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Lecture Objectives

= \Word representations & distributional hypothesis
= Learning neural representations (e.g., Word2vec)

= Language models
= Sequence modeling tasks

= Recurrent neural networks

= Backpropagationthrough time

= Gates recurrent neural networks
= Long Short-Term Memory (LSTM) model
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Administrative Stuff
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Upcoming Schedule

* Pre-proposal (tomorrow Wednesday 2/5 at 9am)

* First project assignment:
= Proposal presentation (2/21 and 2/23)
= First project report (Sunday 3/5)
= Second project assignment
= Midterm presentations (4/6 and 4/8)
= Midterm report (Sunday 4/9)
* Final project assignment
* Final presentation (5/2 & 5/4)
= Final report (Sunday 5/7)
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Distributed
Semantics
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Possible ways of representing words

Given a text corpus containing 100,000 unigue words

# Classic binary word representation: [0; 0; 0; 0;....; 0; 0; 1; 0;...; 0; 0]

»
< »

100,000d vector
==) Only non-zero at the index of the word

‘ Classic word feature representation: [5; 1; 0; 0;....; 0; 20; 1; 0;...; 3; 0]

»
»

300d vector
=) Manually define 300 “good” features (e.g., ends on —ing)

# Learned word representation: [0,1; 0,0003; 0;....; 0,02; 0.08; 0,095]

300d vector

mm) This 300-dimension vector should approximate the
“meaning” of the word
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The Distributional Hypothesis

= Distribution Hypothesis (DH) [Lenci 2008]

= At least certain aspects of the meaning of lexical expressions
depend on their distributional properties in the linguistic contexts

= The degree of semantic similarity between two linguistic
expressions o and B is a function of the similarity of the linguistic
contexts in which a and 3 can appear

= Weak and strong DH

= Weak view as a quantitative method for semantic analysis and
lexical resource induction

= Strong view as a cognitive hypothesis about the form and origin of
semantic representations; assuming that word distributions in
context play a specific causal role in forming meaning
representations.

;
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What is the meaning of “bardiwac”?

= He handed her glass of bardiwac.
= Beef dishes are made to complement the bardiwacs.

= Nigel staggered to his feet, face flushed from too much
bardiwac.

= Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.

= | dined off bread and cheese and this excellent bardiwac.

= The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.

— bardiwac i1s a heavy red alcoholic beverage made from
grapes
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Geometric interpretation

row Vector Xgq,q
describes usage of
word dog in the
COrpus

can be seen as
coordinates of point
In n-dimensional
Euclidean space R"
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v v

get | see | use | hear | eat | Kkill
knife | 51 | 20 | 84 | O 310
cat | 52 | 58 | 4 4 6 | 26
dog | 115 | 83 | 10 | 42 | 33 | 17
boat | 59 | 39 | 23 | 4 010
cup| 98 | 14| 6 2 1 0
pig | 12 | 17 | 3 2 9 | 27
banana | 11 | 2 2 0 18 | 0

co-occurrence matrix M




Distance and similarity

Two dimensions of English V=0bj DSM

120
|

= |llustrated for two
dimensions: get and
use. Xdog = (115, 10) knife

100

80
|

= similarity = spatial
proximity (Euclidean 3
distance)

= J|ocation depends on boat

a | @ d=
frequency of noun ] 275 dog
cat d=633 o
(faog = 2.7 - Tear) e

o
I I I I I I

60

40
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Angle and similarity

Two dimensions of English V=0bj DSM

120
|

= direction more
Important than
location

100
|

knife

= normalise “length”
|[Xg0gl| OF vector

use

= Or use angle o as
distance measure

80 100 120

get
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Semantic maps

o
= onion potato "EE'E ® bird
» » groundAnimal
- ks hroom & fruitTree
= * = chicken cup * green
» banana b .-I.ui ® ool
0 ™ H
N cat etince . bottle wehicle
o cherrys ® & . o
Corm pen
_p-meap-ple spoon
= ship ® ® ear »
-ElEphDéJI]I"{ .Email boat o telephones » hn_'rlre
L penci
N ea-glemclh m::cet .
= 1 swar O o® Motorcycle hammer
] . . pﬂﬂEDﬂh truck .
Penguin .
. chissl
4;' - turtle ® Nelicopter * o screwdriver
.
SCISS0rs
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L earning Neural
Representations of
Words



How to learn (word) features/representations?

# Distribution hypothesis: Approximate the
word meaning by its surrounding words

m) \Words used in a similar context will lie close together

He wagwalking
He wasgrunning

away because ...
away because ...

# Instead of capturing co-occurrence counts directly,

predict surrounding words of every word

T
% > logp(wisjw)

t=1 —c<j<e,j£0
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How to learn (word) features/representations?

No activation function -> very fast

- He
z 8 Was
walking 8 S
= ~ Away
because
300d 300d
[0; 0; 0;0;....; 0; 0; 1; 0;...; 0; O] [0;1;0;0;....; 0; 0; 0; 0;...; 0; O]

[0;0;0;1;....;0; 0; 0; 0;...; 0; 0]
way because ... [0;0;0;0;....;1; 0; 0; 0;...; 0; 0]
away because ... [0;0;0; 0;....; 0; 0; 0; 0;...; 0; 1]

Word2vec algorithm: https://code.google.com/p/word2vec/

He was|walking
He was|running
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How to use these word representations

If we would have a vocabulary of 100 000 words:

»

Classic NLP: , 100 000 dimensional vector , ‘
Walking: [0;0;0;0;....;0;0; 1; 0;...; 0; 0]
Running: [0;0;0;0;....;0;0; 0; 0;...; 1; O]

# Similarity= 0.0

100 000d

l Transform: xX=x*W

|- 300 dimensional vector
coa ) > 300d

Walking: [0,1; 0,0003; 0;....; 0,02; 0.08; 0,095]
Running: [0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

# Similarity= 0.9

<
<«
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Word representations: examples

Word similarity test:

‘ Trained on 400 million tweets having 5 billion words

Input: running Cosine similarity Input: :) Cosine similarity
runnin 0.758099 ) 0.885355
runing 0.702119 . 0.836011
Running 0.69014 0.818340
runnning 0.669039 0.814380
sprinting 0.587385 0.809806
runnung 0.578426 0.808298
run 0.576671 0.798115
walking/running 0.563114 0.777765
runin 0.556682 0.772422
walking 0.542137 0.758584
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Vector space models of words

# While learning these word representations, we are
actually building a vector space in which all words
reside with certain relationships between them

# Encodes both syntactic and semantic relationships

# This vector space allows for algebraic operations:

Vec(king) — vec(man) + vec(woman) = vec(queen)

[ Why linear algebra is working? ]
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Vector space models of words: semantic relationships

2 T T - T T T I
China«
*Beijing
1.5 Russias .
Japare
1L Moscow |
Turkey Ankara J0kyo
0.5 + -
Poland:
0F Germxanyx -
France ANVarsaw
w Berlin
0.5 | |la|?< Paris i
Athens
Greece: i’
1+ Spairx Rome |
# Madrid
-1.5 | Portugal sLisbon .
_2 1 | 1 1 1 1 1
-2 1.5 -1 -0.5 0 0.5 1 1.5 2

Trained on the Google news corpus with over 300 billion words
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Language Models
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Example of Language Model
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Transcription

= Couric: You've cited Alaska's proximity to Russia as part of your foreign
policy experience. Whatdid you mean by that?

= Sarah Palin: That Alaska has a very narrow maritime border between a
foreign country, Russia, and, on our other side, the land-boundary that we
have with Canada. It's funny that a commentlike that was kinda made to ...
| don't know, you know ... reporters.

= Couric: Mocked?
= Palin: Yeah, mocked, | guess that's the word, yeah.

= Couric: Well, explain to me why that enhances your foreign-policy
credentials.
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Language Models: N-Grams

= Estimate probability of each word given prior context.
= P(mock | that was kinda made to)

= An N-gram model uses only N-1 words of prior context.
=  Unigram: P(mock)
= Bigram: P(mock | to)
= Trigram: P(mock | made to)
= The Markov assumption is the presumption that the
future behavior of a dynamical system only depends on
Its recent history.
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N-Gram Model Formulas

= \Word sequences
W, =W,...W,

= Chain rule of probability n
P(W') = P(wW,)P(W, | w,)P(w; [ W)...P(w, [w] ™) =] ] P(w, [w™)
= Bigram approximation -
Pw) =] [ P(w, |w,)
= N-gram apprkc;ximation
p(uy) = [ [ P(w, | WS,
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Estimating Probabilities

= N-gram conditional probabilities can be estimated from
raw text based on the relative frequency of word
seguences.

: C(w_,w.)
: P(w,|w )= —
Bigram: (w, [w,) Cw)
_ C(WinaaW,)
- : P(w, N+1
N-gram: (W, [ W0y cw
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Application: Speech Recognition

arg max P(wordsequence | acoustics) =

wordsequence

arg max P(acoustics | wordsequence) x P(wordsequence)
wordsequence P (aCOUSti CS)

arg max P(acoustics | wordsequence) x P(wordsequence)

wordsequence

Language model
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Neural-based Unigram Language Model (LM)

P("*dog on the beach”)
=P(dog|START)P(on|dog)P(the|on)P(beach|the)
P(bla): not from count, but the NN that can predict the next word.

P(next word is
“dog’)

1ttt1t

Neural
Network

t

ﬁ

1-of-N encoding

of “START”

P(next word is P(next word is P(next word is
“on”) “the”) “beach”)
Neural Neural Neural
Network Network Network

t t t

1-of-N encoding  1-of-N encoding 1-of-N encoding
of “dog” of “on” of “the”



Neural-based Unigram Language Model (LM)

P("*dog on the beach”)
=P(dog|START)P(on|dog)P(the|on)P(beach|the)
P(bla): not from count, but the NN that can predict the next word.

P(next word is P(next word is P(next word is P(next word is
“dog”) “on”) “the”) “beach”)

B I
Neu It does not model sequential =

Netw  information between predictions. [ork
tl We need sequence modeling!

1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “the”



Seguence
Modeling Tasks

Language Technologies Institute



Sequence Modeling: Language Model

W Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Language Model

0 of 4 people found this review helpful

Next word?

A
4 A\

I .

ldeal for anyone  with
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Seguence Modeling: Sequence Prediction

W Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Part-of-speech ?
(noun, verb,...)

0 of 4 people found this review helpful

POS? POS? POS? POS? POS? POS? POS? POS?

rrr 1t °r 1 1 1

ldeal for anyone with an Interest Iin disguises
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Seguence Modeling: Sequence Label Prediction

W Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Sentiment ?
(positive or negative)

0 of 4 people found this review helpful

Sentiment label?

A
‘ A\

rrr 1t °r 1 1 1

ldeal for anyone with an Interest Iin disguises
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Seguence Modeling: Sequence Representation

W Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Learning
disguises who likes to see the subject
tackled in a humourous manner.

Sequence representation

0 of 4 people found this review helpful

[0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

A
‘ A\

rrr 1t °r 1 1 1

ldeal for anyone with an Interest Iin disguises
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Seguence Modeling

= -of- 2
ARARRRX  Masterfull Pa(r:Ol?nf Vigb?%ch :

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in = Sentiment?

disguises who likes to see the subject | T—————l (positive or negative)

tackled in a humourous manner.

0 of 4 people found this review helpful = Language Model
= Sequence representation
Main Challenges:

= Sequences of variable lengths (e.g., sentences)

= Keep the number of parameters at a minimum

» Take advantage of possible redundancy
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Time-Delay Neural Network

| 1D Convolution )—P
| I I

ldeal for anyone with an Interest In disguises

Main Challenges:

= Keep the number of parameters at a minimum

» Take advantage of possible redundancy
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Recurrent Neural
Networks
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Sequence Prediction

(or Unigram Lanquage Model)
Input data: x* x? x3 ... (X are vectors)
Output data: y* y2 y3 ... (y' are vectors)

yl
—
Wothl

V3
—
w,

L
e
J

{ How can we include temporal dynamics?




Elman Network for Sequence Prediction

(or.Unigram..Language..Model)
Input data: x* x? x3 ... (X are vectors)

Output data: y* y2 y3 ... (y' are vectors)

yl

The same model parameters are used again and again.

Can be trained using backpropagation



Recurrent Neural Network

Feedforward Neural Network

@ L®) = —logP(Y = y®]z(®)
@ @ z® = matmult(h®, V)

a @ h® = tanh(Ux®)
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Recurrent Neural Networks

L = ZL(t)
t

z® = matmult(h®, V)

h® = tanh(Ux® + Wh-1D)
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Recurrent Neural Networks - Unrolling

L = ZL(t)

L(t) = —logP(Y = y®|z®)
@ @ z® = matmult(h®, V) 72 @ @ @ @
@——§ —

) I (D V—

h® = tanh(Ux® + WhE=1 QT/

Same model parameters are used for all time parts.
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RNN-based Language Model

P(nextword is  P(nextword is  P(nextword is  P(next word is
“dog”) “on”) “the”) “beach”)

I

—

I

—

|

-

|
ey |
iy |
iy |

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START" of “dog” of “on” of “nice”

» Models long-term information



RNN-based Sentence Generation (Decoder)

P(nextword is  P(nextword is  P(nextword is  P(next word is
“dog”) “on”) “the”) “beach”)

T
wzw

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START" of “dog” of “on” of “the”

Context

I

—

—y

ey |
iy |
iy |

» Models long-term information



Seguence Modeling: Sequence Prediction

W Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Sentiment ?
(positive or negative)

0 of 4 people found this review helpful

Sentiment label?

A
‘ A\

rrr 1t °r 1 1 1

ldeal for anyone with an Interest Iin disguises
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RNN for Sequence Prediction

P(word is P(word is P(word is
positive) positive) positive)

|deal anyone

L = 2 1(©® — Z _logP(Y = y®]z0)
t t

=

P(word is
positive)

disguises



RNN for Sequence Prediction

P(sequence is
positive)

ol o »

Ideal for anyone disguises




Seguence Modeling: Sequence Representation

W Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Learning
disguises who likes to see the subject
tackled in a humourous manner.

Sequence representation

0 of 4 people found this review helpful

[0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

A
‘ A\

rrr 1t °r 1 1 1

ldeal for anyone with an Interest Iin disguises
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RNN for Sequence Representation

P(nextword is  P(nextword is  P(nextword is  P(next word is
“dog”) “on”) “the”) “beach”)

.

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START" of “dog” of “on” of “nice”




RNN for Sequence Representation (Encoder)

Sequence
Representation

EHEH\I} - 3

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START" of “dog” of “on” of “nice”




RNN-based for Machine Translation

Le chien sur la plage =) The dog on the beach

— 2 L
Il I

1-of-N encoding  1-of-N encoding 1-of-N encodlng 1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”

L,

L




Encoder-Decoder Architecture

Context




Advanced Topics

= Character-level “language models”

= Xiang Zhang, Junbo Zhao and Yann LeCun, Character-level
Convolutional Networks for Text Classification, NIPS 2015

http://arxiv.orq/pdf/1509.01626v2.pdf

= Skip-though: embedding at the sentence level

= Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S.
Zemel, Antonio Torralba, Raguel Urtasun, Sanja Fidler. Skip-
Thought Vectors, NIPS 2015

http://arxiv.org/pdf/1506.06726v1.pdf
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Backpropagation
Through Time
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Optimization: Gradient Computation

Vector representation:

dy dy 0dy
xs axl'axz'ax?,] y)y=71h
Gradient
1T
\ oh h) h=g(x

“local” Jacobian
(matrix of size |h| X |x| computed
using partial derivatives)

/ “backprop” Gradient O
X
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Backpropagation Algorithm

=~
Il

—logP(Y = y|z)

(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W)

Backpropagation pass
= [|nitialize output gradient =1

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X
“backprop” gradient
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Recurrent Neural Networks

L = ZL(t)

L®) = —logP(Y = y®]z(®)
@ @ z® = matmult(h®, V) Z(Z)
)
h® = tanh(Ux® + WhE=1 QT/

© O @
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Backpropagation Through Time

L = ZL(t) — _z logP(Y = y®|z(")
t t

Gradient ="backprop” gradient @

@@ 21 S
aL® X “local” Jacobian
oL oL oL® @
@Or@ (Vz(t)L )l - az_(t) — aL(t) aZ.(t) = SlngLd(th) — li,y(t) @
l [

0z
@ ol =Volgpg = VolV ®
do® dht+1)
Vh(t)L — Vz(t)L ah(t) + Vz(t+1)L ah(t) @
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Backpropagation Through Time

L = ZL(t) — _z logP(Y = y®|z(")
t t

Gradient ="backprop” gradient

X “local” Jacobian

52

Wl = Z(Vzu)L) P
ah(t)
@ Vwl =Z( woL) =
t

dh®
@ Vyl = Z(Vh(t)l‘)
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Long-term Dependencies

Vanishing gradient problem for RNNSs:

h® ~tanh(Wh(E-D)

Qutputs . Q
A

Hidden
Layer

Inputs ‘lll"

Tirme 1 2 3 4 5 6 7

» The influence of a given input on the hidden layer, and therefore on
the network output, either decays or blows up exponentially as it
cycles around the network's recurrent connections.
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Gated Recurrent
Neural Networks
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Recurrent Neural Networks
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LSTM ideas: (1) “Memory” Cell and Self Loop
[Hochreiter and Schmidhuber, 1997]

Long Short-Term Memory (LSTM)

\-+/1_ :@ > h(t+1)
(t)/ -1 cell
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LSTM Ideas: (2) Input and Output Gates
[Hochreiter and Schmidhuber, 1997]

sigmoid

h<t>>®
S x® 0_/Output gate
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LSTM Ideas: (3) Forget Gate [gers et al., 2000]

g tanh _ .

i\ [ sigm w h® c® = fOcY +i0g
f| |\ sigm (x(t)) t) — (t)

o sigm h'") = o®Otanh(c'")

:G(L R AGEY

A

sigmoid

hN /71 f

0_/Forget gate

sigmoid

h(t)>® 0
S x® 0_/Output gate
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Recurrent Neural Network using LSTM Units

e Yo Pe Ye

V

LSTM® » LSTM® o LSTM® frerararaees — LSTM®

A

Gradient can still be computer using backpropagation!
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Bi-directional LSTM Network

@@ @2) @5

|4

LSTMg)~

/

LSTMg)

>

LSTMg)~

\

[]

A 4

LSTM@
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\

LSTM?
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Deep LSTM Network

V
LSTM® o LSTM® > LSTMS) fareeaseenss —{ LSTMY
LSTM® o LSTM@ M LSTM® fereraranes —| LSTMY
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