A\ Language
s=v Technologies
/) Institute

Lecture 3.1: Optimization and
Convolutional Neural Networks

Louis-Philippe Morency
Tadas Baltrusaitis

Lecture Objectives

= Components of a neural network

= Learning the model
= Optimization
= Gradient computation
= Convolutional Neural networks
= Convolution and pooling
= Architectures
= Training tricks

Language Technologies Institute

Neural Networks — recap

= Reminder of a Multi Layer Perceptron

iInput layer
hidden layer 1 hidden layer 2

Language Technologies Institute

Neural Networks — recap

» [ndividual layers (W = [Wy, by, W5, b, ...])

fiw, () = c(Wyx + by) W,

fow, (x) = a(Wax + by) X, O OV
. /‘ output layer

f3’W3 (x) — O-(WBX + b3) e hidden layer 1 hidden layer 2

= The whole score function for a two hidden layer network

yi = fx, W) = f3;W3 (fz;W2 (f1;W1 (x:)))

Language Technologies Institute

Neural Networks inference and learning

* Inference (Testing)
= Use the score function (y = f(x; W))
= Have a trained model (parameters W)

= Learning model parameters (Training)
= Loss function (L)
= Gradient — will talk about today
= Optimization — will talk about today

Language Technologies Institute

Loss function (1)

*= Loss function is often made up of three parts

L = Ldata + AlLregularization + AZLconstraints

= Data term

= How well our model is explaining/predicting training data (e.g. Cross-
entropy loss, Euclideanloss)

Z (oy xisW))
L; = —Z log .
fjxgw
i i Zje jow)
2
Z L; = Z(}’i — f(x;, W)
i i

Language Technologies Institute

Loss function (2)

*= Loss function is often made up of three parts

L = Ldata + AlLregularization + AZLconstraints

= Regularization/Smoothness term
= Prevent the model from becomingtoo complex
= e.g. ||W]||, for parameters smoothness

= e.g. ||W||, for parameter sparsity

A4 Is a hyper-parameter
Optional, but almost never omitted

Language Technologies Institute

Loss function (3)

*= Loss function is often made up of three parts
L = Lygtq + /11Lregularization + A2Lconstraints
= Additional constraints
= Optional and not always used

= Help with certain models (e.g. coordinated multimodal
representation)

= e.g. Triplet loss, hinge ranking loss, reconstruction loss
= Will talk more during multimodal representation lecture

Language Technologies Institute

Learning model
parameters

Language Technolog ies Institute

Learning model parameters

= \WWe have our training data
= X ={xq,x,,..,X,} (€.0. IMmages, videos, text etc.)
" Y ={y,¥,, ..., ¥} (labels)
= Fixed

= We want to learn the W (weights and biases)
that leads to best loss

argmin[L(X,Y, W)]
w

= The notation means find W for which L(X, Y, W)
has the lowest value

Language Technologies Institute

Optimization

Language Technologies Institute

Optimizing a generic function

= \We want to find a minimum of the loss function

= How do we do that?

= Searching everywhere (global optimum) is
computationally infeasible

= We could search randomly from our starting point
(mostly picked at random) and then refine the search
region — impractical and not accurate

* Instead we can follow the gradient

Language Technologies Institute

What is a gradient?

= Geometrically

= Points in the direction of the greatest rate of increase of the function and
its magnitude is the slope of the graph in that direction

= More formally in 1D

df(x)_hmf(x+h)—f(x) mj
dx h-=0 h ’

* In higher dimensions
of 0 flaq,...,a; +h,..,a,) — f(aq,...,a;, ..., a,)
ox, (a,...,a,) = lim -

» In multiple dimension, the gradient is the vector of (partial derivatives)
and is called a Jacobian.

Language Technologies Institute

Numeric gradient

= Can set hto a very low number and compute:

df (x) f(x+h)—f(x)
dx h

= Slow and just an approximation

= Need to compute score once (or even twice for
central limit) for each parameter

= Sensitive to choice of h
* h needs to be chosen as well - hyperparameter

Language Technologies Institute

Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Calculus (or Wikipedia)!

= Examples:

R
) = =i 7 = (1= FENf@)

d
FO) = (- y)% = 2~)

Language Technologies Institute

Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Cal : ¥ = [x|
s
= Example]
f(" 2 x)
A 4 Uy 2 4

Language Technologies Institute

Which one should we use?

= Numeric
= Slow
= Approximate

= Analytical

= More error prone to implement (need to get the
gradient right)

= Can use automated tools to help — Theano,
autograd, Matlab symbolic toolbox

* Have both, use analytical for speed but check
using numeric

= Why vou should understand gradient

Language Technologies Institute

Neural Networks
gradient

Language Technolog ies Institute

Gradient Computation

Chain rule:
dy 0y oh
dx 0hdx y) y=f)

Language Technologies Institute

Optimization: Gradient Computation

Multiple-path chain rule:

J

(y) ¥ =f(hs,hy h3)

h; = g(x)

Language Technologies Institute

Optimization: Gradient Computation

Multiple-path chain rule:

oy _ N 0y Iy (%) ¥ = f(hy, by hs)
d0x4 — 0h; 0x4
J

dx, Ludh; dx,
]

0x3 £u0hjdx,
]

Language Technologies Institute

Optimization: Gradient Computation

Vector representation:

dy dy 0dy
xs axl'axz'ax?,] y)y=71h
Gradient
1T
\ oh h) h=g(x

“local” Jacobian
(matrix of size |h| X |x| computed
using partial derivatives)

/ “backprop” Gradient O
X

Language Technologies Institute

Backpropagation Algorithm (efficient gradient)

L =—-logP(Y = y|z)

(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W)

Backpropagation pass
= [|nitialize output gradient =1

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X
“backprop” gradient

Language Technologies Institute

Computational Graph: Multi-layer Feedforward Network

Computational unit: L =—logP(Y = y|2)

- Multiple input (cross-entropy)
h=f(x;W) | - One output

« Vector/tensor z = matmult(h,,W3)

= Sigmoid unit:

é} hy = (1+e i)™t
Y PO-O--Q-@

Differentiable “unit” function!

(or close approximation to compute “local Jacobian)

24

Language Technologies Institute

Gradient descent

How to follow the gradient

= Many methods for optimization
= Gradient Descent (actually the “simplest” one)
= Newton methods (use Hessian — second derivative)

= Quasi-Newton (use approximate Hessian)
= BFGS
= LBFGS
= Don’t require learning rates (fewer hyperparameters)

= But, do not work with stochastic and batch methods so
rarely used to train modern Neural Networks

= All of them look at the gradient
= Very few non gradient based optimization methods

Language Technologies Institute

Parameter Update Strategies

Gradient descent:

/@ (t+1) T/Qt — € V@L —> Gradient of our loss function

New model Previous
parameters parameters

€k = (1 T/a) E\O + AEr— Decay learning rate linearly until iteration 7

Decay Initial learning rate

Extensions: = Stochastic (“batch”)
= with momentum
= AdaGrad
= RMSProp

Language Technologies Institute

Vanilla Gradient Descent

= Compute gradient with respect to loss and keep
updating weights till convergence

while not converged:
compute gradients
weights_grad = compute_gradient(loss_fun, data, weights)
perform parameter update
weights += - step_size * weights_grad

(optionally update step size)

Language Technologies Institute

GD example

GD example

GD example

GD example

GD example

= Converged

GD example 2

GD example 2

GD example 2

GD example 2

= Convergence reached

GD example

= \We are looking at a potentially very complex
surface through a pinhole and hope that we
reach a good enough (not optimal) value

Language Technologies Institute

Convex vs. non-convex functions and local minima

= Convex — gradient descent will
lead to a perfect solution (global
optimum)
= Logistic regression Yt
= Least squares models /7"
= Support vector machines
= Non-convex — impossible to R o
guarantee that the solution is the
best — will lead to local-minima

= Neural networks
= Various graphical models

Language Technologies Institute

Batch (stochastic) gradient descent

= Using all of data points might be tricky when
computing a gradient
= Uses lots of memory and slow to compute

* |Instead use batch gradient descent
= Take a subset of data when computing the gradient

while not converged:
Shuffle data —
data = randomize(data)
Split data into batches and update each batch individual
fordata_batch in data: S — EpOCh
weights_grad = backpropagation(loss_fun, data_batch , weights)

' perform parameter update
Iteration # perf d
weights += - step_size * weights_grad __

Language Technologies Institute

Potential issues

A A
B E
a) % = Problemsthat can occur?

= Getting stuck in local minima (global
minimum is never found) (a)

= Getting stuck on flat plateaus of the
error-plane (b)

Global mini = Oscillations in error rates (c)

ini obal minimum : R

Global minimum __ . T — = Learning rate is critical (d)
Wij wij

Local minimum Flat plateau

el ' Some observations:
- Small steps are likely to lead to
consistent but slow progress.
4 - Large steps can lead to better progress
but are more risky.
- Note that eventually, for a large step size
Local minimum we will overshoot and make the loss
worse.

Language Technologies Institute

Interpreting learning rates

loss

low learning rate

high learning rate

\‘

good learning rate

Language Technologies Institute

25

20

15

10

05}

0.0
0

20 40 60 80 100
Epoch 4

Convolutional
Neural Networks

Language Technolog ies Institute

Why not just use an MLP for images (1)?

= MLP connects each pixel in an image to each

neuron
= Does not exploit redundancy in image structure |if Sl R § I J
= Detecting edges, blobs \/ ./\ -
= Don’t need to treat the top left of image
differently from the center # ' / \\

| — | —
= Too many parameters

= Forasmall 200 x 200 pixel RGB image the first
matrix would have 120000 x n parameters for
the first layer alone

Language Technologies Institute

Why not just use an MLP for images (2)?

Human visual system works in a filter =n
fashior EEZuNNSE
= First the eyes detect edges and change Em A\

in light intensity E.nn

=
= The visual cortex processing performs =7/ SN
Gabor like filtering Eéalil[‘nk‘&

MLP does not exploit translation
Invariance

MLP does not necessarily encourage
visual abstraction

Language Technologies Institute

Why use Convolutional Neural Networks

= Using basic Multi Layer
Perceptrons does not work
well for images

= |ntention to build more abstract
representation as we go up
every layer

Edges/blobs

Input pixels

Language Technologies Institute

Convolutional Neural Networks

= They are everywhere that uses representation learning with
Images

= State of the art results — object recognition, face recognition,
segmentation, OCR, visual emotion recognition

= Extensively used for multimodal tasks as well

- C3 1 maps 16210x 10

: feature meps S41, rnap 16@5x5
INPUT

3232 6228x26

‘ s..vu X4 rrr rr %'ﬂm F6 lapor OUYDUT

Full candection | Gaussuan connections
ng Full connection

Convolutions Subsemphng Convolutions ~ Subsempk

Language Technologies Institute

Main differences of CNN from MLP

= Addition of:

= Convolution layer
= Pooling layer
= Everything else is the same (loss, score and
optimization)
= MLP layer is called Fully Connected layer

depth
.’.?&?é?s'r‘; height
/ Ywidth

Language Technologies Institute

Convolution

Language Technologies Institute 49

Convolutional definition

* A basic mathematical operation (that given two
functions returns a function)

(f *)ln Ef m]

m=—oo
= Have a continuous and discrete versions (we
focus on the latter)

Language Technologies Institute

Convolution In 1D

= \Why do we flip the signal?
= Mathematical convention
= Makes certain proofs and properties neater
= The unflipped version is called correlation

00)

(Frl= > flmlgln+m)

m=—oo

Language Technologies Institute

Convolution In 1D

= Example
u f — [, 0,1;1;11010']

s g=10.,01,-10..]

« fxg=1[.,0100-100,.]

Language Technologies Institute

Convolution In 1D

1 _, : : .. I:|.|.;.||_EEI under fioigi-o H
DAL SR . T A fiz) |

1] S Y SR P

|:|4_ T

] e R P U R S AR -

1_.: -. ':lﬁreaunderf(t:glft-tj'
; ; ; ; ; ; f(z)

: ; ; : ; ; 9it-1)
o5 C Ef*g:lj::l

&t

Language Technologies Institute

Convolution in practice

= In CNN we only consider functions with limited
domain (not from —co t0 o)

= Also only consider fully defined (valid) version
= We have a signal of length N

= Kernel of length K
= Qutput will be length N-K + 1

* f=[121],g=1[1,-1], f g = [1,—1]

Language Technologies Institute

Convolution in practice

= |f we want output to be different size we can add padding
to the signal
= Just add Os at the beginning and end

= £=10,0,1,21,00], g = [1,~1], f * g = [0,1,1, 1, —1,0]

= Also have strided convolution (the filter jumps over pixels
or signal)
= With stride 2
= £=100,01,210,0], g=1[1,-1], f*g =[0,1,—1,0]

Language Technologies Institute

Convolution In 2D

= Example of image and a kernel

Language Technologies Institute

Convolution In 2D

Language Technologies Institute

Convolution Intuition

= Correlation/correspondence
between two sighals

= Template matching

= \WWhy are we interested in
convolution

= Allows to extract structure from
signal or image

= Avery efficient operation on signals
and images

Language Technologies Institute

Sample CNN convolution

= Great animated visualization of 2D convolution
= http://cs231n.github.io/convolutional-networks/

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wQ[:,:,0 wl[:,:,0] olz,:,0]
000000 O [= &1 10 1 0 6 6
0 2 yx/lo/o o0 [o 1 -1 -1 -ims
o 1t2fo]o o N 0 0 1 6 -1 -3
0 0 211210 0 WO, 1 wll:,:,1] ol[:,:,1]
OOZZ/Tu/-ll 101 6 -5 2
T T 17T T 1 A1 B G 12 2
0 0 0 0 0 0] -1 0 -1 1 33 4
x0:,:,11 wOl[:, wll:,:,2]

000 o 00 © 9 e

T T o fo 1 0 -1

o 1Tt 0 g v O 08

RN N B% N ias b0 fx1x1) Bias bl (Ix1x1)

01 12 0 b1/, 0] bl[:,:,0]

020 2 1 0 ! 0

000 0 0

00 0 0

00 2 0

o 2 [T 2A0]o o

0o 11 0]o /0

0 2 2 |2 0

012 01 20

000 000 0

Language Technologies Institute

Some convolution properties

Commutative- fxg=gx* f
Associative - f x (g+xh) = (f xg) *xh
Distributative - f * (g + h) = (f xg) + (g * h)

Can use tricks to make it really efficient
* Fourier transform
= GPU computation

Language Technologies Institute

Convolution with
MLP

Language Technologies Institute

Fully connected layer

Weighted sum followed by an activation function

Input

Weighted sum
Wx +b

Activation function

Output

y = f(Wx +b)

Language Technologies Institute

Convolution as MLP (1)

= Remove activation

Input , X
\

Weia/htef \."é\»’)({ f

PN

Language Technologies Institute

Kernel

Convolution as MLP (2)

= Remove redundant links making the matrix W sparse

(optionally remove the bias term)

Input

Weighted sum

Kernel

Language Technologies Institute

Convolution as MLP (3)

= We can also share the weights in matrix W not to do
redundant computation

Input

Weighted sum

Language Technologies Institute

How do we do convolution in MLP recap

= Not a fully connected layer ‘wy|w, [ws

anymore
= Shared weights ‘s ©OE
= Same colour indicates same
(shared) weight
Wq W» W3 0 0 0 Weighted sum
0 w; w, .. 0O 0 O \
O 0 wm 0 0 0
W = : *
0O 0 O ws 0 0
\000 W, ws 0/ . 10
0 0 0 Wl W2 W3 ctivation

Language Technologies Institute

More on convolution

Can expand this to 2D

= Just need to make sure to link the right
pixel with the right weight

= Can expand to multi-channel 2D
= For RGB images
= Can expand to multiple kernels/filters

= Qutput is not a single image anymore,
but a volume (sometimescalled a
feature map)

= Can be represented as a tensor (a 3D
matrix)

= Usually also include a bias term and an
activation

Language Technologies Institute

\

Pooling layer

Language Technologies Institute 68

Pooling layer

= |Image subsampling

224x224x64 . _
112%112x64 Single depth slice
A
pot Jl1]1]2]4
max pool with 2x2 filters
, oNmoN 7 | 8 and stride 2 6 | 8
| : 3 | 2 NG 314
112]3 |4
224 : T 112
~— downsampling -
112 y
224

Language Technologies Institute

Pooling layer motivation

= Used for sub-sampling
= Allows summarization of response

= Helps with translational invariance
= Have filter size and stride (hyperparameters)

224x224x64 Single depth slice

112x112x64 "

pool . 1 1 5 4
max pool with 2x2 filters
56 |7)|8 and stride 2 6 | 8
l .

l 3 | 2 BinES 3| 4

224 downsampling La 1 2 3 4
12

224 -

Language Technologies Institute

Pooling layer gradient

1. Record during forward pass which pixel was picked and
use the same in backward pass

2. Pick the maximum value from input using a smooth and
differentiable approximation

Softmax

n 1 eaxi

Language Technologies Institute

Putting It all
together

Common architectures

= Start with a convolutional layer follow by non-
Inear activation and pooling

* Repeatthis several times
= Follow with a fully connected (MLP) layer

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONVlCONVl CONVlCONVl FC

car
filick
= airplane
=

— ship

horse

a4 —
Language Technologies Institute

INAEERUNNE

'
<
=
=
=
=
=
=

AlexNet model

= Used for object classification task
= 1000 way classification task — pick one

= Architecture inspired partially by how much
parameters can fit on a single GPU

= |n total over 61M parameters

Language Technologies Institute

AlexNet architecture

= 7 Layer architecture

— . N EN AT 3l > >
S\ | e 1 & 3 Y T

- N . \ |]
s | \ e . 192 192 128 2048 o4g \dense

N

AVERNEN 13 13
- ‘h“‘:\.‘-.. ?‘ T
224 s | 3 BENEE 3

Y - 13 T r= T dense | [dense
27 3\ 3\ s

3|\ 1000
192 192 128 Max
Max 128 Max pooling
pooling pooling

2048 2048

Language Technologies Institute

AlexNet architecture

* First five layers
= Convolution with ReLU followed by max-pooling

28 R 192 192 128

5 o7 128 R

224 s [3 I ENRR 3

\ ' 192 192 128 Ma
224 Max 128 Max po«

pooling pocling

Language Technologies Institute

AlexNet architecture

* Final layers fully connected (like MLP)

048 7048 \dense

O N

A 4

dense

1000

2048 2048

* In papers you will see people referringto FC7

Language Technologies Institute

What are the models learning

= Will discuss in the reading group on Thursday

Language Technologies Institute

Other popular architectures

= LeNet — an early 5 layer architecture for
handwritten digit recognition

* VGGNet — a deep (19 layer) network for object
recognition

* ResNet — an even deeper model from Microsoft
» DeepFace — Facebook’s face recognition CNN

= Already trained AlexNet and VGGNet models
for object recognition can be found online

Language Technologies Institute

Training tricks

= Data augmentation (Create more data)
= |mage scaling
= Shifting
= Rotation
= Mirroring
= Optimization
= Dropout
= Regularization
= Many more tricks/tips that we will discuss in Week 8

Language Technologies Institute

Fine tuning for specific tasks

= Often start with an existing architecture and an
already trained network (for example AlexNet or
VGGNet for object recognition)

= Discard the final layer score function and
replace with your own (FC7)
= Perform gradient decent on it

= Nice thing about neural networks is that we can
continue training them with new data

Language Technologies Institute

