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Administrative Stuff 



Proposal Presentation (2/21/2017 and 2/23/2017) 

 5 minutes (about 5-10 slides) 

 All team members should be involved in the presentation 

 Will receive feedback from instructors and other students 

 1-2 minutes between presentations reserved for written 

feedback 

 Main presentation points (similar to pre-proposal) 

 General research problem and motivation 

 Dataset and input modalities 

 Multimodal challenges and prior work 

 



Project Proposal Report – Due on 3/5/17 

 Part 1 (updated version of your pre-proposal) 

 Research problem:  

 Describe and motivate the research problem 

 Define in generic terms the main computational 

challenges 

 Dataset and Input Modalities:  

 Describe the dataset(s) you are planning to use for this 

project.  

 Describe the input modalities and annotations available in 

this dataset.  



Project Proposal Report – Due on 3/5/17 

 Part 2 

 Related Work:  

 Include 12-15 paper citations which give an overview of 

the prior work 

 Present in more details the 3-4 research papers most 

related to your work 

 Research Challenges and Hypotheses:  

 Describe your specific challenges and/or research 

hypotheses  

 Highlight the novel aspect of your proposed research 



Project Proposal Report – Due on 3/5/17 

 Part 3 – (teams of 2 members can pick either one) 

 Language Modality Exploration:  

 Explore neural language models on your dataset (using Keras/Theano) 

 Train at least two different language models (e.g., using SimpleRNN, 

GRU or LSTM) on your dataset and compare their perplexity.  

 Include qualitative examples of successes and failure cases. 

 Visual Modality Exploration:  

 Explore pre-trained Convolutional Neural Networks (CNNs) on your 

dataset 

 Load a pre-existing CNN model trained for object recognition (e.g., 

AlexNet or VGG-Net) and process your test images.  

 Extract features at different network layers in the network and visualize 

them (using t-sne visualization) with overlaid class labels with different 

colors.  



Objectives of today’s class 

 Audio representations 

 Hand-crafted (MFCC) and learned (Deep Belief Nets, Deep 

Neural Networks) 

 Unsupervised representation learning 

 Restricted Boltzmann Machines 

 Autoencoders 

 Deep Belief Nets, Stacked autoencoders 

 Multi-modal representations 

 Coordinated vs. joint representations 

 Multimodal Deep Boltzmann Machines 

 Deep Multimodal autoencoders 

 Visual semantic embeddings 
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Audio 

representations 



Audio representation 

 Audio frames in a window (this is 

our input) 

 Can extract a spectrogram 

(lowest level) 

 Low level features like MFCC 

 Higher-level features also exist 

(specifically for human voice) 

 Prosody 

 Voice quality 

 This can be used for speech 

recognition, affect and sentiment 

analysis, music analysis etc. 

 

 

 

 

• Sampling rates: 8~96kHz 

• Bit depth: 8, 16 or 24 bits 

• Time window size: 20ms 

• Offset: 10ms 

Spectogram 



Audio representation for speech recognition 

 Speech recognition systems historically much more complex than 

vision systems 

 Require a lot of moving parts 

 Phoneme detectors 

 Language models 

 Vocabularies 

 Large breakthrough of using representation learning instead of hand-

crafted features 

 [Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech 

Recognition: The Shared Views of Four Research Groups, 2012] 

 Most work exploited large amounts of unsupervised data for model 

pre-training 

 The field of ASR was largely static for some years up to then 

 A huge boost in performance (up to 30% on some datasets) 
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Unsupervised 

representation learning 



Unsupervised learning 

 We have access to 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑛} and not 

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} 

 Why would we want to tackle such a task 

 1. Extracting interesting information from data 

 Clustering 

 Discovering interesting trends 

 Data compression 

 2. Learn better representations 



Unsupervised representation learning 

 Force our representations to better model input 

distribution 

 Not just extracting features for classification 

 Asking the model to be good at representing the data 

and not overfitting to a particular task 

 Potentially allowing for better generalizability 

 Use for initialization of supervised task, 

especially when we have a lot of unlabeled data 

and much less labeled examples 
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Restricted Boltzmann 

Machines 



Restricted Boltzmann Machine (RBM) 

 Undirected Graphical Model 

 A generative rather than discriminative model 

 Connections from every hidden unit to every visible one 

 No connections across units (hence Restricted), makes it 

easier to train and do inference on 

 

 

 

 

 
𝑥2 

ℎ2 ℎ1 

𝑥1 

Hidden layer 

Visible layer 

ℎ𝑘 

𝑥𝑛 

[Smolensky, Information Processing in Dynamical Systems: Foundations of 

Harmony Theory, 1986] 



Restricted Boltzmann Machine 

 Model the joint probability of hidden state and observation 

𝑝 𝒙, 𝒉; 𝜃 =
exp⁡(−E 𝒙, 𝒉; 𝜃 )

𝑍
⁡ 

𝑍 =   exp⁡(−E 𝒙, 𝒉; 𝜃 )𝒉𝒙   

 E = −𝒙𝑊𝒉⁡ − 𝒃𝑇𝒙⁡ − 𝒂𝑇𝒉 

 E = −   𝑤𝑖,𝑗𝑥𝑖ℎ𝑗𝑗𝑖 −  𝑏𝑖𝑥𝑖𝑖 −  𝑎𝑗ℎ𝑗𝑗  

𝑥2 

ℎ2 ℎ1 

𝑥1 

Hidden layer 

(binary) 

Visible layer 

(binary) 

ℎ𝑘 

𝑥𝑛 

𝑊 

𝒂 

𝒃 

Joint probability, positive value 

Normalization function so that the 

probabilities sum to one 

Bias terms Interaction term 

Hidden and visible layers are binary (e.g. 𝑥 = {0,… , 1,0,1}),  
Model parameters to learn 𝜃 = 𝑊,𝒃, 𝒂  



RBM inference (have a trained 𝜃) 

 For inference 

 𝑝 ℎ𝑗 = 1 𝒙; 𝜃 = 𝜎  𝑥𝑖𝑤𝑖𝑗𝑖 + 𝑎𝑗 , 

 𝑝 𝑥𝑖 = 1 𝒉; 𝜃 = 𝜎  ℎ𝑗𝑤𝑖𝑗𝑗 + 𝑏𝑖   

 derived from the joint probability 

definition 

 Conditional inference is easy and of 

sigmoidal form 

 Given a trained model 𝜃 and an observed 

value 𝒙 can easily infer 𝒉 

 Given a trained model 𝜃 and an hidden 

layer value 𝒉 can easily infer 𝒙 

 Can show this by factorizing the terms 

 Need to sample as we get probabilities 

rather than values 

 

𝑥2 

ℎ2 ℎ1 

𝑥1 

Hidden layer 

Visible layer 

ℎ𝑘 

𝑥𝑛 

𝑊 

𝒂 

𝒃 



RBM training (learning the 𝜃) 

 Want to have a model that leads to good likelihood of training data 

 First express the data likelihood (through marginal probability): 

 𝑝 𝒙; 𝜃 =
 exp⁡(−𝐸 𝒙,𝒉;𝜃 )𝒉

𝑍
 

 Want to optimize: 

 argmin𝜃 ⁡  − log 𝑝 𝒙(𝑡); 𝜃𝑡 , where 𝑡 is a data sample 

 sum across all samples 

 minimizing negative log likelihood instead of maximizing the likelihood 

 General gradient form for energy models with latent terms: 

𝜕 −log 𝑝(𝒙(𝑡);𝜃)

𝜕𝜃
= 𝔼𝒉

𝜕 E(𝒙 𝑡 ,𝒉;𝜃))

𝜕𝜃
 𝒙(𝑡) ⁡⁡⁡− ⁡⁡⁡𝔼𝒉,𝒙

𝜕 E(𝒙,𝒉;𝜃))

𝜕𝜃
  

 

 
Positive phase/data term Negative phase/model term 

See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations for more details 

𝑍 =   exp⁡(−E 𝒙, 𝒉; 𝜃 )
𝒉𝒙

 

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations


RBM training 

 Ignoring the biases as they are easier 


𝜕 log 𝑝(𝒙(𝑡);𝜃)

𝜕𝑤𝑖𝑗
= 𝔼𝒉

𝜕 E(𝒙 𝑡 ,𝒉;𝜃))

𝜕𝑤𝑖𝑗
 𝒙(𝑡) − 𝔼𝒉,𝒙

𝜕 E(𝒙,𝒉;𝜃))

𝜕𝑤𝑖𝑗
  

 First term is straightforward to compute 
 

 

 

 

 

 Second expectation term is straightforward mathematically, but 

intractable computationally (too many terms to sum over) 

 Want to approximate it instead 

 Replace the expectation across 𝒙, 𝒉 with a point estimate at 𝒙  

 

𝜕 E(𝒙, 𝒉; 𝜃))

𝜕𝑤𝑖𝑗
= −ℎ𝑖𝑥𝑗 ⇒ 𝔼𝒉

𝜕 E(𝒙 𝑡 , 𝒉; 𝜃))

𝜕𝑤𝑖𝑗
 𝒙 𝑡 = 𝔼𝒉 −ℎ𝑖𝑥𝑗 𝒙

𝑡

=  −ℎ𝑖𝑥𝑗𝑝 ℎ𝑖 𝒙 𝑡 ; 𝜃 = −𝑥𝑗𝑝 ℎ𝑖 = 1 𝒙 𝑡 ; 𝜃

ℎ𝑖∈{0,1}

 



Contrastive divergence 

 Instead of 𝔼𝒉,𝒙
𝜕 E(𝒙,𝒉))

𝜕𝑤𝑖𝑗
, compute 𝔼𝒉

𝜕 E(𝒙 ,𝒉))

𝜕𝑤𝑖𝑗
 𝒙  as an approximation 

 To Approximate computation of model term using Contrastive Divergence 

 Based on Markov Chain Monte Carlo (Gibbs) sampling 

Hidden layer 

Visible layer 

𝑥2 𝑥1 𝑥𝑛 

ℎ2 ℎ1 ℎ𝑘 

𝑥2 𝑥1 𝑥𝑛 𝑥2 𝑥1 𝑥𝑛 

ℎ2 ℎ1 ℎ𝑘 

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002] 

𝒙(𝑡) 𝒙1 𝒙𝑘 = 𝒙  

𝑝 𝒉 𝒙(𝑡); 𝜃  

𝑝 𝒙1 𝒉; 𝜃  

𝑝 𝒉 𝒙1; 𝜃  



Update rule for RBMs 

 Now have the update rule for parameters 


𝜕 log 𝑝(𝒙(𝑡);𝜃)

𝜕𝑤𝑖𝑗
= 𝔼𝒉

𝜕 E(𝒙(𝑡),𝒉))

𝜕𝑤𝑖𝑗
 𝒙(𝑡) − 𝔼𝒉,𝒙

𝜕 E(𝒙,𝒉))

𝜕𝑤𝑖𝑗
≅ −𝑥𝑗𝑝 ℎ𝑖 = 1 𝒙 𝑡 + 𝑥 𝑗𝑝 ℎ𝑖 = 1 𝒙  

 Still a gradient descent approach (although approximate) 

 Sampling negative phase rather than using the actual gradient 

 Similar update rules apply for the bias terms 

 Can use a stochastic update 

 Using mini-batches rather than all data (current equation 

written for one sample) 

 Extension using better sampling - Persistent Contrastive Divergence 

 [T. Tieleman, Training Restricted Boltzmann Machines using Approximations 

to the Likelihood Gradient, 2008] 

 



RBM extensions 

 So far have only modeled binary input and hidden states 

 Gaussian-Bernoulli RBM allows for real value modeling 
 Changes the inference and training only very slightly 

 Visible units are modeled as real values (under a Gaussian 
distribution), but hidden units are still binary 

 [Hinton and Salakhutdinov, Reducing the Dimensionality of Data with Neural 
Networks, 2006] 

 Replicated Softmax to model one-hot encoding style vectors 
 [Salakhutdinov and Hinton, Replicated Softmax: an Undirected Topic Model, 

2009]  

 Now not as relevant due to word2vec 

 Only requires a small change in some of the equations 

 Can also introduce sparsity in hidden layers (sometimes 
helps) 

 [Lee et al., Sparse deep belief net model for visual area V2, 2007] 



Examples of what the model learns 

MNIST data Learned W terms for each hidden unit 



Deep Restricted Boltzmann Machines (DBMs) 

 Can stack RBMs together to lead do 

deep versions of them 

 The visible layer can be binary, Gaussian 

or Bernoulli 

 The hidden layers are still binary 

 Training fully end to end is very difficult 

1st Hidden layer 

Visible layer 

2nd Hidden layer 

3rd Hidden layer 

RBM 

RBM 

RBM 



Deep Restricted Boltzmann Machines (DBMs) 

 Can stack RBMs together to lead do 

deep versions of them 

 Training fully end to end is very difficult 

 Greedy layer-wise training 

 Combine the RBMs layer by layer 

1st Hidden layer 

Visible layer 

2nd Hidden layer 

3rd Hidden layer 



Deep Belief Networks (DBN) 

 To make it easier used Deep Belief 

Networks 

 Actually came before Deep RBMs 

 Simplifies model training 

 Turn the undirected model to 

directed one, making the interaction 

simpler 

1st Hidden layer 

Visible layer 

2nd Hidden layer 

3rd Hidden layer 

BN 

BN 

RBM 



Deep Belief Networks and Deep Boltzmann Machines 

 Deep Boltzmann Machine (DBM) 

 All layers are undirected 

 Relationships between layers 

modeled as RBMs 

 Better at modeling dependencies 

of lower to higher levels 

 More difficult to train 

 

 Deep Belief Network (DBN) 

 Mixing directed and undirected 

interactions 

 Top two layers are always an 

RBM 

 Others are a Bayesian Network 

 

1st Hidden layer 

Visible layer 

2nd Hidden layer 

RBM 

BN 

1st Hidden layer 

Visible layer 

2nd Hidden layer 

RBM 

RBM 



Deep Belief Networks and Deep Boltzmann Machines 

 Greedy layer-wise training 

 Combine the RBMs layer by layer 

 Difficult to train and have to use 

approximations and sampling 

 Variational learning methods 

 EM like 

 Optimize a lower bound rather 

than directly the actual log 

likelihood 

 

 For more details see [Salakhutdinov and 

Hinton, Deep Boltzmann Machines, 2009] 

1st Hidden layer 

Visible layer 

2nd Hidden layer 

RBM 

BN 

1st Hidden layer 

Visible layer 

2nd Hidden layer 

RBM 

RBM 



What can you do with them 

 On their own RBMs are very interesting but not 

necessarily useful 

 Stacking them can lead to more interesting models 
 Can use the representation directly for some task 

 Use them to pre-train or initialize discriminative models 

 Initialize Deep Neural Networks from them 

 We can convert the DBN weights to those of DNN 

 Major early success of deep learning for Automatic 

Speech Recognition 



Audio representation for speech recognition 

 

[Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: 

The Shared Views of Four Research Groups, 2012] 



Audio representation for speech recognition 

 Feed-forward DNN for features (instead of HMM 

emissions) 

 Now the field has moved slightly away from pre-

training using DBN 

 More labeled data available 

 Better training approaches for DNN available 

(dropout etc.) 

 Still lots of tasks where huge amounts of labeled 

data not available though 



Audio representation for speech recognition 

 Used MFCC but not anymore going straight from spectrogram 
now 
 [Deng, et al., Binary Coding of Speech Spectrograms Using a 

Deep Auto-encoder, 2010] 

 Sometimes even using CNN on spectrograms 
 [Abdel-Hamid et al., Convolutional Neural Networks for Speech 

Recognition, 2014]  

 RNN and LSTM now becoming popular for language models 
 Further improvement up to  up to 20% 

 [Mikolov et al., Recurrent neural network based language model] 

 Fully end-to-end training (a different approach) 
 [Graves and Jaitly, Towards End-to-End Speech Recognition with 

Recurrent Neural Networks, 2014] 

 Not as accurate yet but potentially will overtake the current 
designs 
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Autoencoders 



Autoencoders – an alternative to RBM 

 What does auto mean? 

 Greek for self – self encoding 

 Feed forward network 

intended to reproduce the 

input 

 Two parts encoder/decoder 

 𝑥′ = 𝑓(𝑔 𝑥 ) – score function 

 𝑔 - encoder 

 𝑓 - decoder 

 

𝑥2 𝑥1 𝑥𝑛 

ℎ2 ℎ1 ℎ𝑘 

𝑥′2 𝑥′1 𝑥′𝑛 

𝑓 

𝑔 

Encoder 

Decoder 



Autoencoders 

 Mostly follows Neural Network structure 

 Typically a matrix multiplication followed 

by a nonlinearity (e.g sigmoid) 

 Activation will depend on type of 𝒙 

 Sigmoid for binary 

 Linear for real valued 

 Often we use tied weights to force the 

sharing of weights in encoder/decoder 

 𝑊∗ = 𝑊𝑇 

 word2vec is actually a bit similar to an 

autoencoder (except for the auto part) 

 

𝑓 = 𝜎(𝑊𝒙) 

𝑔 = 𝜎(𝑊∗𝒉) 

𝑥2 𝑥1 𝑥𝑛 

ℎ2 ℎ1 ℎ𝑘 

𝑥′2 𝑥′1 𝑥′𝑛 



Loss function 

 Any differentiable similarity function 

 Cross-entropy for binary 𝒙 

 𝐿 = −  (𝑥𝑘 log 𝑥′𝑘 + (1 − 𝑥𝑘) log 1 − 𝑥′𝑘 )𝑘  

 Euclidean for real valued 𝒙 

 𝐿 =
1

2
 (𝑥𝑘 − 𝑥′

𝑘)2
𝑘  

 Cosine similarity etc. 

 Depends on the data being modeled 

𝑥2 𝑥1 𝑥𝑛 

ℎ2 ℎ1 ℎ𝑘 

𝑥′2 𝑥′1 𝑥′𝑛 

𝑓 

𝑔 

Loss 



Learning 

 To learn the model parameters (𝑊∗, 𝑊) use 

back-propagation 

 In case of Euclidean (with linear act) and 

Cross-entropy (with sigmoid act) we just 

have (𝑥′ − 𝑥) error to propagate 

 If we’re using tied weights gradients need 

to be summed (like back propagation 

through time in RNN) 

 Can use batch/stochastic gradient descent 

as before 
𝑥2 𝑥1 𝑥𝑛 

ℎ2 ℎ1 ℎ𝑘 

𝑥′2 𝑥′1 𝑥′𝑛 

𝑓 

𝑔 

Error 



Hidden layer dimensionality 

 Smaller that input - Undercomplete 
 Will compress the data, reconstruction of data far from 

training distribution will be difficult 

 Linear-linear encoder-decoder with Euclidean loss is 
actually equivalent to PCA (under certain data 
normalization) 

 Larger than input - Overcomplete 
 No compression needed 

 Can trivially learn to just copy, so no structure is 
extracted 

 Does not encourage to lean meaningful features, a 
problem 



Denoising autoencoder 

 Simple idea 

 Add noise to input 𝒙 but 

learn to reconstruct original 

 Leads to a more robust 

representation and prevents 

copying 

 Learns what the relationship 

is to represent a certain 𝒙 

 Different noise added during 

each epoch 

𝑥 1 

ℎ2 ℎ1 ℎ𝑘 

𝑥′2 𝑥′1 𝑥′𝑛 

𝑓 

𝑔 

Loss 

𝑥2 𝑥1 𝑥𝑛 

Noise 

𝑥 2 𝑥 𝑛 𝑥2 𝑥1 𝑥𝑛 

ℎ2 ℎ1 ℎ𝑘 

𝑥′2 𝑥′1 𝑥′𝑛 

𝑓 

𝑔 

Loss 



Contractive autoencoder 

 A slightly different way to make the autoencoder 

learn a useful representation 

 Intuition - changing the loss function instead of 

adding noise 

 Making the weight derivative with respect to input 

small 

 More difficult to implement and leads to similar 

results to Denoising autoencoders 

 [Rifai et al., Contractive Auto-Encoders: Explicit Invariance During 

Feature Extraction, 2011] 



Autoencoder vs denoising autoencoder 

 MNIST data (as before) 

 

 

 

 

 

 
 

Qualitatively denoising autoencoder leads to more meaningful features 

Autoencoder Denoising autoencoder (25% noise) Denoising autoencoder (50% noise) 



Stacked autoencoders 

 Can stack autoencoders as 

well 

 Each encoding unit has a 

corresponding decoder 

 As before, inference is 

feedforward, but now with 

more hidden layers 

 

 

𝒙 

𝒉𝟏 

𝒙′ 

𝒉𝟐 

𝒉′𝟏 

Encoder 

Decoder 



Stacked autoencoders 

 Greedy layer-wise training 

 Start with training first layer 

 Learn to encode 𝒙⁡to 𝒉𝟏 and to 

decode 𝒙⁡from 𝒉𝟏 

 Use backpropagation 

Dec 

𝒙 

𝒉𝟏 

𝒙′ 

Enc 



Stacked autoencoders 

 Greedy layer-wise training 

 Start with training first layer 

 Learn to encode 𝒙⁡to 𝒉𝟏 and to 

decode 𝒙⁡from 𝒉𝟏 

 Use backpropagation 

 Map from all 𝒙’s to 𝒉𝟏’s  

 Discard decoder for now 

 Train the second layer 

 Learn to encode 𝒉𝟏to 𝒉𝟐 and to 

decode 𝒉𝟐⁡from 𝒉𝟏 

 Repeat for as many layers 𝒉𝟏 

Fixed 

𝒙 

𝒉𝟐 

Enc 

Dec 

𝒉𝟏 

𝒉′𝟏 

Fixed 



Stacked autoencoders 

 Greedy layer-wise training 

 Start with training first layer 

 Learn to encode 𝒙⁡to 𝒉𝟏 and to 

decode 𝒙⁡from 𝒉𝟏 

 Use backpropagation 

 Map from all 𝒙’s to 𝒉𝟏’s  

 Discard decoder for now 

 Train the second layer 

 Learn to encode 𝒉𝟏to 𝒉𝟐 and to 

decode 𝒉𝟐⁡from 𝒉𝟏 

 Repeat for as many layers 

 Reconstruct using previously learned 

decoders mappings 

 Fine-tune the full network end-to-end 𝒙 

𝒉𝟏 

𝒙′ 

𝒉𝟐 

𝒉′𝟏 

Encoder 

Decoder 



Stacked denoising autoencoders 

 Can extend this to a 

denoising model 

 Add noise when training 

each of the layers 

 Often with increasing 

amount of noise per layer 

 0.1 for first, 0.2 for second, 

0.3 for third 

𝒙 

𝒉𝟏 

𝒙′ 

𝒉𝟐 

𝒉′𝟏 

Encoder 

Decoder 



Deep representations 

 What can we do with them? 

 Compression 

 Can work better than PCA 

 [Hinton and Salatkhudinov, Reducing 

the dimensionality of data with neural 

networks, 2006] 

 



Deep representations 

 What can we do with them? 

 Compression 

 Can work better than PCA 
 [Hinton and Salatkhudinov, Reducing the 

dimensionality of data with neural networks, 

2006] 

 Discarding the decoder and using the 

middle layer as a representation 

 Finetuning the autoencoder for a task 

Classifier 

𝒙 

𝒉𝟏 

𝒉𝟐 

Encoder 

𝒚 



Fine-tuning an autoencoder 

 Converting in to a DNN 

 Start with a trained stacked denoising 

autoencoder 
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Fine-tuning an autoencoder 

 Converting in to a DNN 

 Start with a trained stacked denoising 

autoencoder 

 Discard the decoder 

 

𝒙 

𝒉𝟏 

𝒉𝟐 



Fine-tuning an autoencoder 

 Converting in to a DNN 

 Start with a trained stacked denoising 

autoencoder 

 Discard the decoder 

 Put a differentiable 

classifier/regressor on top 
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𝒉𝟐 

𝒚 

Differentiable 

classifier or 

regressor 



Fine-tuning an autoencoder 

 Converting in to a DNN 

 Start with a trained stacked denoising 

autoencoder 

 Discard the decoder 

 Put a differentiable 

classifier/regressor on top 

 Train the whole network end-to-end 

 Backpropagation 

 [Erhan et al., Why Does Unsupervised Pre-

training Help Deep Learning?, 2010] 

 

𝒙 

𝒉𝟏 

𝒉𝟐 

𝒚 

Differentiable 

classifier or 

regressor 



Comparison 

 Pretraining can be done on Deep Belief Networks as well 

 [Hinton et al., A fast learning algorithm for deep belief nets] 

Figure from [Erhan et al., Why 

Does Unsupervised Pre-

training Help Deep Learning?, 

2010] 
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Deep unsupervised 

models 



Comparison 

 We have DBNs, DBMs, and stacked autoencoders 

 Can actually combine them in interesting ways 

 Use RBMs or DBNs to pretrain autoencoders 

 Can use either DBNs or autoencoders to initialize DNNs 

 

RBM 

BN 

RBM 

RBM 
Enc 

Dec 



Comparison 

 We have DBNs, DBMs, and stacked autoencoders 

 DBNs and DBMs trickier to train but potentially more powerful 

 

 

 

 

 

 
 

 

 

 

[Vincent et al., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network 

with a Local Denoising Criterion, 2010] 
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Multimodal representations 

 Why do we need multimodal representations? 

 Can just have unimodal ones and just fuse them 

 What if relationship is complex? 

 Doesn’t exploit joint information, especially at 

lower/intermediate levels 



Multimodal representations 

 What do we want from multi-modal 

representation 

 Similarity in that space implies 

similarity in corresponding concepts 

 Useful for various discriminative 

tasks – retrieval, mapping, fusion 

etc. 

 Possible to obtain in absence of one 

or more modalities 

 Fill in missing modalities given 

others (map between modalities) 

Modality 1 Modality 2 Modality 3

Fancy 
representation

Modality 1 Modality 2 Modality 3

Fancy 
representation

Prediction

Modality 1 Modality 2
Fancy 

representation



Multimodal representation types 

Modality 1 Modality 2 

Representation 

Joint representations: A 

Coordinated representations: B 

Modality 1 Modality 2 

Repres 2 Repres. 1 

 Simplest version: modality 

concatenation (early fusion) 

 Can be learned supervised 

or unsupervised 

 Similarity-based methods 

(e.g., cosine distance) 

 Structure constraints (e.g., 

orthogonality, sparseness) 

 Multimodal factor analysis 

 Talk about it today but also 

in two weeks (CCA) 
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Joint 

representations 



Shallow multimodal representations 

 Want deep multimodal representations 

 Shallow representations do not capture complex relationships 

 Often shared layer only maps to the shared section directly 

Shallow RBM Shallow Autoencoder 



Deep Multimodal autoencoders 

 A deep representation 

learning approach 

 A bimodal auto-encoder 

 Used for Audio-visual speech 

recognition 

 

 

 

 
 [Ngiam et al., Multimodal Deep Learning, 2011] 



Deep Multimodal autoencoders - training 

 Individual modalities can be 

pre-trained 

 Denoising Autoencoders 

 

 To train the model to 

reconstruct the other modality 

 Use both 

 Remove audio 



Deep Multimodal autoencoders - training 

 Individual modalities can be 

pretrained 

 RBMs 

 Denoising Autoencoders 

 

 To train the model to 

reconstruct the other modality 

 Use both 

 Remove audio 

 Remove video 



Deep Multimodal autoencoders 

 Can now discard the decoder and 

use it for the AVSR task 

 Interesting experiment 

 “Hearing to see” 

 

 



Deep Multimodal Boltzmann machines 

 Generative model 

 Individual modalities trained like a 

DBN 

 Multimodal representation trained 

using Variational approaches 

 Used for image tagging and cross-

media retrieval 

 Reconstruction of one modality from 

another is a bit more “natural” than in 

autoencoder representation 

 Can actually sample text and images 
 

 

 

 [Srivastava and  Salakhutdinov,  Multimodal Learning with 

Deep Boltzmann Machines, 2012, 2014] 



Deep Multimodal Boltzmann machines 

 Pre-training on unlabeled 

data helps 

 Can use generative models 

 

 

 

 

 

 

 Code is available 
 http://www.cs.toronto.edu/~nitish/multimodal/ 

 

http://www.cs.toronto.edu/~nitish/multimodal/


Comparing deep multimodal representations 

 Difference between them and the RBMs and the 

autoencoders 

 Overall very similar behavior 
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representations 



Coordinated multimodal embeddings 

 Instead of projecting to a joint space enforce the similarity between 

unimodal embeddings 

Modality 1 Modality 2 

Repres 2 Repres. 1 



Coordinated multimodal embeddings 

 Instead of projecting to a joint space enforce the similarity between 

unimodal embeddings (topic of our reading group on Thursday) 

 Often referred to as semantic space embeddings 

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural 

Language Models, 2014] 

[Frome et al., DeViSE: A Deep Visual-Semantic Embedding Model, 2013] 



Coordinated multimodal embeddings 

 Deep structured semantic models 

 

 

 

 

 

 

 

 

 

 

 
 [Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013] 



Structured coordinated embeddings 

 Instead of or in addition to similarity add alternative 

structure 

[Vendrov et al., Order-Embeddings of 

Images and Language, 2016] 

[Jiang and Li, Deep Cross-Modal Hashing]  



Recap unsupervised representation 

 RBM 

 Project modalities to the same space 

 Use when all the modalities are present during test time 

 Suitable for multimodal fusion 

 Autoencoder 

 Project modalities to their own coordinated space 

 Use when only one of the modalities is present during test-

time 

 Suitable for multimodal translation 

 Good for retrieval 



Recap multimodal representations 

 Joint representations 

 Project modalities to the same space 

 Use when all the modalities are present during test time 

 Suitable for multimodal fusion 

 Coordinated representations 

 Project modalities to their own coordinated space 

 Use when only one of the modalities is present during test-

time 

 Suitable for multimodal translation 

 Good for retrieval 


