
1

Louis-Philippe Morency

Tadas Baltrusaitis

Advanced
Multimodal Machine Learning

Lecture 5.1: Unsupervised

learning and Multimodal

representations

2

Administrative Stuff

Proposal Presentation (2/21/2017 and 2/23/2017)

 5 minutes (about 5-10 slides)

 All team members should be involved in the presentation

 Will receive feedback from instructors and other students

 1-2 minutes between presentations reserved for written

feedback

 Main presentation points (similar to pre-proposal)

 General research problem and motivation

 Dataset and input modalities

 Multimodal challenges and prior work

Project Proposal Report – Due on 3/5/17

 Part 1 (updated version of your pre-proposal)

 Research problem:

 Describe and motivate the research problem

 Define in generic terms the main computational

challenges

 Dataset and Input Modalities:

 Describe the dataset(s) you are planning to use for this

project.

 Describe the input modalities and annotations available in

this dataset.

Project Proposal Report – Due on 3/5/17

 Part 2

 Related Work:

 Include 12-15 paper citations which give an overview of

the prior work

 Present in more details the 3-4 research papers most

related to your work

 Research Challenges and Hypotheses:

 Describe your specific challenges and/or research

hypotheses

 Highlight the novel aspect of your proposed research

Project Proposal Report – Due on 3/5/17

 Part 3 – (teams of 2 members can pick either one)

 Language Modality Exploration:

 Explore neural language models on your dataset (using Keras/Theano)

 Train at least two different language models (e.g., using SimpleRNN,

GRU or LSTM) on your dataset and compare their perplexity.

 Include qualitative examples of successes and failure cases.

 Visual Modality Exploration:

 Explore pre-trained Convolutional Neural Networks (CNNs) on your

dataset

 Load a pre-existing CNN model trained for object recognition (e.g.,

AlexNet or VGG-Net) and process your test images.

 Extract features at different network layers in the network and visualize

them (using t-sne visualization) with overlaid class labels with different

colors.

Objectives of today’s class

 Audio representations

 Hand-crafted (MFCC) and learned (Deep Belief Nets, Deep

Neural Networks)

 Unsupervised representation learning

 Restricted Boltzmann Machines

 Autoencoders

 Deep Belief Nets, Stacked autoencoders

 Multi-modal representations

 Coordinated vs. joint representations

 Multimodal Deep Boltzmann Machines

 Deep Multimodal autoencoders

 Visual semantic embeddings

8

Audio

representations

Audio representation

 Audio frames in a window (this is

our input)

 Can extract a spectrogram

(lowest level)

 Low level features like MFCC

 Higher-level features also exist

(specifically for human voice)

 Prosody

 Voice quality

 This can be used for speech

recognition, affect and sentiment

analysis, music analysis etc.

• Sampling rates: 8~96kHz

• Bit depth: 8, 16 or 24 bits

• Time window size: 20ms

• Offset: 10ms

Spectogram

Audio representation for speech recognition

 Speech recognition systems historically much more complex than

vision systems

 Require a lot of moving parts

 Phoneme detectors

 Language models

 Vocabularies

 Large breakthrough of using representation learning instead of hand-

crafted features

 [Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech

Recognition: The Shared Views of Four Research Groups, 2012]

 Most work exploited large amounts of unsupervised data for model

pre-training

 The field of ASR was largely static for some years up to then

 A huge boost in performance (up to 30% on some datasets)

11

Unsupervised

representation learning

Unsupervised learning

 We have access to 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑛} and not

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}

 Why would we want to tackle such a task

 1. Extracting interesting information from data

 Clustering

 Discovering interesting trends

 Data compression

 2. Learn better representations

Unsupervised representation learning

 Force our representations to better model input

distribution

 Not just extracting features for classification

 Asking the model to be good at representing the data

and not overfitting to a particular task

 Potentially allowing for better generalizability

 Use for initialization of supervised task,

especially when we have a lot of unlabeled data

and much less labeled examples

14

Restricted Boltzmann

Machines

Restricted Boltzmann Machine (RBM)

 Undirected Graphical Model

 A generative rather than discriminative model

 Connections from every hidden unit to every visible one

 No connections across units (hence Restricted), makes it

easier to train and do inference on

𝑥2

ℎ2 ℎ1

𝑥1

Hidden layer

Visible layer

ℎ𝑘

𝑥𝑛

[Smolensky, Information Processing in Dynamical Systems: Foundations of

Harmony Theory, 1986]

Restricted Boltzmann Machine

 Model the joint probability of hidden state and observation

𝑝 𝒙, 𝒉; 𝜃 =
exp⁡(−E 𝒙, 𝒉; 𝜃)

𝑍
⁡

𝑍 = exp⁡(−E 𝒙, 𝒉; 𝜃)𝒉𝒙

 E = −𝒙𝑊𝒉⁡ − 𝒃𝑇𝒙⁡ − 𝒂𝑇𝒉

 E = − 𝑤𝑖,𝑗𝑥𝑖ℎ𝑗𝑗𝑖 − 𝑏𝑖𝑥𝑖𝑖 − 𝑎𝑗ℎ𝑗𝑗

𝑥2

ℎ2 ℎ1

𝑥1

Hidden layer

(binary)

Visible layer

(binary)

ℎ𝑘

𝑥𝑛

𝑊

𝒂

𝒃

Joint probability, positive value

Normalization function so that the

probabilities sum to one

Bias terms Interaction term

Hidden and visible layers are binary (e.g. 𝑥 = {0,… , 1,0,1}),
Model parameters to learn 𝜃 = 𝑊,𝒃, 𝒂

RBM inference (have a trained 𝜃)

 For inference

 𝑝 ℎ𝑗 = 1 𝒙; 𝜃 = 𝜎 𝑥𝑖𝑤𝑖𝑗𝑖 + 𝑎𝑗 ,

 𝑝 𝑥𝑖 = 1 𝒉; 𝜃 = 𝜎 ℎ𝑗𝑤𝑖𝑗𝑗 + 𝑏𝑖

 derived from the joint probability

definition

 Conditional inference is easy and of

sigmoidal form

 Given a trained model 𝜃 and an observed

value 𝒙 can easily infer 𝒉

 Given a trained model 𝜃 and an hidden

layer value 𝒉 can easily infer 𝒙

 Can show this by factorizing the terms

 Need to sample as we get probabilities

rather than values

𝑥2

ℎ2 ℎ1

𝑥1

Hidden layer

Visible layer

ℎ𝑘

𝑥𝑛

𝑊

𝒂

𝒃

RBM training (learning the 𝜃)

 Want to have a model that leads to good likelihood of training data

 First express the data likelihood (through marginal probability):

 𝑝 𝒙; 𝜃 =
 exp⁡(−𝐸 𝒙,𝒉;𝜃)𝒉

𝑍

 Want to optimize:

 argmin𝜃 ⁡ − log 𝑝 𝒙(𝑡); 𝜃𝑡 , where 𝑡 is a data sample

 sum across all samples

 minimizing negative log likelihood instead of maximizing the likelihood

 General gradient form for energy models with latent terms:

𝜕 −log 𝑝(𝒙(𝑡);𝜃)

𝜕𝜃
= 𝔼𝒉

𝜕 E(𝒙 𝑡 ,𝒉;𝜃))

𝜕𝜃
 𝒙(𝑡) ⁡⁡⁡− ⁡⁡⁡𝔼𝒉,𝒙

𝜕 E(𝒙,𝒉;𝜃))

𝜕𝜃

Positive phase/data term Negative phase/model term

See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations for more details

𝑍 = exp⁡(−E 𝒙, 𝒉; 𝜃)
𝒉𝒙

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations

RBM training

 Ignoring the biases as they are easier


𝜕 log 𝑝(𝒙(𝑡);𝜃)

𝜕𝑤𝑖𝑗
= 𝔼𝒉

𝜕 E(𝒙 𝑡 ,𝒉;𝜃))

𝜕𝑤𝑖𝑗
 𝒙(𝑡) − 𝔼𝒉,𝒙

𝜕 E(𝒙,𝒉;𝜃))

𝜕𝑤𝑖𝑗

 First term is straightforward to compute

 Second expectation term is straightforward mathematically, but

intractable computationally (too many terms to sum over)

 Want to approximate it instead

 Replace the expectation across 𝒙, 𝒉 with a point estimate at 𝒙

𝜕 E(𝒙, 𝒉; 𝜃))

𝜕𝑤𝑖𝑗
= −ℎ𝑖𝑥𝑗 ⇒ 𝔼𝒉

𝜕 E(𝒙 𝑡 , 𝒉; 𝜃))

𝜕𝑤𝑖𝑗
 𝒙 𝑡 = 𝔼𝒉 −ℎ𝑖𝑥𝑗 𝒙

𝑡

= −ℎ𝑖𝑥𝑗𝑝 ℎ𝑖 𝒙 𝑡 ; 𝜃 = −𝑥𝑗𝑝 ℎ𝑖 = 1 𝒙 𝑡 ; 𝜃

ℎ𝑖∈{0,1}

Contrastive divergence

 Instead of 𝔼𝒉,𝒙
𝜕 E(𝒙,𝒉))

𝜕𝑤𝑖𝑗
, compute 𝔼𝒉

𝜕 E(𝒙 ,𝒉))

𝜕𝑤𝑖𝑗
 𝒙 as an approximation

 To Approximate computation of model term using Contrastive Divergence

 Based on Markov Chain Monte Carlo (Gibbs) sampling

Hidden layer

Visible layer

𝑥2 𝑥1 𝑥𝑛

ℎ2 ℎ1 ℎ𝑘

𝑥2 𝑥1 𝑥𝑛 𝑥2 𝑥1 𝑥𝑛

ℎ2 ℎ1 ℎ𝑘

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002]

𝒙(𝑡) 𝒙1 𝒙𝑘 = 𝒙

𝑝 𝒉 𝒙(𝑡); 𝜃

𝑝 𝒙1 𝒉; 𝜃

𝑝 𝒉 𝒙1; 𝜃

Update rule for RBMs

 Now have the update rule for parameters


𝜕 log 𝑝(𝒙(𝑡);𝜃)

𝜕𝑤𝑖𝑗
= 𝔼𝒉

𝜕 E(𝒙(𝑡),𝒉))

𝜕𝑤𝑖𝑗
 𝒙(𝑡) − 𝔼𝒉,𝒙

𝜕 E(𝒙,𝒉))

𝜕𝑤𝑖𝑗
≅ −𝑥𝑗𝑝 ℎ𝑖 = 1 𝒙 𝑡 + 𝑥 𝑗𝑝 ℎ𝑖 = 1 𝒙

 Still a gradient descent approach (although approximate)

 Sampling negative phase rather than using the actual gradient

 Similar update rules apply for the bias terms

 Can use a stochastic update

 Using mini-batches rather than all data (current equation

written for one sample)

 Extension using better sampling - Persistent Contrastive Divergence

 [T. Tieleman, Training Restricted Boltzmann Machines using Approximations

to the Likelihood Gradient, 2008]

RBM extensions

 So far have only modeled binary input and hidden states

 Gaussian-Bernoulli RBM allows for real value modeling
 Changes the inference and training only very slightly

 Visible units are modeled as real values (under a Gaussian
distribution), but hidden units are still binary

 [Hinton and Salakhutdinov, Reducing the Dimensionality of Data with Neural
Networks, 2006]

 Replicated Softmax to model one-hot encoding style vectors
 [Salakhutdinov and Hinton, Replicated Softmax: an Undirected Topic Model,

2009]

 Now not as relevant due to word2vec

 Only requires a small change in some of the equations

 Can also introduce sparsity in hidden layers (sometimes
helps)

 [Lee et al., Sparse deep belief net model for visual area V2, 2007]

Examples of what the model learns

MNIST data Learned W terms for each hidden unit

Deep Restricted Boltzmann Machines (DBMs)

 Can stack RBMs together to lead do

deep versions of them

 The visible layer can be binary, Gaussian

or Bernoulli

 The hidden layers are still binary

 Training fully end to end is very difficult

1st Hidden layer

Visible layer

2nd Hidden layer

3rd Hidden layer

RBM

RBM

RBM

Deep Restricted Boltzmann Machines (DBMs)

 Can stack RBMs together to lead do

deep versions of them

 Training fully end to end is very difficult

 Greedy layer-wise training

 Combine the RBMs layer by layer

1st Hidden layer

Visible layer

2nd Hidden layer

3rd Hidden layer

Deep Belief Networks (DBN)

 To make it easier used Deep Belief

Networks

 Actually came before Deep RBMs

 Simplifies model training

 Turn the undirected model to

directed one, making the interaction

simpler

1st Hidden layer

Visible layer

2nd Hidden layer

3rd Hidden layer

BN

BN

RBM

Deep Belief Networks and Deep Boltzmann Machines

 Deep Boltzmann Machine (DBM)

 All layers are undirected

 Relationships between layers

modeled as RBMs

 Better at modeling dependencies

of lower to higher levels

 More difficult to train

 Deep Belief Network (DBN)

 Mixing directed and undirected

interactions

 Top two layers are always an

RBM

 Others are a Bayesian Network

1st Hidden layer

Visible layer

2nd Hidden layer

RBM

BN

1st Hidden layer

Visible layer

2nd Hidden layer

RBM

RBM

Deep Belief Networks and Deep Boltzmann Machines

 Greedy layer-wise training

 Combine the RBMs layer by layer

 Difficult to train and have to use

approximations and sampling

 Variational learning methods

 EM like

 Optimize a lower bound rather

than directly the actual log

likelihood

 For more details see [Salakhutdinov and

Hinton, Deep Boltzmann Machines, 2009]

1st Hidden layer

Visible layer

2nd Hidden layer

RBM

BN

1st Hidden layer

Visible layer

2nd Hidden layer

RBM

RBM

What can you do with them

 On their own RBMs are very interesting but not

necessarily useful

 Stacking them can lead to more interesting models
 Can use the representation directly for some task

 Use them to pre-train or initialize discriminative models

 Initialize Deep Neural Networks from them

 We can convert the DBN weights to those of DNN

 Major early success of deep learning for Automatic

Speech Recognition

Audio representation for speech recognition

[Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition:

The Shared Views of Four Research Groups, 2012]

Audio representation for speech recognition

 Feed-forward DNN for features (instead of HMM

emissions)

 Now the field has moved slightly away from pre-

training using DBN

 More labeled data available

 Better training approaches for DNN available

(dropout etc.)

 Still lots of tasks where huge amounts of labeled

data not available though

Audio representation for speech recognition

 Used MFCC but not anymore going straight from spectrogram
now
 [Deng, et al., Binary Coding of Speech Spectrograms Using a

Deep Auto-encoder, 2010]

 Sometimes even using CNN on spectrograms
 [Abdel-Hamid et al., Convolutional Neural Networks for Speech

Recognition, 2014]

 RNN and LSTM now becoming popular for language models
 Further improvement up to up to 20%

 [Mikolov et al., Recurrent neural network based language model]

 Fully end-to-end training (a different approach)
 [Graves and Jaitly, Towards End-to-End Speech Recognition with

Recurrent Neural Networks, 2014]

 Not as accurate yet but potentially will overtake the current
designs

33

Autoencoders

Autoencoders – an alternative to RBM

 What does auto mean?

 Greek for self – self encoding

 Feed forward network

intended to reproduce the

input

 Two parts encoder/decoder

 𝑥′ = 𝑓(𝑔 𝑥) – score function

 𝑔 - encoder

 𝑓 - decoder

𝑥2 𝑥1 𝑥𝑛

ℎ2 ℎ1 ℎ𝑘

𝑥′2 𝑥′1 𝑥′𝑛

𝑓

𝑔

Encoder

Decoder

Autoencoders

 Mostly follows Neural Network structure

 Typically a matrix multiplication followed

by a nonlinearity (e.g sigmoid)

 Activation will depend on type of 𝒙

 Sigmoid for binary

 Linear for real valued

 Often we use tied weights to force the

sharing of weights in encoder/decoder

 𝑊∗ = 𝑊𝑇

 word2vec is actually a bit similar to an

autoencoder (except for the auto part)

𝑓 = 𝜎(𝑊𝒙)

𝑔 = 𝜎(𝑊∗𝒉)

𝑥2 𝑥1 𝑥𝑛

ℎ2 ℎ1 ℎ𝑘

𝑥′2 𝑥′1 𝑥′𝑛

Loss function

 Any differentiable similarity function

 Cross-entropy for binary 𝒙

 𝐿 = − (𝑥𝑘 log 𝑥′𝑘 + (1 − 𝑥𝑘) log 1 − 𝑥′𝑘)𝑘

 Euclidean for real valued 𝒙

 𝐿 =
1

2
 (𝑥𝑘 − 𝑥′

𝑘)2
𝑘

 Cosine similarity etc.

 Depends on the data being modeled

𝑥2 𝑥1 𝑥𝑛

ℎ2 ℎ1 ℎ𝑘

𝑥′2 𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss

Learning

 To learn the model parameters (𝑊∗, 𝑊) use

back-propagation

 In case of Euclidean (with linear act) and

Cross-entropy (with sigmoid act) we just

have (𝑥′ − 𝑥) error to propagate

 If we’re using tied weights gradients need

to be summed (like back propagation

through time in RNN)

 Can use batch/stochastic gradient descent

as before
𝑥2 𝑥1 𝑥𝑛

ℎ2 ℎ1 ℎ𝑘

𝑥′2 𝑥′1 𝑥′𝑛

𝑓

𝑔

Error

Hidden layer dimensionality

 Smaller that input - Undercomplete
 Will compress the data, reconstruction of data far from

training distribution will be difficult

 Linear-linear encoder-decoder with Euclidean loss is
actually equivalent to PCA (under certain data
normalization)

 Larger than input - Overcomplete
 No compression needed

 Can trivially learn to just copy, so no structure is
extracted

 Does not encourage to lean meaningful features, a
problem

Denoising autoencoder

 Simple idea

 Add noise to input 𝒙 but

learn to reconstruct original

 Leads to a more robust

representation and prevents

copying

 Learns what the relationship

is to represent a certain 𝒙

 Different noise added during

each epoch

𝑥 1

ℎ2 ℎ1 ℎ𝑘

𝑥′2 𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss

𝑥2 𝑥1 𝑥𝑛

Noise

𝑥 2 𝑥 𝑛 𝑥2 𝑥1 𝑥𝑛

ℎ2 ℎ1 ℎ𝑘

𝑥′2 𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss

Contractive autoencoder

 A slightly different way to make the autoencoder

learn a useful representation

 Intuition - changing the loss function instead of

adding noise

 Making the weight derivative with respect to input

small

 More difficult to implement and leads to similar

results to Denoising autoencoders

 [Rifai et al., Contractive Auto-Encoders: Explicit Invariance During

Feature Extraction, 2011]

Autoencoder vs denoising autoencoder

 MNIST data (as before)

Qualitatively denoising autoencoder leads to more meaningful features

Autoencoder Denoising autoencoder (25% noise) Denoising autoencoder (50% noise)

Stacked autoencoders

 Can stack autoencoders as

well

 Each encoding unit has a

corresponding decoder

 As before, inference is

feedforward, but now with

more hidden layers

𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder

Stacked autoencoders

 Greedy layer-wise training

 Start with training first layer

 Learn to encode 𝒙⁡to 𝒉𝟏 and to

decode 𝒙⁡from 𝒉𝟏

 Use backpropagation

Dec

𝒙

𝒉𝟏

𝒙′

Enc

Stacked autoencoders

 Greedy layer-wise training

 Start with training first layer

 Learn to encode 𝒙⁡to 𝒉𝟏 and to

decode 𝒙⁡from 𝒉𝟏

 Use backpropagation

 Map from all 𝒙’s to 𝒉𝟏’s

 Discard decoder for now

 Train the second layer

 Learn to encode 𝒉𝟏to 𝒉𝟐 and to

decode 𝒉𝟐⁡from 𝒉𝟏

 Repeat for as many layers 𝒉𝟏

Fixed

𝒙

𝒉𝟐

Enc

Dec

𝒉𝟏

𝒉′𝟏

Fixed

Stacked autoencoders

 Greedy layer-wise training

 Start with training first layer

 Learn to encode 𝒙⁡to 𝒉𝟏 and to

decode 𝒙⁡from 𝒉𝟏

 Use backpropagation

 Map from all 𝒙’s to 𝒉𝟏’s

 Discard decoder for now

 Train the second layer

 Learn to encode 𝒉𝟏to 𝒉𝟐 and to

decode 𝒉𝟐⁡from 𝒉𝟏

 Repeat for as many layers

 Reconstruct using previously learned

decoders mappings

 Fine-tune the full network end-to-end 𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder

Stacked denoising autoencoders

 Can extend this to a

denoising model

 Add noise when training

each of the layers

 Often with increasing

amount of noise per layer

 0.1 for first, 0.2 for second,

0.3 for third

𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder

Deep representations

 What can we do with them?

 Compression

 Can work better than PCA

 [Hinton and Salatkhudinov, Reducing

the dimensionality of data with neural

networks, 2006]

Deep representations

 What can we do with them?

 Compression

 Can work better than PCA
 [Hinton and Salatkhudinov, Reducing the

dimensionality of data with neural networks,

2006]

 Discarding the decoder and using the

middle layer as a representation

 Finetuning the autoencoder for a task

Classifier

𝒙

𝒉𝟏

𝒉𝟐

Encoder

𝒚

Fine-tuning an autoencoder

 Converting in to a DNN

 Start with a trained stacked denoising

autoencoder

𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder

Fine-tuning an autoencoder

 Converting in to a DNN

 Start with a trained stacked denoising

autoencoder

 Discard the decoder

𝒙

𝒉𝟏

𝒉𝟐

Fine-tuning an autoencoder

 Converting in to a DNN

 Start with a trained stacked denoising

autoencoder

 Discard the decoder

 Put a differentiable

classifier/regressor on top

𝒙

𝒉𝟏

𝒉𝟐

𝒚

Differentiable

classifier or

regressor

Fine-tuning an autoencoder

 Converting in to a DNN

 Start with a trained stacked denoising

autoencoder

 Discard the decoder

 Put a differentiable

classifier/regressor on top

 Train the whole network end-to-end

 Backpropagation

 [Erhan et al., Why Does Unsupervised Pre-

training Help Deep Learning?, 2010]

𝒙

𝒉𝟏

𝒉𝟐

𝒚

Differentiable

classifier or

regressor

Comparison

 Pretraining can be done on Deep Belief Networks as well

 [Hinton et al., A fast learning algorithm for deep belief nets]

Figure from [Erhan et al., Why

Does Unsupervised Pre-

training Help Deep Learning?,

2010]

54

Deep unsupervised

models

Comparison

 We have DBNs, DBMs, and stacked autoencoders

 Can actually combine them in interesting ways

 Use RBMs or DBNs to pretrain autoencoders

 Can use either DBNs or autoencoders to initialize DNNs

RBM

BN

RBM

RBM
Enc

Dec

Comparison

 We have DBNs, DBMs, and stacked autoencoders

 DBNs and DBMs trickier to train but potentially more powerful

[Vincent et al., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network

with a Local Denoising Criterion, 2010]

57

Multimodal

representations

Multimodal representations

 Why do we need multimodal representations?

 Can just have unimodal ones and just fuse them

 What if relationship is complex?

 Doesn’t exploit joint information, especially at

lower/intermediate levels

Multimodal representations

 What do we want from multi-modal

representation

 Similarity in that space implies

similarity in corresponding concepts

 Useful for various discriminative

tasks – retrieval, mapping, fusion

etc.

 Possible to obtain in absence of one

or more modalities

 Fill in missing modalities given

others (map between modalities)

Modality 1 Modality 2 Modality 3

Fancy
representation

Modality 1 Modality 2 Modality 3

Fancy
representation

Prediction

Modality 1 Modality 2
Fancy

representation

Multimodal representation types

Modality 1 Modality 2

Representation

Joint representations: A

Coordinated representations: B

Modality 1 Modality 2

Repres 2 Repres. 1

 Simplest version: modality

concatenation (early fusion)

 Can be learned supervised

or unsupervised

 Similarity-based methods

(e.g., cosine distance)

 Structure constraints (e.g.,

orthogonality, sparseness)

 Multimodal factor analysis

 Talk about it today but also

in two weeks (CCA)

61

Joint

representations

Shallow multimodal representations

 Want deep multimodal representations

 Shallow representations do not capture complex relationships

 Often shared layer only maps to the shared section directly

Shallow RBM Shallow Autoencoder

Deep Multimodal autoencoders

 A deep representation

learning approach

 A bimodal auto-encoder

 Used for Audio-visual speech

recognition

 [Ngiam et al., Multimodal Deep Learning, 2011]

Deep Multimodal autoencoders - training

 Individual modalities can be

pre-trained

 Denoising Autoencoders

 To train the model to

reconstruct the other modality

 Use both

 Remove audio

Deep Multimodal autoencoders - training

 Individual modalities can be

pretrained

 RBMs

 Denoising Autoencoders

 To train the model to

reconstruct the other modality

 Use both

 Remove audio

 Remove video

Deep Multimodal autoencoders

 Can now discard the decoder and

use it for the AVSR task

 Interesting experiment

 “Hearing to see”

Deep Multimodal Boltzmann machines

 Generative model

 Individual modalities trained like a

DBN

 Multimodal representation trained

using Variational approaches

 Used for image tagging and cross-

media retrieval

 Reconstruction of one modality from

another is a bit more “natural” than in

autoencoder representation

 Can actually sample text and images

 [Srivastava and Salakhutdinov, Multimodal Learning with

Deep Boltzmann Machines, 2012, 2014]

Deep Multimodal Boltzmann machines

 Pre-training on unlabeled

data helps

 Can use generative models

 Code is available
 http://www.cs.toronto.edu/~nitish/multimodal/

http://www.cs.toronto.edu/~nitish/multimodal/

Comparing deep multimodal representations

 Difference between them and the RBMs and the

autoencoders

 Overall very similar behavior

70

Coordinated

representations

Coordinated multimodal embeddings

 Instead of projecting to a joint space enforce the similarity between

unimodal embeddings

Modality 1 Modality 2

Repres 2 Repres. 1

Coordinated multimodal embeddings

 Instead of projecting to a joint space enforce the similarity between

unimodal embeddings (topic of our reading group on Thursday)

 Often referred to as semantic space embeddings

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural

Language Models, 2014]

[Frome et al., DeViSE: A Deep Visual-Semantic Embedding Model, 2013]

Coordinated multimodal embeddings

 Deep structured semantic models

 [Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013]

Structured coordinated embeddings

 Instead of or in addition to similarity add alternative

structure

[Vendrov et al., Order-Embeddings of

Images and Language, 2016]

[Jiang and Li, Deep Cross-Modal Hashing]

Recap unsupervised representation

 RBM

 Project modalities to the same space

 Use when all the modalities are present during test time

 Suitable for multimodal fusion

 Autoencoder

 Project modalities to their own coordinated space

 Use when only one of the modalities is present during test-

time

 Suitable for multimodal translation

 Good for retrieval

Recap multimodal representations

 Joint representations

 Project modalities to the same space

 Use when all the modalities are present during test time

 Suitable for multimodal fusion

 Coordinated representations

 Project modalities to their own coordinated space

 Use when only one of the modalities is present during test-

time

 Suitable for multimodal translation

 Good for retrieval

