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Lecture Objectives

▪ Components of a neural network

▪ Learning the model

▪ Optimization

▪ Gradient computation

▪ Convolutional Neural networks

▪ Convolution and pooling

▪ Architectures

▪ Training tricks



Neural Networks – recap

▪ Reminder of a Multi Layer Perceptron



Neural Networks – recap

▪ Individual layers (𝑊 = [𝑊1, 𝑏1 ,𝑊2 , 𝑏2… ])

▪ The whole score function for a two hidden layer network

𝑓1;𝑊1
𝑥 = 𝜎(𝑊1𝑥 + 𝑏1)

𝑓2;𝑊2
𝑥 = 𝜎(𝑊2𝑥 + 𝑏2)

𝑦𝑖 = 𝑓 𝑥𝑖,𝑊 = 𝑓3;𝑊3
(𝑓2;𝑊2

(𝑓1;𝑊1
𝑥𝑖))

𝑓3;𝑊3
𝑥 = 𝜎(𝑊3𝑥 + 𝑏3)

𝑊3

𝑊2
𝑊1

𝑦𝑖𝑥𝑖



Neural Networks inference and learning

▪ Inference (Testing)

▪ Use the score function (y = 𝑓 𝒙;𝑊 )

▪ Have a trained model (parameters 𝑊)

▪ Learning model parameters (Training)

▪ Loss function (𝐿) 

▪ Gradient – will talk about today

▪ Optimization – will talk about today



Loss function (1)

▪ Loss function is often made up of three parts
𝐿 = 𝐿𝑑𝑎𝑡𝑎 + 𝜆1𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝜆2𝐿𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

▪ Data term
▪ How well our model is explaining/predicting training data (e.g. cross-

entropy loss, Euclidean loss)

෍

𝑖

𝐿𝑖 = −෍

𝑖

log
𝑒
𝑓𝑦𝑖

(𝑥𝑖;𝑊)

σ𝑗 𝑒
𝑓𝑗(𝑥𝑖;𝑊)

෍

𝑖

𝐿𝑖 =෍

𝑖

𝑦𝑖 − 𝑓 𝑥𝑖 , 𝑊
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Loss function (2)

▪ Loss function is often made up of three parts
𝐿 = 𝐿𝑑𝑎𝑡𝑎 + 𝜆1𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝜆2𝐿𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

▪ Regularization/Smoothness term
▪ Prevent the model from becoming too complex 

▪ e.g. W
2

for parameters smoothness

▪ e.g. W
1

for parameter sparsity

▪ 𝜆1 is a hyper-parameter

▪ Optional, but almost never omitted



Loss function (3)

▪ Loss function is often made up of three parts
𝐿 = 𝐿𝑑𝑎𝑡𝑎 + 𝜆1𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝜆2𝐿𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

▪ Additional constraints

▪ Optional and not always used

▪ Help with certain models (e.g. coordinated multimodal 

representation)

▪ e.g. Triplet loss, hinge ranking loss, reconstruction loss

▪ Will talk more during multimodal representation lecture
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Learning model 

parameters



Learning model parameters

▪ We have our training data

▪ X = {𝒙1 , 𝒙2 , … , 𝒙𝑛} (e.g. images, videos, text etc.)

▪ Y = {𝑦1 , 𝑦2 , … , 𝑦𝑛} (labels)

▪ Fixed

▪ We want to learn the W (weights and biases) 

that leads to best loss

argmin
𝑊

[𝐿 X, Y,𝑊 ]

▪ The notation means find 𝑊 for which 𝐿 X, Y,𝑊
has the lowest value  
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Optimization



Optimizing a generic function

▪ We want to find a minimum of the loss function

▪ How do we do that?

▪ Searching everywhere (global optimum) is 

computationally infeasible

▪ We could search randomly from our starting point 

(mostly picked at random) and then refine the search 

region – impractical and not accurate

▪ Instead we can follow the gradient



What is a gradient?

▪ Geometrically
▪ Points in the direction of the greatest rate of increase of the function and 

its magnitude is the slope of the graph in that direction

▪ More formally in 1D 

▪ In higher dimensions

➢ In multiple dimension, the gradient is the vector of (partial derivatives) 

and is called a Jacobian.

𝜕𝑓

𝜕𝑥𝑖
(𝑎1,… , 𝑎𝑛) = lim

ℎ→0

𝑓 𝑎1, … , 𝑎𝑖 + ℎ,… , 𝑎𝑛 − 𝑓 𝑎1, … , 𝑎𝑖 , … , 𝑎𝑛
ℎ



Numeric gradient

▪ Can set h to a very low number and compute:

▪ Slow and just an approximation

▪ Need to compute score once (or even twice for 

central limit) for each parameter

▪ Sensitive to choice of ℎ

▪ ℎ needs to be chosen as well - hyperparameter



Analytical gradient

▪ If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

▪ Use Calculus (or Wikipedia)!

▪ Examples:



Analytical gradient

▪ If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

▪ Use Calculus!

▪ Examples:



Which one should we use?

▪ Numeric

▪ Slow

▪ Approximate

▪ Analytical

▪ More error prone to implement (need to get the 

gradient right)

▪ Can use automated tools to help – Theano, 

autograd, Matlab symbolic toolbox

▪ Have both, use analytical for speed but check 

using numeric

▪ Why you should understand gradient



18

Neural Networks 

gradient
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Gradient Computation

𝑥

ℎ

𝑦

Chain rule:

𝑦 = 𝑓(ℎ)

ℎ = 𝑔(𝑥)
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Optimization: Gradient Computation

𝑥

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝑥)
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Optimization: Gradient Computation

𝑥2

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝑥3𝑥1

𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝒙)
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Optimization: Gradient Computation

𝒙

𝒉

𝑦

Vector representation:

𝑦 = 𝑓(𝒉)

𝒉 = 𝑔(𝒙)

Gradient

“local” Jacobian
“backprop” Gradient

(matrix of size ℎ × 𝑥 computed 

using partial derivatives)
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Backpropagation Algorithm (efficient gradient)

Forward pass

▪ Following the graph topology, 

compute value of each unit

Backpropagation pass

▪ Initialize output gradient = 1

▪ Compute “local” Jacobian matrix 

using values from forward pass

▪ Use the chain rule:

Gradient “local” Jacobian

“backprop” gradient

= x
𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)
𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)
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Computational Graph: Multi-layer Feedforward Network

𝒉 = 𝑓(𝒙;𝑾)𝒉

Computational unit:

▪ Sigmoid unit:

𝒙
𝑾

* exp-1*

ℎ𝑗 = (1 + 𝑒−𝑊𝑗𝒙)−1

+1 1/x

𝒉

Differentiable “unit” function!
(or close approximation to compute “local Jacobian)

𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)
𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

• Multiple input

• One output

• Vector/tensor
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Gradient descent



How to follow the gradient

▪ Many methods for optimization

▪ Gradient Descent (actually the “simplest” one)

▪ Newton methods (use Hessian – second derivative)

▪ Quasi-Newton (use approximate Hessian)

▪ BFGS

▪ LBFGS

▪ Don’t require learning rates (fewer hyperparameters)

▪ But, do not work with stochastic and batch methods so 

rarely used to train modern Neural Networks

▪ All of them look at the gradient

▪ Very few non gradient based optimization methods
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Parameter Update Strategies

Gradient descent:

𝜃(𝑡+1) = 𝜃𝑡 − 𝜖𝑘𝛻𝜃𝐿

New model 

parameters
Previous 

parameters
Learning rate

at iteration k

Gradient of our loss function

𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏
Learning rate

at iteration k
Decay Initial learning rate

Decay learning rate linearly until iteration 𝜏

▪ Stochastic (“batch”)

▪ with momentum

▪ AdaGrad

▪ RMSProp

Extensions:



Vanilla Gradient Descent

▪ Compute gradient with respect to loss and keep 

updating weights till convergence

while not converged: 

# compute gradients

weights_grad = compute_gradient(loss_fun, data, weights) 

# perform parameter update

weights += - step_size * weights_grad

# (optionally update step size)



GD example



GD example



GD example



GD example



GD example

▪ Converged



GD example 2 



GD example 2 



GD example 2



GD example 2

▪ Convergence reached



GD example

▪ We are looking at a potentially very complex 

surface through a pinhole and hope that we 

reach a good enough (not optimal) value 



Convex vs. non-convex functions and local minima

▪ Convex – gradient descent will 

lead to a perfect solution (global 

optimum)

▪ Logistic regression

▪ Least squares models

▪ Support vector machines

▪ Non-convex – impossible to 

guarantee that the solution is the 

best – will lead to local-minima

▪ Neural networks

▪ Various graphical models



Batch (stochastic) gradient descent

▪ Using all of data points might be tricky when 

computing a gradient

▪ Uses lots of memory and slow to compute

▪ Instead use batch gradient descent

▪ Take a subset of data when computing the gradient

while not converged: 

# Shuffle data

data = randomize(data)

# Split data into batches and update each batch individual

for data_batch in data:

weights_grad = backpropagation(loss_fun, data_batch , weights) 

# perform parameter update

weights += - step_size * weights_grad

Epoch

Iteration
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Potential issues

▪ Problems that can occur?

▪ Getting stuck in local minima (global 

minimum is never found) (a)

▪ Getting stuck on flat plateaus of the 

error-plane (b)

▪ Oscillations in error rates (c)

▪ Learning rate is critical (d)

Flat  plateau

Global minimumGlobal minimum

Local minimum

Local minimum

Some observations:
- Small steps are likely to lead to 

consistent but slow progress. 

- Large steps can lead to better progress 

but are more risky. 

- Note that eventually, for a large step size 

we will overshoot and make the loss 

worse. 
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Interpreting learning rates
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Convolutional

Neural Networks



Why not just use an MLP for images (1)?

▪ MLP connects each pixel in an image to each 

neuron

▪ Does not exploit redundancy in image structure

▪ Detecting edges, blobs

▪ Don’t need to treat the top left of image 

differently from the center

▪ Too many parameters 

▪ For a small 200 × 200 pixel RGB image the first 

matrix would have 120000 × 𝑛 parameters for 

the first layer alone



Why not just use an MLP for images (2)?

▪ Human visual system works in a filter 

fashion

▪ First the eyes detect edges and change 

in light intensity

▪ The visual cortex processing performs 

Gabor like filtering

▪ MLP does not exploit translation 

invariance

▪ MLP does not necessarily encourage 

visual abstraction



Why use Convolutional Neural Networks

▪ Using basic Multi Layer 

Perceptrons does not work 

well for images

▪ Intention to build more abstract 

representation as we go up 

every layer

Input pixels

Edges/blobs

Parts

Objects



Convolutional Neural Networks

▪ They are everywhere that uses representation learning with 
images

▪ State of the art results – object recognition, face recognition, 

segmentation, OCR, visual emotion recognition

▪ Extensively used for multimodal tasks as well



Main differences of CNN from MLP

▪ Addition of:

▪ Convolution layer

▪ Pooling layer

▪ Everything else is the same (loss, score and 

optimization)

▪ MLP layer is called Fully Connected layer



49

Convolution



Convolutional definition

▪ A basic mathematical operation (that given two 

functions returns a function)

▪ Have a continuous and discrete versions (we 

focus on the latter)



Convolution in 1D

▪ Why do we flip the signal?

▪ Mathematical convention

▪ Makes certain proofs and properties neater

▪ The unflipped version is called correlation



Convolution in 1D

▪ Example

▪ 𝑓 = … , 0,1,1,1,0,0,…

▪ 𝑔 = … , 0,1,−1,0…

▪ 𝑓 ∗ 𝑔 = [… , 0,1,0,0,−1,0,0,… ]

(𝑓 ∗ 𝑔) 𝑛 ≝ ෍

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 −𝑚]



53

Convolution in 1D



Convolution in practice

▪ In CNN we only consider functions with limited 

domain (not from −∞ to ∞)

▪ Also only consider fully defined (valid) version

▪ We have a signal of length N

▪ Kernel of length K

▪ Output will be length N − K + 1

▪ 𝑓 = 1,2,1 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [1,−1]



Convolution in practice

▪ If we want output to be different size we can add padding 

to the signal

▪ Just add 0s at the beginning and end

▪ 𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1,1, −1,−1,0]

▪ Also have strided convolution (the filter jumps over pixels 

or signal)

▪ With stride 2

▪ 𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1,−1,0]



Convolution in 2D

▪ Example of image and a kernel

=



Convolution in 2D



Convolution intuition

▪ Correlation/correspondence 
between two signals

▪ Template matching

▪ Why are we interested in 

convolution

▪ Allows to extract structure from 

signal or image

▪ A very efficient operation on signals 

and images



Sample CNN convolution

▪ Great animated visualization of 2D convolution

▪ http://cs231n.github.io/convolutional-networks/



Some convolution properties

▪ Commutative - 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

▪ Associative - 𝑓 ∗ 𝑔 ∗ ℎ = (𝑓 ∗ 𝑔) ∗ ℎ

▪ Distributative - 𝑓 ∗ 𝑔 + ℎ = 𝑓 ∗ 𝑔 + (𝑔 ∗ ℎ)

▪ Can use tricks to make it really efficient

▪ Fourier transform

▪ GPU computation
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Convolution with 

MLP



Fully connected layer

▪ Weighted sum followed by an activation function

Activation function

Output

Input

Weighted sum

𝑊𝑥 + 𝑏

𝑦 = 𝑓(𝑊𝑥 + 𝑏)



Convolution as MLP (1)

▪ Remove activation

Input

Weighted sum

𝑊𝑥 + 𝑏 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥 + 𝑏



Convolution as MLP (2)

▪ Remove redundant links making the matrix W sparse 

(optionally remove the bias term)

Input

Weighted sum

𝑊𝑥 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥



Convolution as MLP (3)

▪ We can also share the weights in matrix W not to do 

redundant computation

Input

Weighted sum

𝑊𝑥 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥



How do we do convolution in MLP recap

▪ Not a fully connected layer 

anymore

▪ Shared weights

▪ Same colour indicates same 

(shared) weight

𝒘𝟏 𝒘𝟐 𝒘𝟑



More on convolution

▪ Can expand this to 2D

▪ Just need to make sure to link the right 

pixel with the right weight

▪ Can expand to multi-channel 2D

▪ For RGB images

▪ Can expand to multiple kernels/filters

▪ Output is not a single image anymore, 

but a volume (sometimes called a 

feature map)

▪ Can be represented as a tensor (a 3D 

matrix)

▪ Usually also include a bias term and an 

activation
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Pooling layer



Pooling layer

▪ Image subsampling



Pooling layer motivation

▪ Used for sub-sampling

▪ Allows summarization of response

▪ Helps with translational invariance

▪ Have filter size and stride (hyperparameters)



Pooling layer gradient

1. Record during forward pass which pixel was picked and 

use the same in backward pass

2. Pick the maximum value from input using a smooth and 

differentiable approximation
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Putting it all 

together



Common architectures

▪ Start with a convolutional layer follow by non-

linear activation and pooling

▪ Repeat this several times

▪ Follow with a fully connected (MLP) layer



AlexNet model

▪ Used for object classification task

▪ 1000 way classification task – pick one

▪ Architecture inspired partially by how much 

parameters can fit on a single GPU

▪ In total over 61M parameters



AlexNet architecture

▪ 7 Layer architecture



AlexNet architecture

▪ First five layers

▪ Convolution with ReLU followed by max-pooling



AlexNet architecture

▪ Final layers fully connected (like MLP)

▪ In papers you will see people referring to FC7



What are the models learning

▪ Will discuss in the reading group on Thursday



Other popular architectures

▪ LeNet – an early 5 layer architecture for 

handwritten digit recognition

▪ VGGNet – a deep (19 layer) network for object 

recognition

▪ ResNet – an even deeper model from Microsoft

▪ DeepFace – Facebook’s face recognition CNN

▪ Already trained AlexNet and VGGNet models 

for object recognition can be found online



Training tricks

▪ Data augmentation (Create more data)

▪ Image scaling

▪ Shifting

▪ Rotation

▪ Mirroring

▪ Optimization

▪ Dropout

▪ Regularization

▪ Many more tricks/tips that we will discuss in Week 8



Fine tuning for specific tasks

▪ Often start with an existing architecture and an 

already trained network (for example AlexNet or 

VGGNet for object recognition)

▪ Discard the final layer score function and 

replace with your own (FC7)

▪ Perform gradient decent on it

▪ Nice thing about neural networks is that we can 

continue training them with new data


