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Proposal Presentation (2/21/2017 and 2/23/2017)

5 minutes (about 5-10 slides)
= All team members should be involved in the presentation

Wil receive feedback from instructors and other students

= 1-2 minutes between presentations reserved for written
feedback

= Main presentation points (similar to pre-proposal)
= (General research problem and motivation
= Dataset and input modalities
= Multimodal challenges and prior work
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Project Proposal Report — Due on 3/5/17

= Part 1 (updated version of your pre-proposal)

= Research problem:
= Describe and motivate the research problem
= Define in generic terms the main computational
challenges
= Dataset and Input Modalities:

= Describe the dataset(s) you are planning to use for this
project.

= Describe the input modalities and annotations available in
this dataset.
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Project Proposal Report — Due on 3/5/17

= Part 2

= Related Work:

* |nclude 12-15 paper citations which give an overview of
the prior work

= Present in more details the 3-4 research papers most
related to your work
» Research Challenges and Hypotheses:

= Describe your specific challenges and/or research
hypotheses

= Highlight the novel aspect of your proposed research
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Project Proposal Report — Due on 3/5/17

= Part 3 — (teams of 2 members can pick either one)

= Language Modality Exploration:
= Explore neural language models on your dataset (using Keras/Theano)

= Train at least two different language models (e.g., using SimpleRNN,
GRU or LSTM) on your dataset and compare their perplexity.

» |nclude qualitative examples of successes and failure cases.

= Visual Modality Exploration:

= Explore pre-trained Convolutional Neural Networks (CNNs) on your
dataset

= Load a pre-existing CNN model trained for object recognition (e.g.,
AlexNet or VGG-Net) and process your test images.

= Extract features at different network layers in the network and visualize
them (using t-sne visualization) with overlaid class labels with different
colors.
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Objectives of today’s class

= Audio representations

= Hand-crafted (MFCC) and learned (Deep Belief Nets, Deep
Neural Networks)

= Unsupervised representation learning
= Restricted Boltzmann Machines
= Autoencoders
= Deep Belief Nets, Stacked autoencoders

= Multi-modal representations
= Coordinated vs. joint representations
= Multimodal Deep Boltzmann Machines
= Deep Multimodal autoencoders
= Visual semantic embeddings
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Audio
representations
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Audio representation

= Audio frames in a window (this is
our input)
= (Can extract a spectrogram
(lowest level)

« Sampling rates: 8~96kHz
_ * Bit depth: 8, 16 or 24 bits
= Low level features like MFCC « Time window size: 20ms

= Higher-level features also exist + Offset: 10ms
(specifically for human voice)
= Prosody
= Voice quality
= This can be used for speech
recognition, affect and sentiment
analysis, music analysis etc.
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Audio representation for speech recognition

= Speech recognition systems historically much more complex than
vision systems

= Require a lot of moving parts
= Phoneme detectors
= Language models
= Vocabularies

= Large breakthrough of using representation learning instead of hand-
crafted features

= [Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups, 2012]

= Most work exploited large amounts of unsupervised data for model
pre-training

= The field of ASR was largely static for some years up to then

= A huge boost in performance (up to 30% on some datasets)
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Unsupervised
representation learning
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Unsupervised learning

= We have accessto X = {x, x5, ..., X, } and not
Y ={y1,Y2) ) ¥n}
= Why would we want to tackle such a task
= 1. Extracting interesting information from data
= Clustering

= Discovering interesting trends
= Data compression

= 2. Learn better representations
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Unsupervised representation learning

» Force our representations to better model input
distribution
= Not just extracting features for classification

= Asking the model to be good at representing the data
and not overfitting to a particular task

= Potentially allowing for better generalizability
= Use for initialization of supervised task,

especially when we have a lot of unlabeled data
and much less labeled examples
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Restricted Boltzmann
Machines
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Restricted Boltzmann Machine (RBM)

= Undirected Graphical Model
= A generative rather than discriminative model
= Connections from every hidden unit to every visible one

= No connections across units (hence Restricted), makes it
easier to train and do inference on

@ @ °* e 0 @ Hidden layer

X

@ @ ® o o @ Visible layer
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Restricted Boltzmann Machine
= Model the joint probability of hidden state and observation

p(x, h; 9) _ exp(_Eéx' h; 6)) «— Joint probability, positive value
7 = Zx Zh exp(—E(x' h; 6)) +— Normalization function so that the

probabilities sum to one

E=—xWh —b"x —a’h
E=—2i2jwixihj — Xibix; — X ah
| ] | | 1 J

1 | |
Interaction term Bias terms a

Hidden layer
(binary)

Model parameters to learn 8 = {W, b, a}

CNCRER
Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1}), } ‘ - w
& @

Visible layer
p (binary)
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RBM inference (have a trained 0)

Hidden layer a

For inference
e @ ¢
. p(h] = 1|x; 0) — G(Zixiwij + Clj), @ @ @

= plx; =1k 0) = U(Zj hjw;; + bi) }{ W

derived from the joint probability
definition @ @ ® 00 @
= Conditional inference is easy and of Visible layer
sigmoidal form

=  Given a trained model 8 and an observed
value x can easily infer h

= Given a trained model § and an hidden
layer value h can easily infer x

= Can show this by factorizing the terms

= Need to sample as we get probabilities
rather than values
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RBM training (learning the 0)

Want to have a model that leads to good likelihood of training data
First express the data likelihood (through marginal probability):

2 —E(x,h;0) = _ :
= p(x;0) = hexp(z x,h;0)) Z zxzhexp( E(x, h; 9))

Want to optimize:
= argming [Zt —log (p(x(t); 6))] where t is a data sample

= sum across all samples
= minimizing negative log likelihood instead of maximizing the likelihood

General gradient form for energy models with latent terms:

0 -logp(xVi6) _ ’aE<x<f>,h;0>> |x(t)] S AL
B T

d26 d26
|
. 4 Y
Positive phase/data term Negative phase/model term

See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cqi/Public/DBNEquations for more details
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http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations

RBM training

= |gnoring the biases as they are easier
dlogp(x(;6) _

an] T IEh,x [

= First term is straightforward to compute

d E(x,h;0))
aWij

0 E(x, h; 0)) 9 E(xW, h; 9))
— _hox >E O = B, [=hix: | x®
ow;; hix; = h[ dw;; |x n|—hix; |x©]
- Z —hixp(hy|x®; 0) =
h;e{0,1}

= Second expectation term is straightforward mathematically, but
Intractable computationally (too many terms to sum over)

= \Want to approximate it instead
= Replace the expectation across x, h with a point estimate at X
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Contrastive divergence

d E(xh)) d E(X,h)) k:

owi;j

* |nstead of E, ’ , compute Ej, ’ ] as an approximation

= To Approximate computatlon of model term using Contrastive Divergence
= Based on Markov Chain Monte Carlo (Gibbs) sampling

Hidden layer

oo el BRI IR0

p(h|x®; 0 p(hlx1 Sl ~
p(x; 0) S,
CICEERC© @®°°°® CICEERC©

k

x(t) xf=x

Visible layer

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002]
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Update rule for RBMs

= Now have the update rule for parameters

(®). ®
. 2logpa®i6) _ laE(x QB |y (t)] Ep [“(’"‘” = —xp(h; = 1|x®) + Zp(h; = 1|%)

= Still a gradient descent approach (although approximate)
=  Sampling negative phase rather than using the actual gradient
= Similar update rules apply for the bias terms

= Can use a stochastic update
= Using mini-batches rather than all data (current equation
written for one sample)

= Extension using better sampling - Persistent Contrastive Divergence

= [T. Tieleman, Training Restricted Boltzmann Machines using Approximations
to the Likelihood Gradient, 2008]
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RBM extensions

So far have only modeled binary input and hidden states

Gaussian-Bernoulli RBM allows for real value modeling
= Changes the inference and training only very slightly

= Visible units are modeled as real values (under a Gaussian
distribution), but hidden units are still binary

* Replicated Softmax to model one-hot encoding style vectors

= Now not as relevant due to word2vec
= Only requires a small change in some of the equations

= Can also introduce sparsity in hidden layers (sometimes
helps)
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Examples of what the model learns

3181619/6[4]x(31914/6]3)3/8]4| ¢ ISEAESRSENN SIS PRENE SIS
DNCEFEACIREETIAPACIEIRY 0 i 500 S R
113]0/8]0]117]6/8]610/3] 713 ]| IWELAINICENSSINI SIS S
8]414] 19 1]1]0]Ce<T0] )| | IR SR B
1/2]7/3/\[4]0.£101¢]¢1716/3]5]4 WOTEEREIIRIEINICI IS A0H
410101132137 1H4|516/6]) |7 EEIREINIEDICSE OIS ITID
217161976/9]1]6]2/%]3] 6 4 9| WESAIERIENDISE o o
§161817/81969171761019611 0 QARIEIEIS BISIIS SIS

MNIST data Learned W terms for each hidden unit
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Deep Restricted Boltzmann Machines (DBMs)

= Can stack RBMs together to lead do
deep versions of them

= The visible layer can be binary, Gaussian
or Bernoulli

= The hidden layers are still binary

= Training fully end to end is very difficult O O O ¢ o0

RBM =

; 1
F[O0O0: - -

RBM =

O
O

v 1

- OO?; o °O 15t Hidden layer
10000
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Deep Restricted Boltzmann Machines (DBMs)

= Can stack RBMs together to lead do
deep versions of them

= Training fully end to end is very difficult
= Greedy layer-wise training

= Combine the RBMs layer by layer OO0 ?{ e o ()
QO ?{ O,
OO ?; o o ()| 1 Hidden layer
QOO+ -0

3'd Hidden layer

2"d Hidden layer

Visible layer
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Deep Belief Networks (DBN)

= To make it easier used Deep Belief
Networks
=  Actually came before Deep RBMs
=  Simplifies model training

= Turn the undirected model to
directed one, making the interaction
simpler

Language Technologies Institute

RBM

BN =

BN

11

"

QOO

] 1
QOO

000-

!
QOO0

34 Hidden layer

2"d Hidden layer

1st Hidden layer

Visible layer




Deep Belief Networks and Deep Boltzmann Machines

= Deep Boltzmann Machine (DBM) - O O O e o o O 2nd Hidden layer

=  All layers are undirected RBM
= Relationships between layers 7

deled as RBM :
modeled as REVS _ - OOOO o OO 15t Hidden layer
=  Better at modeling dependencies

of lower to higher levels
RBM—

=  More difficult to train o
O O O * 00 O Visible layer

= Deep Belief Network (DBN)

=  Mixing directed and undirected - O O o o o O d L
interactions O 2" Hidden layer

=  Top two layers are always an RBM =
RBM

=  Others are a Bayesian Network = O O O e o o O 15t Hidden layer
BN ‘
O O O * e O Visible layer
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Deep Belief Networks and Deep Boltzmann Machines

= Greedy layer-wise training - O O O o o o O 27 Hidden layer
= Combine the RBMs layer by layer RBM =
= Difficult to train and have to use

; 1
approximations and sampling - O O O e o @ O 1st Hidden layer

=  Variational learning methods
. EM like RBM _

=  Optimize a lower bound rather O O O e o o O Visible layer

than directly the actual log -
likelihood

— .
=  For more details see O O O > e e O 2% Hidden layer

RBM = 1 T
O O Ov° ° 0 O 1st Hidden layer
v
5 O O O ¢ o0 O Visible layer
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What can you do with them

= On their own RBMs are very interesting but not
necessarily useful

= Stacking them can lead to more interesting models
= Can use the representation directly for some task

= Use them to pre-train or initialize discriminative models
= |nitialize Deep Neural Networks from them
= \We can convert the DBN welghts to those of DNN

= Major early success of deep learning for Automatic
Speech Recognition

Language Technologies Institute



Audio representation for speech recognition

DBN-DNN
softmax
RBM DBN TW4=0
RBM I & 1 s TW3T
copy
GRBM ! w, L Tw
copy

T w Iz L

[Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups, 2012]

Language Technologies Institute



Audio representation for speech recognition

» Feed-forward DNN for features (instead of HMM
emissions)
= Now the field has moved slightly away from pre-
training using DBN
= More labeled data available

= Better training approaches for DNN available
(dropout etc.)

= Still lots of tasks where huge amounts of labeled
data not available though

Language Technologies Institute



Audio representation for speech recognition

* Used MFCC but not anymore going straight from spectrogram
now

= Sometimes even using CNN on spectrograms

= RNN and LSTM now becoming popular for language models
= Further improvement up to up to 20%

* Fully end-to-end training (a different approach)

= Not as accurate yet but potentially will overtake the current
designs
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Autoencoders
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Autoencoders — an alternative to RBM

= What does auto mean?
= Greek for self — self encoding -

» Feed forward network @@ v e °@

iIntended to reproduce the Decoder— I
iInput

g
= Two parts encoder/decoder @@° ’ °@

oy = f(g(x)) — score function Encoder = 1

f
. 7 decoder OICRERC

|
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Autoencoders

Mostly follows Neural Network structure
= Typically a matrix multiplication followed

by a nonlinearity (e.g sigmoid) @ @ ° o 0@

= Activation will depend on type of x

= Sigmoid for binary g=0o(W"h) I
» Linear for real valued 7
= Often we use tied weights to force the @ @O ¢t @
sharing of weights in encoder/decoder £ = o(Wx) I
= Wr=wrT .
= word2vec is actually a bit similar to an @ @ ® e °@

autoencoder (except for the auto part)
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Loss function

= Any differentiable similarity function
= Cross-entropy for binary x

= L=— Y0 log(xs) + (1 —x;) log(1 — x'i))

= Euclidean for real valued x
= L= %Zk(xk —x'1)?
= Cosine similarity etc.
= Depends on the data being modeled

@& &)

\
\
\
\
\

g
i \
@@o ® o@ 1 Loss
V4

f //

@ -G}
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Learning

= To learn the model parameters (W™, W) use

back-propagation Error
* |n case of Euclidean (with linear act) and ]
Cross-entropy (with sigmoid act) we just @ @ > e °@
have (x' — x) error to propagate I
= |f we're using tied weights gradients need J |
to be summed (like back propagation o o o
through time in RNN) @ @ @
= Can use batch/stochastic gradient descent f I

as before @@ 'O ) O@
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Hidden layer dimensionality

= Smaller that input - Undercomplete

=  Will compress the data, reconstruction of data far from
training distribution will be difficult

= Linear-linear encoder-decoder with Euclidean loss is
actually equivalent to PCA (under certain data
normalization)

= Larger than input - Overcomplete
= No compression needed

= Can trivially learn to just copy, so no structure is
extracted

= Does not encourage to lean meaningful features, a
problem
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Denoising autoencoder

= Simple idea
= Add noise to input x but
learn to reconstruct original

= | eads to a more robust
representation and prevents

copying
» Learns what the relationship
IS to represent a certain x

» Different noise added during
each epoch
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Contractive autoencoder
= A slightly different way to make the autoencoder
learn a useful representation

= [ntuition - changing the loss function instead of
adding noise

= Making the weight derivative with respect to input
small

= More difficult to implement and leads to similar
results to Denoising autoencoders
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Autoencoder vs denoising autoencoder

= MNIST data (as before)

é& Neuron A (0%, 10%, 20%, 50% corruption I--II
l-- B NEERNERECREENT EERENEnkElBEEE

Autoencoder Denoising autoencoder (25% noise) Denoising autoencoder (50% noise)

.

L ID

Qualitatively denoising autoencoder leads to more meaningful features




Stacked autoencoders

= (Can stack autoencoders as
well

= Each encoding unit has a
corresponding decoder

= As before, inference is
feedforward, but now with
more hidden layers

Decoder ™

Encoder ==
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer

= Learnto encode xto h; and to
decode x from h4

= Use backpropagation

Dec

Enc
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer

= Learnto encode xto h; and to
decode x from h4

= Use backpropagation
= Map from all x’s to hy's

= Discard decoder for now
= Train the second layer

= Learnto encode h to h, and to
decode h, from h4 Enc

= Repeat for as many layers

Dec
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer —

= Learnto encode xto h; and to X
decode x from h4
= Use backpropagation Decoder h,
= Map from all x’s to hy’s 1

= Discard decoder for now

= Train the second layer —

= Learnto encode h to h, and to
decode h, from h4

= Repeat for as many layers

» Reconstruct using previously learned
decoders mappings

=  Fine-tune the full network end-to-end

Encoder

X
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Stacked denoising autoencoders

= Can extend this to a
denoising model -

= Add noise when training
each of the layers Decodelr

= Often with increasing
amount of noise per layer

= (0.1 for first, 0.2 for second,
0.3 for third

Encoder
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Deep representations

e , Decoder

= \What can we do with them?

= Compression
= Can work better than PCA

2000

i

...............................................................................

I

Pretraining Unrolling Fine-tuning
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Deep representations

What can we do with them?

Compression
= Can work better than PCA

Discarding the decoder and using the ~ Classifier y

middle layer as a representation

* Finetuning the autoencoder for a task - [ Al ]hz
Encoder = [ *ee J h
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Fine-tuning an autoencoder

= Converting in to a DNN

= Start with a trained stacked denoising
autoencoder

Decoder ==

Encoder ==
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Fine-tuning an autoencoder

= Converting in to a DNN

= Start with a trained stacked denoising
autoencoder

= Discard the decoder
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Fine-tuning an autoencoder

= Converting in to a DNN
= Start with a trained stacked denoising

autoencoder
= Discard the decoder o Of
= Put a differentiable regressor y
classifier/regressor on top }
000 j hz
000 j h1

C 0-30 0 «x

Language Technologies Institute




Fine-tuning an autoencoder

= Converting in to a DNN
= Start with a trained stacked denoising

autoencoder
= Discard the decoder esifiar of
= Put a differentiable regressor y
classifier/regressor on top }
= Train the whole network end-to-end . hz

= Backpropagation

vy
C 0-30 0 «x
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Comparison

= Pretraining can be done on Deep Belief Networks as well

= =1-layer RBM —=+2-layer DBN - =3-layer DBN
—— 1-layer denoising AE ——2-layer SDAE ——3-layer SDAE
7 ini 7 2 lo pre-traini 7 y
—=—1 layers w/o pre-training —6—2 layers wic pre-lraining —o—3 layers wfo pre-training
BF Bl B
5r- 5 5
- S S
5 o o
= A -
by D g4} D 4yl
n 1% D
L Q Q
- — —
3+ 3 3 I
Figure from
2r 2r 2r

gl ] B H I I R | B A R
10’ 10° 10° 10’ 10° 10° 10 10° 10°
Number of hidden units Number of hidden units Number of hidden units
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Deep unsupervised
models
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Comparison

= \We have DBNs, DBMs, and stacked autoencoders

= Can actually combine them in interesting ways
= Use RBMs or DBNs to pretrain autoencoders

= Can use either DBNs or autoencoders to initialize DNNs

RBM-—OO?; O RBM‘—OO?; =0 B
OO0 -0 .QQ?;“@ -

BN - R RBM - - ] -
1OQOQQ: - -0 1(O]JO]JOIXXI®
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Comparison

= \We have DBNs, DBMs, and stacked autoencoders

DBNs and DBMs trickier to train but potentially more powerful

Data Set SVM,, s DBN-1 SAE-3 DBN-3 SDAE-3 (V)
MNIST 1.40+023 | 1.21+0.21 1.40+023 | 1.24+022 | 1.28+0.22(25%)
basic 3.03+0.15 | 3.94+0.17 | 3.46+0.16 | 3.11+0.15 | 2.84+0.15 (10%)
rot 11.11+0.28 | 14.69+0.31 | 10.30+0.27 | 10.30+0.27 | 9.53+0.26 (25%)
bg-rand 14.58+031 | 9.80+0.26 | 11.28+0.28 | 6.73+0.22 | 10.30+0.27 (40%)
bg-img 22.61+037 | 16.15+0.32 | 23.00+0.37 | 16.31+0.32 | 16.68+0.33 (25%)
bg-img-rot | 55.18+0.44 | 52.21+0.44 | 51.93+0.44 | 47.39+0.44 | 43.76+0.43 (25%)
rect 215+0.13 | 4.71+019 | 2.41+0.13 | 2.60+0.14 | 1.99+0.12 (10%)
rect-img 24.04+037 | 23.69+0.37 | 24.05+0.37 | 22.50+0.37 | 21.59+0.36 (25%)
convex 19.13+0.34 | 19.92+035 | 18.41+0.34 | 18.63+0.34 | 19.06+0.34 (10%)
tzanetakis | 14.41+2.18 | 18.07+1.31 | 16.15+1.95 | 18.38+1.64 | 16.02+1.04(0.05)

[Vincent et al., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network

with a Local Denoising Criterion, 2010]
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Multimodal
representations
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Multimodal representations

= Why do we need multimodal representations?

= Can just have unimodal ones and just fuse them
= What if relationship is complex?

= Doesn’t exploit joint information, especially at
lower/intermediate levels
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Multimodal representations

= \What do we want from multi-modal
representation Predicton

= Similarity in that space implies
similarity in corresponding concepts

= Useful for various discriminative Fancy

representation

tasks — retrieval, mapping, fusion
etc.

= Possible to obtain in absence of one
or more modalities

= Fill in missing modalities given
others (map between modalities)

Fancy

Modality 1 representation

Modality 2
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Multimodal representation types

Joint representations: : . :
@ g » Simplest version: modality
concatenation (early fusion)
Representation _
: ; » Can be learned supervised
or unsupervised
Modality 1 Modality 2 » Multimodal factor analysis
Coordinated representations:
» Similarity-based methods

Repres.1 <= Repres 2 (e.g., cosine distance)

] I » Structure constraints (e.g.,
orthogonality, sparseness)
Modality 1 Modality 2 > Talk about it today but also

In two weeks (CCA)
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Joint
representations
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Shallow multimodal representations

= \Want deep multimodal representations
= Shallow representations do not capture complex relationships
= Often shared layer only maps to the shared section directly

Shared Representation Shared Representation

(0000 ¢40000 0000]| [O000 244000 0000

[oo---oo?oo---oo] [oomoogoo---oo]

Audio Input Video Input Audio Input Video Input

Shallow RBM Shallow Autoencoder
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Deep Multimodal autoencoders

= A deep representation
learning approach
= A bimodal auto-encoder

= Used for Audio-visual speech
recognition

Audio Reconstruction

Video Reconstruction

00 ses 00 |

00+« OO

T

T

00+ 00

.
J

00+ 00

\/Shared

[O O e OO ] Representation

00 +++ 00

00 +++ 00

T

T

00 +es OO0

00 +++ 00|

Audio Input

Video Input
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Deep Multimodal autoencoders - training

= |ndividual modalities can be
pre-trained

= Denoising Autoencoders

= To train the model to
reconstruct the other modality
= Use both
= Remove audio

Audio Reconstruction

Video Reconstruction

00 ¢+ 00| (00 ¢+ 00
o
00:+-00] (00---00

\/Shared

[O O e OO ] Representation

@ o) (00:...00
f
WO | |00+ 00
Audio Input Video Input
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Deep Multimodal autoencoders - training

| I N d |V| d u al Mo d al |t| es can b (o {\udio Reconstruction  Video Reconstruction

pretrained 00 ¥ 00) 89 T 20
= RBMs 00...00| (00::-00

= Denoising Autoencoders \/g'h d
are

[O O e OO ] Representation

= To train the model to

. (00:-00] @y )0
reconstruct the other modality — 5§
= Use both 00+« 00| (OW DO
Audio Input Video Input

= Remove audio
= Remove video
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Deep Multimodal autoencoders

N Shared

= Can now discard the decoder and 00 :++ 00 Jrepresenin
use it for the AVSR task /\

. . 00 . 00| (00:.-00]
= |nteresting experiment f f
= “Hearing to see” (00 +00 00| [OO'"OO]
Audio Input Video Input
Linear Classifier > Superyised
= E Testing
Shared - . Shared
Representation ' ' Representation
jrasees ’ —
Audio Video
Training Testing
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Deep Multimodal Boltzmann machines

=  Generative model

= |ndividual modalities trained like a
DBN

= Multimodal representation trained Joint Representation
using Variational approaches

= Used for image tagging and cross-

media retrieval h @ X
. Reconst_ructio_n of one modality from W @ I W@

another is a bit more “natural” than in 0 :

autoencoder representation e b
= Can actually sample text and images w wV

Image i Text
v
8§ 't

m
1000000 NN00000
m A A A AN A
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Deep Multimodal Boltzmann machines

= Pre-training on unlabeled g Gl Coestinas N 2rert et g
data helps

pentax, k10d, beach, sea, ]
kangarooisland, ~ surf, strand,

: nature, hill
southaustralia, ~ shore, wave, scenery, green
sa, australia, seascape, clouds '

. = australiansealion, sand, ocean,
i 3001
= Can use generative models = moes
night, lights,
christmas, flower, nature,
<no text> nightshot, green, flowers,
nacht, nuit,notte, petal, petals, bud
longexposure,
Model MAP Prec@50 noche, noctuma
portrait, bw,}
Random 0.124 0.124 - aheam, a5 DA s, e
. I :
g people, faces, artwork, painted,
SVM (Huiskes et al., 2010) 0.475 0.758 s R Lo
LDA (Huiskes et al., 2010) 0.492 0.754 person, man ey
DBM 0.526 + 0.007  0.791 £ 0.008 ol autumn,

DBM (using unlabelled data) 0.585 + 0.004 0.836 £ 0.004

SEHIE  unseulpixel, trees, leaves, bw, bIackandwhite,‘sj
{ naturey crap foliage, forest, noiretblanc, >
woods, biancoenero
branches, blancoynegro ‘
path

= Code is available

http://www.cs.toronto.edu/~nitish/multimodal/
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http://www.cs.toronto.edu/~nitish/multimodal/

Comparing deep multimodal representations

= Difference between them and the RBMs and the
autoencoders

= Qverall very similar behavior

Model DBN DAE DBM

Logistic regression on joint
layer features

Sparsity + Logistic regression
on joint layer features
Sparsity + discriminative
fine-tuning

Sparsity + discriminative
fine-tuning + dropout

Language Technologies Institute

0.099 £+ 0.004 0.600 £ 0.004 0.609 £+ 0.004

0.626 + 0.003 0.628 = 0.004 0.631 £ 0.004

0.630 £+ 0.004 0.630 £ 0.003 0.634 4+ 0.004

0.638 + 0.004 0.638 = 0.004 0.641 + 0.004




Coordinated
representations
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Coordinated multimodal embeddings

* |nstead of projecting to a joint space enforce the similarity between
unimodal embeddings

Repres.1 <=  Repres 2

I I

Modality 1 Modality 2
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Coordinated multimodal embeddings

* |nstead of projecting to a joint space enforce the similarity between
unimodal embeddings (topic of our reading group on Thursday)

= Often referred to as semantic space embeddings

Traditional Deep Visual Semantic Skip-gram
Visual Model Embedding Model Language Model
label nearby word
—softmax layer transformation
y _
s embedding embedding

visual _) vector (— vector

model parameter lookuptable |  parameter | lookup table
initialization | initialization |

image image label source word
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Coordinated multimodal embeddings

= Deep structured semantic models

Beyond auto-encoders
for web search (MSR)

Compute Cosine similarity

between semantic veclors cos(sH1) @ cos(s12)
Semantic e
vector

Distance(s,t)

w, 1 1 1t
6=500
8 | 1 1t
Letter-i-gram d=500
embedding matix — W, t t '
Letter-tri-gram coeff.
matrix (fixed) Swoe 1t t

s o IR
Input word/phrase 5. “racing car” 11: formula one”  12: “ford model {" Input s nput t

Image features s Text: a parrot rides a tricycle

" [Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013]
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Structured coordinated embeddings

» [nstead of or in addition to similarity add alternative

entity
skis Derson\ dog
woman person walking . _ Supervised Information _

\ | i| ARSI T

woman walking M e T 00

I | | Binary b
lking her d ) Code :
woman skiin woman walking her aog ] -1-11-1!' | g ¢ 1

. S .‘_’i1-1—1—1: | B o1

[Vendrov et al., Order-Embeddings of [Jiang and Li, Deep Cross-Modal Hashing]
Images and Language, 2016]
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Recap unsupervised representation

= RBM
= Project modalities to the same space
= Use when all the modalities are present during test time
= Suitable for multimodal fusion

= Autoencoder
= Project modalities to their own coordinated space
= Use when only one of the modalities is present during test-
time
= Suitable for multimodal translation
= Good for retrieval
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Recap multimodal representations

= Joint representations
= Project modalities to the same space
= Use when all the modalities are present during test time
= Suitable for multimodal fusion

= Coordinated representations
= Project modalities to their own coordinated space
= Use when only one of the modalities is present during test-
time
= Suitable for multimodal translation
= Good for retrieval
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