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Lecture Objectives

= Components of a neural network

= Learning the model
= Optimization
= Gradient computation
= Convolutional Neural networks
= Convolution and pooling
= Architectures
= Training tricks
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Neural Networks — recap

= Reminder of a Multi Layer Perceptron

iInput layer
hidden layer 1 hidden layer 2
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Neural Networks — recap

» [ndividual layers (W = [Wy, by, W5, b, ...])

fiw, () = c(Wyx + by) W,

fow, (x) = a(Wax + by) X, O OV
. /‘ output layer

f3’W3 (x) — O-(WBX + b3) e hidden layer 1 hidden layer 2

= The whole score function for a two hidden layer network

yi = fx, W) = f3;W3 (fz;W2 (f1;W1 (x:)))

Language Technologies Institute



Neural Networks inference and learning

* Inference (Testing)
= Use the score function (y = f(x; W))
= Have a trained model (parameters W)

= Learning model parameters (Training)
= Loss function (L)
= Gradient — will talk about today
= Optimization — will talk about today
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Loss function (1)

*= Loss function is often made up of three parts

L = Ldata + AlLregularization + AZLconstraints

= Data term

= How well our model is explaining/predicting training data (e.g. Cross-
entropy loss, Euclideanloss)

Z ( oy xisW) )
L; = —Z log .
fjxgw
i i Zje jow)
2
Z L; = Z(}’i — f(x;, W)
i i
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Loss function (2)

*= Loss function is often made up of three parts

L = Ldata + AlLregularization + AZLconstraints

= Regularization/Smoothness term
= Prevent the model from becomingtoo complex
= e.g. ||W]||, for parameters smoothness

= e.g. ||W||, for parameter sparsity

A4 Is a hyper-parameter
Optional, but almost never omitted
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Loss function (3)

*= Loss function is often made up of three parts
L = Lygtq + /11Lregularization + A2Lconstraints
= Additional constraints
= Optional and not always used

= Help with certain models (e.g. coordinated multimodal
representation)

= e.g. Triplet loss, hinge ranking loss, reconstruction loss
=  Will talk more during multimodal representation lecture
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Learning model
parameters
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Learning model parameters

= \WWe have our training data
= X ={xq,x,,..,X,} (€.0. IMmages, videos, text etc.)
" Y ={y,¥,, ..., ¥} (labels)
= Fixed

= We want to learn the W (weights and biases)
that leads to best loss

argmin[L(X,Y, W)]
w

= The notation means find W for which L(X, Y, W)
has the lowest value
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Optimization
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Optimizing a generic function

= \We want to find a minimum of the loss function

= How do we do that?

= Searching everywhere (global optimum) is
computationally infeasible

= We could search randomly from our starting point
(mostly picked at random) and then refine the search
region — impractical and not accurate

* Instead we can follow the gradient
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What is a gradient?

= Geometrically

= Points in the direction of the greatest rate of increase of the function and
its magnitude is the slope of the graph in that direction

= More formally in 1D

df(x)_hmf(x+h)—f(x) mj
dx  h-=0 h ’

* In higher dimensions
of 0 flaq,...,a; +h,..,a,) — f(aq,...,a;, ..., a,)
ox, (a,...,a,) = lim -

» In multiple dimension, the gradient is the vector of (partial derivatives)
and is called a Jacobian.
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Numeric gradient

= Can set hto a very low number and compute:

df (x) f(x+h)—f(x)
dx h

= Slow and just an approximation

= Need to compute score once (or even twice for
central limit) for each parameter

= Sensitive to choice of h
* h needs to be chosen as well - hyperparameter
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Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Calculus (or Wikipedia)!

= Examples:

R
) = =i 7 = (1= FENf@)

d
FO) = (- y)% = 2~ )
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Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Cal : ¥ = [x|
s
= Example ]
f( " 2 x)
A 4 Uy 2 4
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Which one should we use?

= Numeric
= Slow
= Approximate

= Analytical

= More error prone to implement (need to get the
gradient right)

= Can use automated tools to help — Theano,
autograd, Matlab symbolic toolbox

* Have both, use analytical for speed but check
using numeric

= Why vou should understand gradient
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Neural Networks
gradient
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Gradient Computation

Chain rule:
dy 0y oh
dx 0hdx y) y=f)
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Optimization: Gradient Computation

Multiple-path chain rule:

J

(y) ¥ =f(hs,hy h3)

h; = g(x)
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Optimization: Gradient Computation

Multiple-path chain rule:

oy _ N 0y Iy (%) ¥ = f(hy, by hs)
d0x4 — 0h; 0x4
J

dx,  Ludh; dx,
]

0x3 £u0hjdx,
]
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Optimization: Gradient Computation

Vector representation:

dy dy 0dy
xs axl'axz'ax?,] y)y=71h
Gradient
1T
\ oh h) h=g(x

“local” Jacobian
(matrix of size |h| X |x| computed
using partial derivatives)

/ “backprop” Gradient O
X
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Backpropagation Algorithm (efficient gradient)

L =—-logP(Y = y|z)

(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W)

Backpropagation pass
= [|nitialize output gradient =1

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X
“backprop” gradient
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Computational Graph: Multi-layer Feedforward Network

Computational unit: L =—logP(Y = y|2)

- Multiple input (cross-entropy)
h=f(x;W) | - One output

« Vector/tensor z = matmult(h,,W3)

= Sigmoid unit:

é} hy = (1+e i)™t
Y PO-O--Q-@

Differentiable “unit” function!

(or close approximation to compute “local Jacobian)

24
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Gradient descent



How to follow the gradient

= Many methods for optimization
= Gradient Descent (actually the “simplest” one)
= Newton methods (use Hessian — second derivative)

= Quasi-Newton (use approximate Hessian)
= BFGS
= LBFGS
= Don’t require learning rates (fewer hyperparameters)

= But, do not work with stochastic and batch methods so
rarely used to train modern Neural Networks

= All of them look at the gradient
= Very few non gradient based optimization methods
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Parameter Update Strategies

Gradient descent:

/@ (t+1) T/Qt — € V@L —> Gradient of our loss function

New model Previous
parameters parameters

€k = (1 T/a) E\O + AEr— Decay learning rate linearly until iteration 7

Decay Initial learning rate

Extensions: = Stochastic (“batch”)
= with momentum
= AdaGrad
= RMSProp

Language Technologies Institute




Vanilla Gradient Descent

= Compute gradient with respect to loss and keep
updating weights till convergence

while not converged:
# compute gradients
weights_grad = compute_gradient(loss_fun, data, weights)
# perform parameter update
weights += - step_size * weights_grad

# (optionally update step size)
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GD example




GD example




GD example




GD example




GD example

= Converged




GD example 2




GD example 2




GD example 2




GD example 2

= Convergence reached




GD example

= \We are looking at a potentially very complex
surface through a pinhole and hope that we
reach a good enough (not optimal) value
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Convex vs. non-convex functions and local minima

= Convex — gradient descent will
lead to a perfect solution (global
optimum)
= Logistic regression Yt
= Least squares models /7"
= Support vector machines
= Non-convex — impossible to R o
guarantee that the solution is the
best — will lead to local-minima

= Neural networks
= Various graphical models
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Batch (stochastic) gradient descent

= Using all of data points might be tricky when
computing a gradient
= Uses lots of memory and slow to compute

* |Instead use batch gradient descent
= Take a subset of data when computing the gradient

while not converged:
# Shuffle data —
data = randomize(data)
# Split data into batches and update each batch individual
fordata_batch in data: S — EpOCh
weights_grad = backpropagation(loss_fun, data_batch , weights)

' perform parameter update
Iteration # perf d
weights += - step_size * weights_grad __
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Potential issues

A A
B E
a) % = Problemsthat can occur?

= Getting stuck in local minima (global
minimum is never found) (a)

= Getting stuck on flat plateaus of the
error-plane (b)

Global mini = Oscillations in error rates (c)

ini obal minimum : R

Global minimum __ . T — = Learning rate is critical (d)
Wij wij

Local minimum Flat plateau

el ' Some observations:
- Small steps are likely to lead to
consistent but slow progress.
4 - Large steps can lead to better progress
but are more risky.
- Note that eventually, for a large step size
Local minimum we will overshoot and make the loss
worse.
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Interpreting learning rates

loss

low learning rate

high learning rate

\‘

good learning rate
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Convolutional
Neural Networks
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Why not just use an MLP for images (1)?

= MLP connects each pixel in an image to each

neuron
= Does not exploit redundancy in image structure |if Sl R § I J
= Detecting edges, blobs \/ ./\ -
= Don’t need to treat the top left of image
differently from the center # ' / \\

| — | —
= Too many parameters

= Forasmall 200 x 200 pixel RGB image the first
matrix would have 120000 x n parameters for
the first layer alone
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Why not just use an MLP for images (2)?

Human visual system works in a filter =n
fashior EEZuNNSE
= First the eyes detect edges and change Em A\

in light intensity E.nn

=
= The visual cortex processing performs =7/ SN
Gabor like filtering Eéalil[‘nk‘&

MLP does not exploit translation
Invariance

MLP does not necessarily encourage
visual abstraction
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Why use Convolutional Neural Networks

= Using basic Multi Layer
Perceptrons does not work
well for images

= |ntention to build more abstract
representation as we go up
every layer

Edges/blobs

Input pixels
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Convolutional Neural Networks

= They are everywhere that uses representation learning with
Images

= State of the art results — object recognition, face recognition,
segmentation, OCR, visual emotion recognition

= Extensively used for multimodal tasks as well

- C3 1 maps 16210x 10

: feature meps S41, rnap 16@5x5
INPUT

3232 6228x26

‘ s..vu X4 rrr rr %'ﬂm F6 lapor OUYDUT

Full candection | Gaussuan connections
ng Full connection

Convolutions Subsemphng Convolutions ~ Subsempk

Language Technologies Institute




Main differences of CNN from MLP

= Addition of:

= Convolution layer
= Pooling layer
= Everything else is the same (loss, score and
optimization)
= MLP layer is called Fully Connected layer

depth
.’.?&?é?s'r‘; height
/ Ywidth
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Convolution

Language Technologies Institute 49



Convolutional definition

* A basic mathematical operation (that given two
functions returns a function)

(f * )ln Ef m]

m=—oo
= Have a continuous and discrete versions (we
focus on the latter)
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Convolution In 1D

= \Why do we flip the signal?
= Mathematical convention
= Makes certain proofs and properties neater
= The unflipped version is called correlation

00)

(Frl= > flmlgln+m)

m=—oo
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Convolution In 1D

= Example
u f — [, 0,1;1;11010' ]

s g=10.,01,-10..]

« fxg=1[.,0100-100,.]
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Convolution In 1D

1 _, .......... .......... .......... : : .. I:|.|.;.||_EEI under fioigi-o H
DAL SR . T A fiz) |

1] S ........... Y SR P

|:|4_ .......... .................... T ... .

] e R P U R S AR -

1_.: ......... -. ......... ':lﬁreaunderf(t:glft-tj'
; ; ; ; ; ; f(z)

: ; ; : ; ; 9it-1)
o5 ......... ......... .................. ....... ......... C Ef*g:lj::l

&t
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Convolution in practice

= In CNN we only consider functions with limited
domain (not from —co t0 o)

= Also only consider fully defined (valid) version
= We have a signal of length N

= Kernel of length K
= Qutput will be length N-K + 1

* f=[121],g=1[1,-1], f g = [1,—1]
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Convolution in practice

= |f we want output to be different size we can add padding
to the signal
= Just add Os at the beginning and end

= £=10,0,1,21,00], g = [1,~1], f * g = [0,1,1, 1, —1,0]

= Also have strided convolution (the filter jumps over pixels
or signal)
= With stride 2
= £=100,01,210,0], g=1[1,-1], f*g =[0,1,—1,0]
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Convolution In 2D

= Example of image and a kernel
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Convolution In 2D
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Convolution Intuition

= Correlation/correspondence
between two sighals

= Template matching

= \WWhy are we interested in
convolution

= Allows to extract structure from
signal or image

= Avery efficient operation on signals
and images
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Sample CNN convolution

= Great animated visualization of 2D convolution
= http://cs231n.github.io/convolutional-networks/

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wQ[:,:,0 wl[:,:,0] olz,:,0]
000000 O [ = &1 10 1 0 6 6
0 2 yx/lo/o o0 [o 1 -1 -1 -ims
o 1t2fo]o o N 0 0 1 6 -1 -3
0 0 211210 0 WO, 1 wll:,:,1] ol[:,:,1]
OOZZ/Tu/-ll 101 6 -5 2
T T 17T T 1 A1 B G 12 2
0 0 0 0 0 0 ] -1 0 -1 1 33 4
x0:,:,11 wOl[:, wll:,:,2]

000 o 00 © 9 e

T T o fo 1 0 -1

o 1Tt 0 g v O 08

RN N B% N ias b0 fx1x1) Bias bl (Ix1x1)

01 12 0 b1/, 0] bl[:,:,0]

020 2 1 0 ! 0

000 0 0

00 0 0

00 2 0

o 2 [T 2A0]o o

0o 11 0]o /0

0 2 2 |2 0

012 01 20

000 000 0
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Some convolution properties

Commutative- fxg=gx* f
Associative - f x (g+xh) = (f xg) *xh
Distributative - f * (g + h) = (f xg) + (g * h)

Can use tricks to make it really efficient
* Fourier transform
= GPU computation
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Convolution with
MLP
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Fully connected layer

Weighted sum followed by an activation function

Input

Weighted sum
Wx +b

Activation function

Output

y = f(Wx +b)
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Convolution as MLP (1)

= Remove activation

Input , X
\

Weia/htef \."é\»’)({ f

PN
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Convolution as MLP (2)

= Remove redundant links making the matrix W sparse

(optionally remove the bias term)

Input

Weighted sum

Kernel
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Convolution as MLP (3)

= We can also share the weights in matrix W not to do
redundant computation

Input

Weighted sum
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How do we do convolution in MLP recap

= Not a fully connected layer ‘wy|w, [ws

anymore
= Shared weights ‘s ©OE
=  Same colour indicates same
(shared) weight
Wq W» W3 0 0 0 Weighted sum
0 w; w, .. 0O 0 O \
O 0 wm 0 0 0
W = : *
0O 0 O ws 0 0
\000 W, ws 0/ . 10
0 0 0 Wl W2 W3 ctivation
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More on convolution

Can expand this to 2D

= Just need to make sure to link the right
pixel with the right weight

= Can expand to multi-channel 2D
= For RGB images
= Can expand to multiple kernels/filters

= Qutput is not a single image anymore,
but a volume (sometimescalled a
feature map)

= Can be represented as a tensor (a 3D
matrix)

= Usually also include a bias term and an
activation
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Pooling layer

Language Technologies Institute 68



Pooling layer

= |Image subsampling

224x224x64 . _
112%112x64 Single depth slice
A
pot Jl1]1]2]4
max pool with 2x2 filters
, oNmoN 7 | 8 and stride 2 6 | 8
| : 3 | 2 NG 314
112]3 |4
224 : T 112
~— downsampling -
112 y
224
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Pooling layer motivation

= Used for sub-sampling
= Allows summarization of response

= Helps with translational invariance
= Have filter size and stride (hyperparameters)

224x224x64 Single depth slice

112x112x64 "

pool . 1 1 5 4
max pool with 2x2 filters
56 |7)|8 and stride 2 6 | 8
l .

l 3 | 2 BinES 3| 4

224 downsampling La 1 2 3 4
12

224 -
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Pooling layer gradient

1. Record during forward pass which pixel was picked and
use the same in backward pass

2. Pick the maximum value from input using a smooth and
differentiable approximation

Softmax

n 1 eaxi
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Putting It all
together



Common architectures

= Start with a convolutional layer follow by non-
Inear activation and pooling

* Repeatthis several times
= Follow with a fully connected (MLP) layer

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONVlCONVl CONVlCONVl FC

car
filick
= airplane
=

— ship

horse

a4 —
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AlexNet model

= Used for object classification task
= 1000 way classification task — pick one

= Architecture inspired partially by how much
parameters can fit on a single GPU

= |n total over 61M parameters

Language Technologies Institute




AlexNet architecture

= 7 Layer architecture

— . N EN AT 3l > >
S\ | e 1 & 3 Y T

- N . \ | ]
s | \ e . 192 192 128 2048 o4g \dense

N

AVERNEN 13 13
- ‘h“‘:\.‘-.. ?‘ T
224 s | 3 BENEE 3

Y - 13 T r= T dense | [dense
27 3\ 3\ s

3|\ 1000
192 192 128 Max
Max 128 Max pooling
pooling pooling

2048 2048
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AlexNet architecture

* First five layers
= Convolution with ReLU followed by max-pooling

28 R 192 192 128

5 o7 128 R

224 s [ 3 I ENRR 3

\ ' 192 192 128 Ma
224 Max 128 Max po«

pooling pocling
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AlexNet architecture

* Final layers fully connected (like MLP)

048 7048 \dense

O N

A 4

dense

1000

2048 2048

* In papers you will see people referringto FC7
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What are the models learning

= Will discuss in the reading group on Thursday
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Other popular architectures

= LeNet — an early 5 layer architecture for
handwritten digit recognition

* VGGNet — a deep (19 layer) network for object
recognition

* ResNet — an even deeper model from Microsoft
» DeepFace — Facebook’s face recognition CNN

= Already trained AlexNet and VGGNet models
for object recognition can be found online
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Training tricks

= Data augmentation (Create more data)
= |mage scaling
= Shifting
= Rotation
= Mirroring
= Optimization
= Dropout
= Regularization
= Many more tricks/tips that we will discuss in Week 8
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Fine tuning for specific tasks

= Often start with an existing architecture and an
already trained network (for example AlexNet or
VGGNet for object recognition)

= Discard the final layer score function and
replace with your own (FC7)
= Perform gradient decent on it

= Nice thing about neural networks is that we can
continue training them with new data
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