

Further this prevents us from "accidentally" changing information that is important to another

part of our program.

5. A Life Time

The life time of a variable is strongly related to the scope of the variable. When a program

begins, variables "come to life". Variables "die" when the program leaves the "Scope" of the

variable.

6. A Location (in Memory)

Luckily, we don't have to worry too much about where in the computer hardware the variable is

stored. The computer does this for us. But you should be aware that a "Bucket" or "Envelope"

exists in the hardware for every variable you declare.

Legal Variable Names

 Start with a letter

 Use _ (underscores) for clarity

 Can use numbers

 Don't use special symbols

 Don't have spaces

 Have meaningful Names

Good Variable Names

Good variable names tell you, your teammates, (and your TA) what information is "stored"

inside that variable. They should make sense to a non computer programmer. For example:

 g = 9.81; // bad

 gravitational_constant = 9.81; //good

The different kinds of files

Compiling C++ programs requires you to work with four kinds of files:

1. Regular source code files. These files contain function definitions, and have names

which end in ".cpp" by convention.

2. Header files: These files contain function declarations (also known as function

prototypes) and various preprocessor statements. They are used to allow source code files

to access externally-defined functions. Header files end in ".h" by convention.

3. Object files: These files are produced as the output of the compiler. They consist of

function definitions in binary form, but they are not executable by themselves. Object

files end in ".o" by convention, although on some operating systems (e.g. Windows,

MS-DOS), they often end in ".obj".

4. Binary executables: These are produced as the output of a program called a "linker". The

linker links together a number of object files to produce a binary file which can be

directly executed. Binary executables have no special suffix on Unix operating systems,

although they generally end in ".exe" on Windows.

There are other kinds of files as well, notably libraries (".a" files) and shared libraries (".so"

files), but you won't normally need to deal with them directly.

The preprocessor

Before the C++ compiler starts compiling a source code file, the file is processed by

a preprocessor. This is in reality a separate program (normally called "cpp", for "C++

preprocessor"), but it is invoked automatically by the compiler before compilation proper begins.

What the preprocessor does is convert the source code file you write into another source code file

(you can think of it as a "modified" or "expanded" source code file). That modified file may exist

as a real file in the file system, or it may only be stored in memory for a short time before being

sent to the compiler. Either way, you don't have to worry about it, but you do have to know what

the preprocessor commands do.

Preprocessor commands start with the pound sign ("#"). There are several preprocessor

commands; two of the most important are:

1. #define. This is mainly used to define constants. For instance,

2. #define BIGNUM 1000000

specifies that wherever the character string BIGNUM is found in the rest of the

program, 1000000 should be substituted for it. For instance, the statement:

 int a = BIGNUM;

becomes

 int a = 1000000;

#define is used in this way so as to avoid having to explicitly write out some constant

value in many different places in a source code file. This is important in case you need to

change the constant value later on; it's much less bug-prone to change it once, in

the #define, than to have to change it in multiple places scattered all over the code.

3. #include. This is used to access function definitions defined outside of a source code file.

For instance:

4. #include <iostream>

causes the preprocessor to paste the contents of <iostream> into the source code file at

the location of the #include statement before it gets compiled. #include is almost always

used to include header files, which are files which mainly contain function declarations

and #define statements. In this case, we use #include in order to be able to use functions

such as cout and cin, whose declarations are located in the file iostream. C++ compilers

do not allow you to use a function unless it has previously been declared or defined in

that file; #include statements are thus the way to re-use previously-written code in your

C++ programs.

There are a number of other preprocessor commands as well, but we will deal with them as we

need them.

Making the object file: the compiler

After the C++ preprocessor has included all the header files and expanded out all

the #define and #include statements (as well as any other preprocessor commands that may be in

the original file), the compiler can compile the program. It does this by turning the C++ source

code into an object code file, which is a file ending in ".o" which contains the binary version of

the source code. Object code is not directly executable, though. In order to make an executable,

you also have to add code for all of the library functions that were #included into the file (this is

not the same as including the declarations, which is what #include does). This is the job of the

linker.

In general, the compiler is invoked as follows:

 % gcc -c foo.c

where % is the unix prompt. This tells the compiler to run the preprocessor on the file foo.c and

then compile it into the object code file foo.o. The -c option means to compile the source code

file into an object file but not to invoke the linker. If your entire program is in one source code

file, you can instead do this:

 % gcc foo.c -o foo

This tells the compiler to run the preprocessor on foo.c, compile it and then link it to create an

executable called foo. The -o option states that the next word on the line is the name of the

binary executable file (program). If you don't specify the -o, i.e. if you just type gcc foo.c, the

executable will be named a.out for silly historical reasons.

Note also that the name of the compiler we are using is gcc, which stands for "GNU C compiler"

or "GNU compiler collection" depending on who you listen to. Other C compilers exist; many of

them have the name cc, for "C compiler". On Linux systems cc is an alias for gcc.

Putting it all together: the linker

The job of the linker is to link together a bunch of object files (.o files) into a binary executable.

This includes both the object files that the compiler created from your source code files as well

as object files that have been pre-compiled for you and collected into library files. These files

have names which end in .a or .so, and you normally don't need to know about them, as the

linker knows where most of them are located and will link them in automatically as needed.

Like the preprocessor, the linker is a separate program called ld. Also like the preprocessor, the

linker is invoked automatically for you when you use the compiler. The normal way of using the

linker is as follows:

 % gcc foo.o bar.o baz.o -o myprog

This line tells the compiler to link together three object files (foo.o, bar.o, and baz.o) into a

binary executable file named myprog. Now you have a file called myprog that you can run and

which will hopefully do something cool and/or useful.

This is all you need to know to begin compiling your own C programs. Generally, we also

recommend that you use the -Wall command-line option:

 % gcc -Wall -c foo.cc

The -Wall option causes the compiler to warn you about legal but dubious code constructs, and

will help you catch a lot of bugs very early. If you want to be even more anal (and who doesn't?),

do this:

 % gcc -Wall -Wstrict-prototypes -ansi -pedantic -c foo.cc

The -Wstrict-prototypes option means that the compiler will warn you if you haven't written

correct prototypes for all your functions. The -ansi and -pedantic options cause the compiler to

warn about any non-portable construct (e.g. constructs that may be legal in gcc but not in all

standard C compilers; such features should usually be avoided).

