

Advanced Multimodal Machine Learning

Lecture 1.1: Introduction

Louis-Philippe Morency Tadas Baltrusaitis

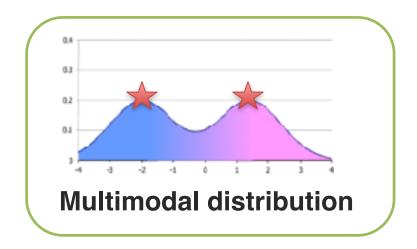
Your Instructors This Semester (11-777)

Louis-Philippe Morency

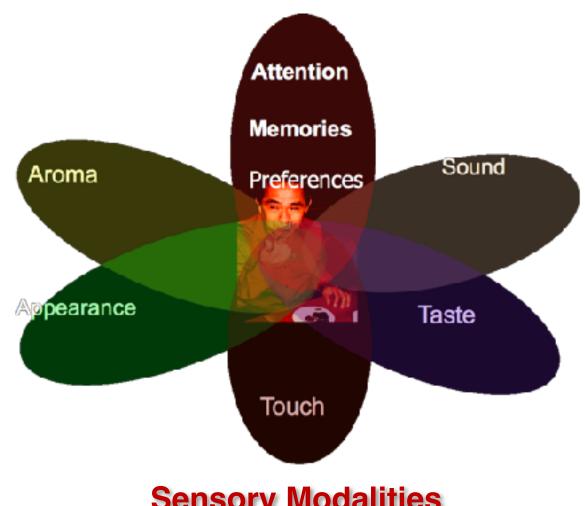
morency@cs.cmu.edu

Office: GHC-5411

Phone: 412-268-5508


Tadas Baltrusaitis

tbaltrus@cs.cmu.edu


Office: GHC-5409

Lecture Objectives

- Introductions
- What is Multimodal?
 - Multimodal vs multimedia
- Applications and research problems
 - Multimodal HCI, multimedia and AVSR
- Course syllabus and project assignments
 - Grades and course structure

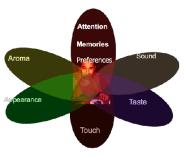
Multiple modes, i.e., distinct "peaks" (local maxima) in the probability density function

Modality

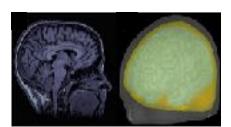
The way in which something happens or is experienced.

- Modality refers to a certain type of information and/or the representation format in which information is stored.
- Sensory modality: one of the primary forms of sensation, as vision or touch; channel of communication.

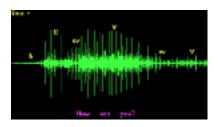
Medium ("middle")


A means or instrumentality for storing or communicating information; system of communication/transmission.

 Medium is the means whereby this information is delivered to the senses of the interpreter.


Examples of Modalities

- Natural language (both spoken or written)
- ☐ Visual (from images or videos)
- Auditory (including voice, sounds and music)
- Haptics / touch
- Smell, taste and self-motion
- Physiological signals
 - Electrocardiogram (ECG), skin conductance
- Other modalities
 - Infrared images, depth images, fMRI

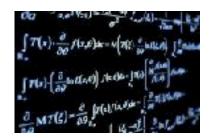

Multiple Communities and Modalities

Psychology

Medical

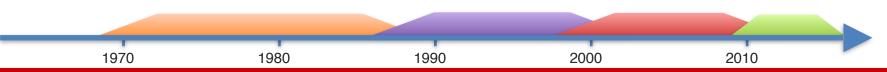
Speech

Vision


Language

Multimedia

Robotics


Learning

A Historical View

Prior Research on "Multimodal"

Four eras of multimodal research

- > The "behavioral" era (1970s until late 1980s)
- > The "computational" era (late 1980s until 2000)
- ➤ The "interaction" era (2000 2010)
- > The "deep learning" era (2010s until ...)
 - Main focus of this course

The "Behavioral" Era (1970s until late 1980s)

Multimodal Behavior Therapy by Arnold Lazarus [1973]

> 7 dimensions of personality (or *modalities*)

Multi-sensory integration (in psychology):

- Multimodal signal detection: Independent decisions vs. integration [1980]
- Infants' perception of substance and temporal synchrony in multimodal events [1983]
- A multimodal assessment of behavioral and cognitive deficits in abused and neglected preschoolers [1984]

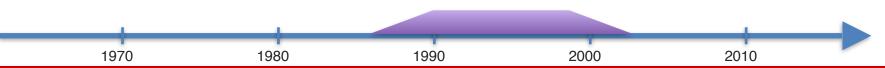
Language and Gestures

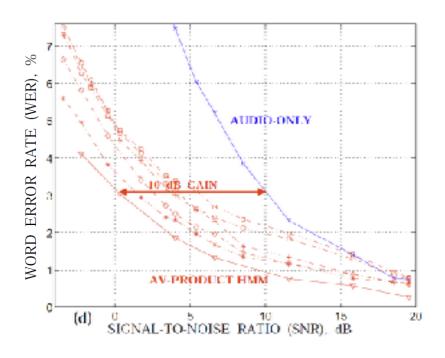
David McNeill University of Chicago Center for Gesture and Speech Research

"For McNeill, gestures are in effect the speaker's thought in action, and integral components of speech, not merely accompaniments or additions."

☐ TRIVIA: Justine Cassell was a student of David McNeill

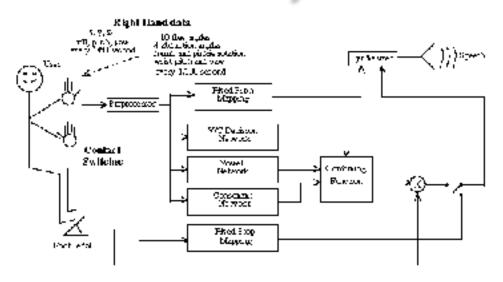
The McGurk Effect (1976)


Hearing lips and seeing voices - Nature


1) Audio-Visual Speech Recognition (AVSR)

- Motivated by the McGurk effect
- First AVSR System in 1986
 "Automatic lipreading to enhance speech recognition"
- Good survey paper [2002]
 "<u>Recent Advances in the Automatic Recognition of Audio-Visual Speech"</u>
- ☐ TRIVIA: The first multimodal deep learning paper was about audio-visual speech recognition [ICML 2011]

1) Audio-Visual Speech Recognition (AVSR)


2) Multimodal/multisensory interfaces

Multimodal Human-Computer Interaction (HCI)

"Study of how to design and evaluate new computer systems where human interact through multiple modalities, including both input and output modalities."



2) Multimodal/multisensory interfaces

Glove-talk: A neural network interface between a data-glove and a speech synthesizer

By Sidney Fels & Geoffrey Hinton [CHI'95]

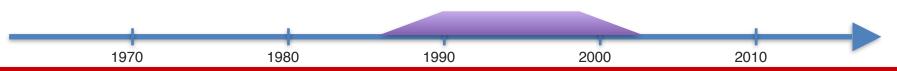
2) Multimodal/multisensory interfaces


Rosalind Picard

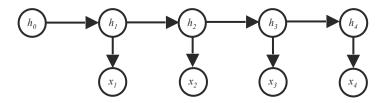
Affective Computing is computing that relates to, arises from, or deliberately influences emotion or other affective phenomena.

→ TRIVIA: Rosalind Picard came from the same group (MIT, Sandy Pentland)

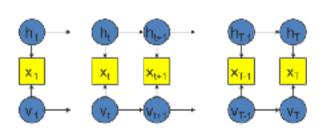
3) Multimedia Computing


"The Informedia Digital Video Library Project automatically combines speech, image and natural language understanding to create a full-content searchable digital video library."

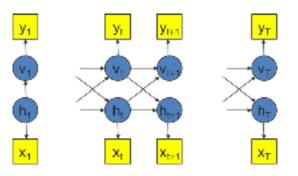
3) Multimedia Computing


Multimedia content analysis

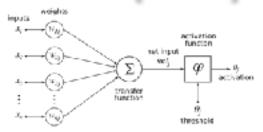
- Shot-boundary detection (1991)
 - Parsing a video into continuous camera shots
- Still and dynamic video abstracts (1992)
 - Making video browsable via representative frames (keyframes)
 - Generating short clips carrying the essence of the video content
- High-level parsing (1997)
 - Parsing a video into semantically meaningful segments
- Automatic annotation (indexing) (1999)
 - Detecting prespecified events/scenes/objects in video

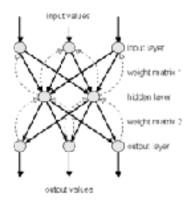


Multimodal Computation Models


Hidden Markov Models [1960s]

☐ Factorial Hidden Markov Models [1996]


□ Coupled Hidden Markov Models [1997]



Multimodal Computation Models

Artificial Neural Networks [1940s]

Backpropagation [1975]

1980

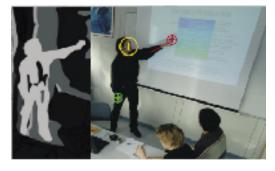
□ Convolutional neural networks [1980s]

2000

1970

1990

2010


➤ The "Interaction" Era (2000s)

1) Modeling Human Multimodal Interaction

AMI Project [2001-2006, IDIAP]

- 100+ hours of meeting recordings
- Fully synchronized audio-video
- Transcribed and annotated

CHIL Project [Alex Waibel]

- Computers in the Human Interaction Loop
- Multi-sensor multimodal processing
- Face-to-face interactions

☐ TRIVIA: Samy Bengio started at IDIAP working on AMI project

➤ The "Interaction" Era (2000s)

1) Modeling Human Multimodal Interaction

CALO Project [2003-2008, SRI]

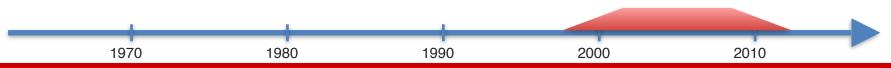
- Cognitive Assistant that Learns and Organizes
- Personalized Assistant that Learns (PAL)
- Siri was a spinoff from this project

SSP Project [2008-2011, IDIAP]

- Social Signal Processing
- First coined by Sandy Pentland in 2007
- Great dataset repository: http://sspnet.eu/

➤ The "Interaction" Era (2000s)

2) Multimedia Information Retrieval



"Yearly competition to promote progress in content-based retrieval from digital video via open, metrics-based evaluation"

[Hosted by NIST, 2001-2016]

Research tasks and challenges:

- Shot boundary, story segmentation, search
- "High-level feature extraction": semantic event detection
- Introduced in 2008: copy detection and surveillance events
- Introduced in 2010: Multimedia event detection (MED)

Multimodal Computational Models

- Dynamic Bayesian Networks
 - Kevin Murphy's PhD thesis and Matlab toolbox

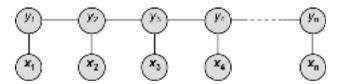
1990

Asynchronous HMM for multimodal [Samy Bengio, 2007]

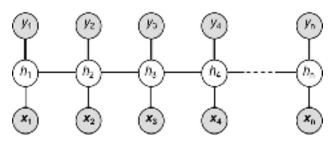
Audio-visual speech segmentation

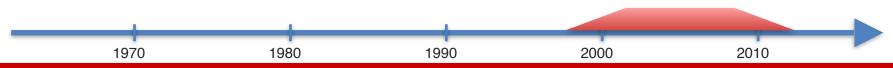
1980

2000



1970


2010


Multimodal Computational Models

- Discriminative sequential models
 - Conditional random fields [Lafferty et al., 2001]

Latent-dynamic CRF [Morency et al., 2007]

➤ The "deep learning" era (2010s until ...)

Representation learning (a.k.a. deep learning)

- Multimodal deep learning [ICML 2011]
- Multimodal Learning with Deep Boltzmann Machines [NIPS 2012]
- Visual attention: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention [ICML 2015]

Key enablers for multimodal research:

- New large-scale multimodal datasets
- Faster computer and GPUS
- High-level visual features
- "Dimensional" linguistic features

Our course focuses on this era!

➤ The "deep learning" era (2010s until ...)

Many new challenges and multimodal corpora!!

Audio-Visual Emotion Challenge (AVEC, 2011-)

- Emotional dimension estimation
- Standardized training and test sets
- Based on the SEMAINE dataset

Emotion Recognition in the Wild Challenge (EmotiW 2013-)

- Emotional dimension estimation
- Standardized training and test sets
- Based on the SEMAINE dataset

1970 1980 1990 2000 2010

➤ The "deep learning" era (2010s until ...)

Renew of multimedia content analysis!

Image captioning

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

- Video description
- Visual Question-Answer

2010

Real world tasks tackled by MMML

- Affect recognition
 - **Emotion**
 - Persuasion
 - Personality traits
- Media description
 - Image captioning
 - Video captioning
 - Visual Question Answering
- Event recognition
 - Action recognition
 - Segmentation
- Multimedia information retrieva
 - Content based/Cross-media

safety vest is working an read."

wakeboard.

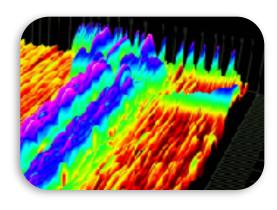
(ii) answer-phone

(a) get-eat-car-

(a) fight-person.

th) push-up

(b) cartwised



Multimodal Machine Learning

Verbal

Vocal

Visual

Core Technical Challenges:

Representation Translation

Alignment

Fusion

Co-Learning

These challenges are non-exclusive.

Course Syllabus

Three Course Learning Paradigms

Research paper reading and group discussion (40% of your grade)

$$\begin{split} i_t &= \sigma \left(W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right) \\ f_t &= \sigma \left(W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right) \\ c_t &= f_t c_{t-1} + i_t \tanh \left(W_{xc} x_t + W_{hc} h_{t-1} + b_c \right) \\ o_t &= \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right) \\ h_t &= o_t \tanh (c_t) \end{split}$$

Course project assignments (60% of your grade)

Course lectures (including guest lectures)

Course Structure

Tuesdays Thursdays

Course lectures

Group discussion and student presentations

Course Recommendations and Requirements

- Ready to read at least 12 papers this semester!
 - 11 research papers as part of the weekly reading assignments
 - 1 supplementary paper for classroom presentation
- 2 Already taken a machine learning course
 - Strongly recommended for students to have taken an introduction machine learning course
 - 10-401, 10-601, 10-701, 11-663, 11-441, 11-641 or 11-741
- Motivated to produce a high-quality course project
 - Three course project assignments
 - Designed to enhance state-of-the-art algorithms

Course Grades

- Discussion participation 20%
- Reading assignments 20%

$$\begin{split} i_t &= \sigma \left(W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i \right) \\ f_t &= \sigma \left(W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f \right) \\ c_t &= f_t c_{t-1} + i_t \tanh \left(W_{xc} x_t + W_{hc} h_{t-1} + b_c \right) \\ o_t &= \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o \right) \\ h_t &= o_t \tanh (c_t) \end{split}$$

- First project assignment
 - Report and presentation 15%
- Mid-term project assignment
 - Report and presentation 15%
- Final project assignment
 - Report and presentation 30%

Course Project

- Pre-proposal (in 2 weeks)
 - Define your dataset and research task
- First project assignment (in 5 weeks)
 - Experiment with unimodal representations
 - Explore/discuss simple baseline model(s)
- Midterm project assignment (in 11 weeks)
 - Implement and evaluate state-of-the-art model(s)
 - Discuss new multimodal model(s)
- Final project assignment (in 15 weeks)
 - Implement and evaluate new multimodal model(s)
 - Discuss future directions

Course Project Guidelines

- Dataset should have at least two modalities:
 - Natural language and visual/images
- Teams of 2, 3 or 4 students
 - No individual projects
- The project should explore algorithmic novelty
- Possible venues for your final report:
 - ICMI 2017, NIPS 2017, EMNLP 2017, BMVC 2017
- We will discuss on Thursday about project ideas

Classes	Lectures
Week 1	Course introduction
1/17 & 1/19	 Multimodal applications and dataset
	 Audio, visual and text features
Week 2	Basic mathematical concepts
1/24 & 1/26	 Probability and statistical learning
	 Score, loss and optimization
Week 3	Neural networks and backpropagation
1/31 & 2/2	Multi-layer perceptron
Pre-proposal	 Convolutional neural network
Week 4	Multi-view multi-stream modeling
2/5 & 2/9	 Backpropagation (Through Time)
	 Recurrent neural network and LSTM

Classes	Lectures
Week 5	Multimodal representation learning
2/14 & 2/16	 Multimodal auto-encoders
	 Multimodal deep neural networks
Week 6	First project assignment - Presentations
2/21 & 2/23	
Week 7	Multimodal component analysis
2/28 & 3/2	 Deep canonical correlation analysis
	 Non-negative matrix factorization
Week 8	Multimodal Optimization
3/7 & 3/9	 Optimization in deep neural networks
	 Variational approaches

42

Classes	Lectures
Spring break 3/13 – 3/17	
Week 9	Multimodal alignment
3/21 & 3/23	 Attention models and multi-instance learning
	 Multimodal synchrony and prediction
Week 10	Markov Random Fields
3/28 & 3/30	 Boltzmann distribution and CRFs
	 Continuous and fully-connected CRFs
Week 11 4/4 & 4/6	Mid-term project assignment - Presentations

Classes	Lectures
Week 12	Multimodal fusion
4/11 & 4/13	 Sample-based late fusion
	 Multi-kernel learning and fusion
Week 13	Application: Multilingual computational models
4/18 & 4/20	 Neural Machine Translation
	Sub-word Models
Week 14	Application: Language and Vision
4/25 & 4/27	 Learned visual representations
	 Visual activity recognition
Week 15 5/2 & 5/4	Final project assignment - Presentations

44