Programming Fundamentals- |

Rao Muhammad Umer
Lecturer,
Web: raoumer.github.io
Department of Computer Science & IT,
The University of Lahore.

http://raoumer.github.io/

Administrative Stuff

®= Due Date for submission of Course Survey
Feedback form:

= 30/12/2016

Problem Solving
Strategies

Problem Solving Strategies

* Before writing a program:
— Have a thorough understanding of the problem
— Carefully plan an approach for solving it
* While writing a program:
— Know what “building blocks” are available
— Use good programming principles

Algorithms

 Computing problems

— All can be solved by executing a series of actions
in a specific order

e Algorithm: procedure in terms of
— Actions to be executed

— The order in which these actions are to be
executed

* Program control
— Specify order in which statements are to executed

Structured-Programming Summary

e Structured programming

— Easier than unstructured programs to understand, test,
debug and, modify programs

e Rules for structured programming
— Rules developed by programming community
— Only single-entry/single-exit control structures are used

— Rules:
1. Begin with the “simplest flowchart”
2. Anyrectangle (action) can be replaced by two rectangles
(actions) in sequence
3. Anyrectangle (action) can be replaced by any control structure
(sequence, if, if/else, switch, while, do/while or for)
4. Rules 2 and 3 can be applied in any order and multiple times

Pseudo code

e Pseudo code

— Artificial, informal language that helps us develop
algorithms

— Similar to everyday English
— Not actually executed on computers
— Helps us “think out” a program before writing it

 Easy to convert into a corresponding C++
program

* Consists only of executable statements

Formulating Algorithms

* Counter-controlled repetition
— Loop repeated until counter reaches a certain value
— Definite repetition: number of repetitions is known
— Example: A class of ten students took a quiz. The grades
(integers in the range 0 to 100) for this quiz are available to you.
Determine the class average on the quiz
— Pseudocode:
Set total to zero
Set grade counter to one
While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter
Set the class average to the total divided by ten
Print the class average

/* Class average program with counter controlled repetition*/

t#tinclude<iostream> /* processing phase */
using namespace std; }Nh”e(counter <=10)
int main() cout << "Enter grade: " ;
{ cin >> grade ;
int counter; total = total + grade;
float grade, total, average; counter = counter + 1;
/* initialization phase */ }

/* termination phase */
total = 0.0; average = total / 10.0;
counter = 1; cout << "Class average is” <<

average;

return O; /* indicate program
ended success */
}

Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Class average is 81

98
76
71
87
33
90
57
79
82
94

Output

Formulating Algorithms with Top-
Down, Stepwise Refinement

* Problem becomes:

Develop a class-averaging program that will process an arbitrary
number of grades each time the program is run.

— Unknown number of students
— How will the program know to end?

* Use sentinel value
— Also called signal value, dummy value, or flag value
— Indicates “end of data entry.”
— Loop ends when user inputs the sentinel value

— Sentinel value chosen so it cannot be confused with a regular
input (such as =1 in this case)

Formulating Algorithms with Top-
Down, Stepwise Refinement

* Top-down, stepwise refinement
— Begin with a pseudocode representation of the top:
Determine the class average for the quiz
— Divide top into smaller tasks and list them in order:

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

* Many programs have three phases:
— Initialization: initializes the program variables

— Processing: inputs data values and adjusts program variables
accordingly

— Termination: calculates and prints the final results

Formulating Algorithms with Top-
Down, Stepwise Refinement

* Refine the initialization phase from /Initialize variables
to:

Initialize total to zero
Initialize counter to zero

* Refine Input, sum and count the quiz grades to

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Formulating Algorithms with Top-
Down, Stepwise Refinement

* Refine Calculate and print the class average to

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

/* class average program with sentinel-controlled
repetition */

#tinclude <iostream>

using namespace std;

int main () 1. Initialize Variables

{

float average;
Int counter, grade, total;

/* initialization phase */
total = 0;
counter =0;

/* processing phase*/
cout << “Enter grade, -1 to end:”;
cin >> grade;

2. Get user input

while (grade !=-1){ 3. Perform Loop

total = total + grade;
counter = counter + 1;
cout << “ Enter grade, -1 to end:”;
cin >> grade;

3. Calculate
/* termination phase */ Average

: 4 Print Results
if(counter 1=0) { |
5 Program

average = (float) total / counter; | output

cout << "Class average is“ << average;

}

else

cout << "No grades were entered\n" ;

return 0; /* indicate program ended successfully */

J

Enter grac
Enter grac
Enter grac
Enter grac
Enter grac
Enter grac
Enter grac
Enter grac

Enter grac

e, -1 to end:
e, -1 to end:
e, -1 to end:
e, -1 to end:
e, -1 to end:
e, -1 to end:
e, -1 to end:
e, -1 to end:

e, -1 to end:

Class average is 82.50

75
94
97
38
70
64
33
39

To Find the Maximum Marks

#include <iostream> for (i=0;i<6;i++)

using namespace std; {

int main() if (Maximum <marksli])

{ {

int marks[6] = Maximum = marksli];

{36,78,7,99,43,29}; }

Maximum = marks[0]; }

inti; cout << “Maximum Marks
are\n” << Maximum;
getch();
return O;

}

Sorting an Array

#include <iostream> for(i=0;i<s;i++)
using namespace std; {
for(j=i+1; j<s; j++)

int main() {
{ if(ali]>alj])
ints, i, j, temp, a[20]; {
cout << "Enter total elements: "; temp=alil;
cin>>s; ali]=a[jl;
cout << “Enter “ << s << “elements: “; a[j]=temp;
for(i=0;i<s;i++) }

cin >> alil; }

}

cout << "After sorting: \n";
for(i=0; i<s; i++)
cont << a[i];
getch();
return O;

}

