

Advanced Multimodal Machine Learning

Lecture 5.1: Unsupervised learning and Multimodal representations

Louis-Philippe Morency Tadas Baltrusaitis

Administrative Stuff

Proposal Presentation (2/21/2017 and 2/23/2017)

- 5 minutes (about 5-10 slides)
- All team members should be involved in the presentation
- Will receive feedback from instructors and other students
 - 1-2 minutes between presentations reserved for written feedback
- Main presentation points (similar to pre-proposal)
 - General research problem and motivation
 - Dataset and input modalities
 - Multimodal challenges and prior work

Project Proposal Report – Due on 3/5/17

- Part 1 (updated version of your pre-proposal)
 - Research problem:
 - Describe and motivate the research problem
 - Define in generic terms the main computational challenges
 - Dataset and Input Modalities:
 - Describe the dataset(s) you are planning to use for this project.
 - Describe the input modalities and annotations available in this dataset.

Project Proposal Report – Due on 3/5/17

Part 2

Related Work:

- Include 12-15 paper citations which give an overview of the prior work
- Present in more details the 3-4 research papers most related to your work

Research Challenges and Hypotheses:

- Describe your specific challenges and/or research hypotheses
- Highlight the novel aspect of your proposed research

Project Proposal Report – Due on 3/5/17

- Part 3 (teams of 2 members can pick either one)
 - Language Modality Exploration:
 - Explore neural language models on your dataset (using Keras/Theano)
 - Train at least two different language models (e.g., using SimpleRNN, GRU or LSTM) on your dataset and compare their perplexity.
 - Include qualitative examples of successes and failure cases.

Visual Modality Exploration:

- Explore pre-trained Convolutional Neural Networks (CNNs) on your dataset
- Load a pre-existing CNN model trained for object recognition (e.g., AlexNet or VGG-Net) and process your test images.
- Extract features at different network layers in the network and visualize them (using t-sne visualization) with overlaid class labels with different colors.

Objectives of today's class

- Audio representations
 - Hand-crafted (MFCC) and learned (Deep Belief Nets, Deep Neural Networks)
- Unsupervised representation learning
 - Restricted Boltzmann Machines
 - Autoencoders
 - Deep Belief Nets, Stacked autoencoders
- Multi-modal representations
 - Coordinated vs. joint representations
 - Multimodal Deep Boltzmann Machines
 - Deep Multimodal autoencoders
 - Visual semantic embeddings

Audio representations

Audio representation

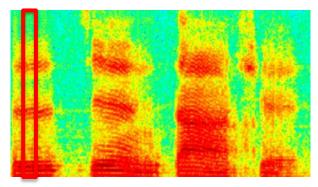
- Audio frames in a window (this is our input)
 - Can extract a spectrogram (lowest level)
- Low level features like MFCC
- Higher-level features also exist (specifically for human voice)
 - Prosody
 - Voice quality
- This can be used for speech recognition, affect and sentiment analysis, music analysis etc.

• Sampling rates: 8~96kHz

• Bit depth: 8, 16 or 24 bits

• Time window size: 20ms

Offset: 10ms



Spectogram

- Speech recognition systems historically much more complex than vision systems
- Require a lot of moving parts
 - Phoneme detectors
 - Language models
 - Vocabularies
- Large breakthrough of using representation learning instead of handcrafted features
 - [Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, 2012]
- Most work exploited large amounts of unsupervised data for model pre-training
- The field of ASR was largely static for some years up to then
- A huge boost in performance (up to 30% on some datasets)

Unsupervised representation learning

Unsupervised learning

- We have access to $X = \{x_1, x_2, ..., x_n\}$ and not $Y = \{y_1, y_2, ..., y_n\}$
- Why would we want to tackle such a task
- 1. Extracting interesting information from data
 - Clustering
 - Discovering interesting trends
 - Data compression
- 2. Learn better representations

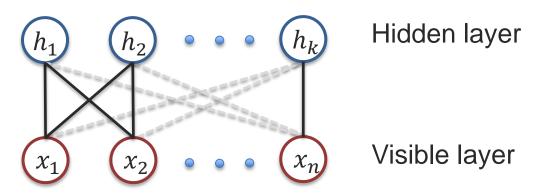
Unsupervised representation learning

- Force our representations to better model input distribution
 - Not just extracting features for classification
 - Asking the model to be good at representing the data and not overfitting to a particular task
 - Potentially allowing for better generalizability
- Use for initialization of supervised task, especially when we have a lot of unlabeled data and much less labeled examples

Restricted Boltzmann Machines

Restricted Boltzmann Machine (RBM)

- Undirected Graphical Model
- A generative rather than discriminative model
- Connections from every hidden unit to every visible one
- No connections across units (hence Restricted), makes it easier to train and do inference on



[Smolensky, Information Processing in Dynamical Systems: Foundations of Harmony Theory, 1986]

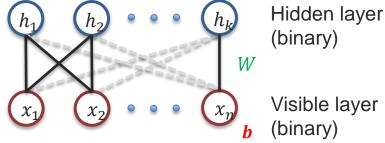
Restricted Boltzmann Machine

Model the joint probability of hidden state and observation

$$p(\boldsymbol{x},\boldsymbol{h};\theta) = \frac{\exp(-\mathrm{E}(\boldsymbol{x},\boldsymbol{h};\theta))}{Z}$$
 Joint probability, positive value
$$Z = \sum_{\boldsymbol{x}} \sum_{\boldsymbol{h}} \exp(-\mathrm{E}(\boldsymbol{x},\boldsymbol{h};\theta))$$
 Normalization function so that the probabilities sum to one
$$\mathrm{E} = -xW\boldsymbol{h} - \boldsymbol{b}^T\boldsymbol{x} - \boldsymbol{a}^T\boldsymbol{h}$$

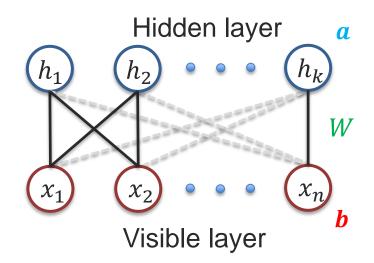
$$\mathrm{E} = -\sum_{i} \sum_{j} w_{i,j} x_i h_j - \sum_{i} b_i x_i - \sum_{j} a_j h_j$$
 Interaction term

Hidden and visible layers are binary (e.g. $x = \{0, ..., 1,0,1\}$), Model parameters to learn $\theta = \{W, b, a\}$



RBM inference (have a trained θ)

- For inference
 - $p(h_j = 1 | \mathbf{x}; \theta) = \sigma(\sum_i x_i w_{ij} + \mathbf{a}_j),$
 - $p(x_i = 1 | \mathbf{h}; \theta) = \sigma(\sum_j h_j w_{ij} + \mathbf{b_i})$
 - derived from the joint probability definition
- Conditional inference is easy and of sigmoidal form
 - Given a trained model θ and an observed value x can easily infer h
 - Given a trained model θ and an hidden layer value h can easily infer x
- Can show this by factorizing the terms
- Need to sample as we get probabilities rather than values



RBM training (learning the θ)

- Want to have a model that leads to good likelihood of training data
- First express the data likelihood (through marginal probability):

$$p(\mathbf{x};\theta) = \frac{\sum_{h} \exp(-E(\mathbf{x},h;\theta))}{Z} \qquad Z = \sum_{\mathbf{x}} \sum_{h} \exp(-E(\mathbf{x},h;\theta))$$

- Want to optimize:
 - $\operatorname{argmin}_{\theta} \left[\sum_{t} -\log \left(p(x^{(t)}; \theta) \right) \right]$, where t is a data sample
 - sum across all samples
 - minimizing negative log likelihood instead of maximizing the likelihood
- General gradient form for energy models with latent terms:

$$\frac{\partial -\log p(x^{(t)};\theta)}{\partial \theta} = \mathbb{E}_{\boldsymbol{h}} \left[\frac{\partial \operatorname{E}(x^{(t)},\boldsymbol{h};\theta))}{\partial \theta} \, \middle| \, \boldsymbol{x}^{(t)} \right] - \mathbb{E}_{\boldsymbol{h},\boldsymbol{x}} \left[\frac{\partial \operatorname{E}(x,\boldsymbol{h};\theta))}{\partial \theta} \right]$$
Positive phase/data term

Negative phase/model term

See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations for more details

RBM training

Ignoring the biases as they are easier

$$\bullet \quad \frac{\partial \log p(\mathbf{x}^{(t)};\theta)}{\partial w_{ij}} = \mathbb{E}_{\mathbf{h}} \left[\frac{\partial \mathbb{E}(\mathbf{x}^{(t)},\mathbf{h};\theta)}{\partial w_{ij}} \middle| \mathbf{x}^{(t)} \right] - \mathbb{E}_{\mathbf{h},\mathbf{x}} \left[\frac{\partial \mathbb{E}(\mathbf{x},\mathbf{h};\theta)}{\partial w_{ij}} \right]$$

First term is straightforward to compute

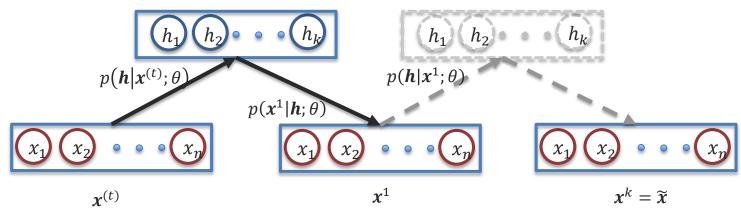
$$\frac{\partial E(\boldsymbol{x}, \boldsymbol{h}; \theta))}{\partial w_{ij}} = -h_i x_j \Rightarrow \mathbb{E}_{\boldsymbol{h}} \left[\frac{\partial E(\boldsymbol{x}^{(t)}, \boldsymbol{h}; \theta))}{\partial w_{ij}} \middle| \boldsymbol{x}^{(t)} \right] = \mathbb{E}_{\boldsymbol{h}} \left[-h_i x_j \middle| \boldsymbol{x}^{(t)} \right] \\
= \sum_{h_i \in \{0,1\}} -h_i x_j p(h_i \middle| \boldsymbol{x}^{(t)}; \theta) = -x_j p(h_i = 1 \middle| \boldsymbol{x}^{(t)}; \theta)$$

- Second expectation term is straightforward mathematically, but intractable computationally (too many terms to sum over)
 - Want to approximate it instead
 - Replace the expectation across x, h with a point estimate at \tilde{x}

Contrastive divergence

- Instead of $\mathbb{E}_{h,x}\left[\frac{\partial \ \mathrm{E}(x,h))}{\partial w_{ij}}\right]$, compute $\mathbb{E}_{h}\left[\frac{\partial \ \mathrm{E}(\widetilde{x},h))}{\partial w_{ij}} \,|\, \widetilde{x}\right]$ as an approximation
- To Approximate computation of model term using Contrastive Divergence
 - Based on Markov Chain Monte Carlo (Gibbs) sampling

Hidden layer



Visible layer

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002]

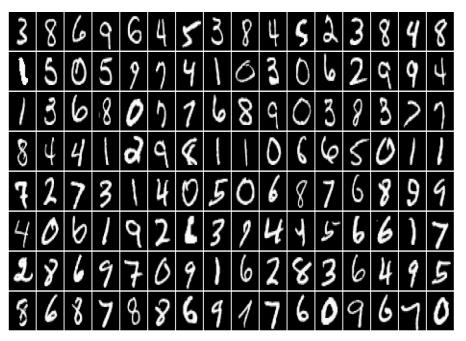
Update rule for RBMs

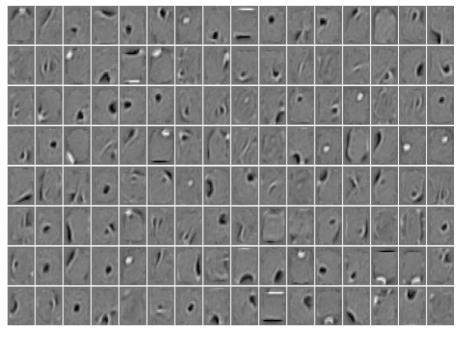
- Now have the update rule for parameters
- Still a gradient descent approach (although approximate)
 - Sampling negative phase rather than using the actual gradient
 - Similar update rules apply for the bias terms
- Can use a stochastic update
 - Using mini-batches rather than all data (current equation written for one sample)
- Extension using better sampling Persistent Contrastive Divergence
 - [T. Tieleman, Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient, 2008]

RBM extensions

- So far have only modeled binary input and hidden states
- Gaussian-Bernoulli RBM allows for real value modeling
 - Changes the inference and training only very slightly
 - Visible units are modeled as real values (under a Gaussian distribution), but hidden units are still binary
 - [Hinton and Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, 2006]
- Replicated Softmax to model one-hot encoding style vectors
 - [Salakhutdinov and Hinton, Replicated Softmax: an Undirected Topic Model, 2009]
 - Now not as relevant due to word2vec
- Only requires a small change in some of the equations
- Can also introduce sparsity in hidden layers (sometimes helps)
 - [Lee et al., Sparse deep belief net model for visual area V2, 2007]

Examples of what the model learns



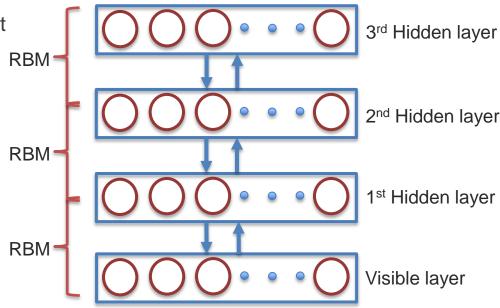


MNIST data

Learned W terms for each hidden unit

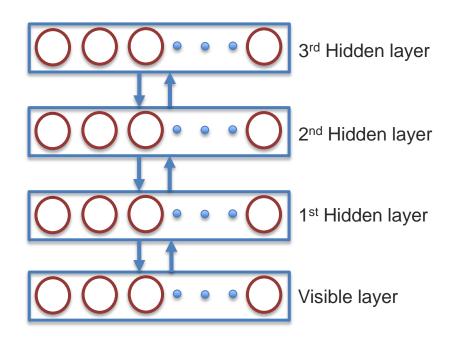
Deep Restricted Boltzmann Machines (DBMs)

- Can stack RBMs together to lead do deep versions of them
- The visible layer can be binary, Gaussian or Bernoulli
- The hidden layers are still binary
- Training fully end to end is very difficult



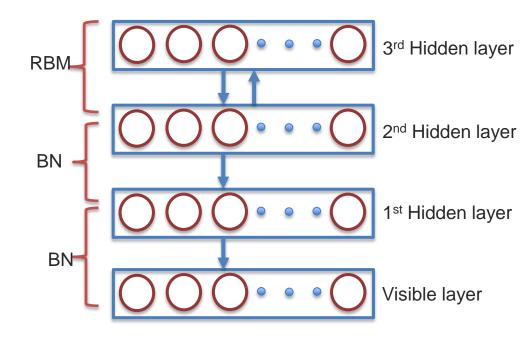
Deep Restricted Boltzmann Machines (DBMs)

- Can stack RBMs together to lead do deep versions of them
- Training fully end to end is very difficult
- Greedy layer-wise training
- Combine the RBMs layer by layer



Deep Belief Networks (DBN)

- To make it easier used Deep Belief Networks
 - Actually came before Deep RBMs
- Simplifies model training
- Turn the undirected model to directed one, making the interaction simpler



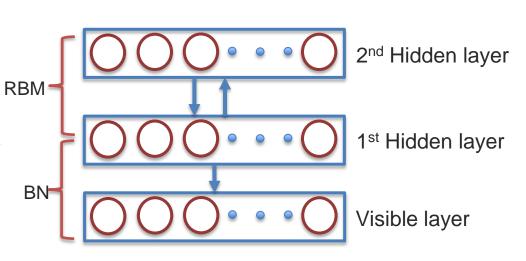
Deep Belief Networks and Deep Boltzmann Machines

- Deep Boltzmann Machine (DBM)
 - All layers are undirected
 - Relationships between layers modeled as RBMs
 - Better at modeling dependencies of lower to higher levels
 - More difficult to train

- RBM 2nd Hidden layer

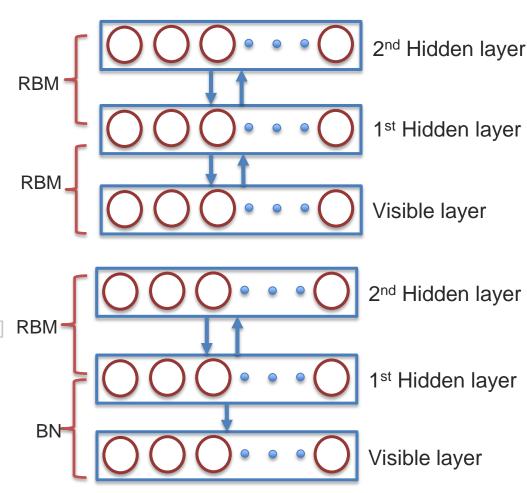
 RBM 1st Hidden layer

 RBM Visible layer
- Deep Belief Network (DBN)
 - Mixing directed and undirected interactions
 - Top two layers are always an RBM
 - Others are a Bayesian Network



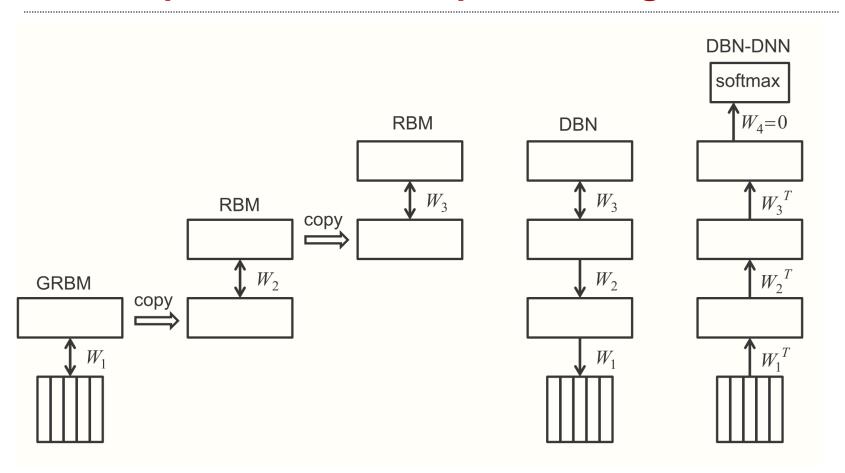
Deep Belief Networks and Deep Boltzmann Machines

- Greedy layer-wise training
- Combine the RBMs layer by layer
- Difficult to train and have to use approximations and sampling
 - Variational learning methods
 - EM like
 - Optimize a lower bound rather than directly the actual log likelihood
- For more details see [Salakhutdinov and Hinton, Deep Boltzmann Machines, 2009]



What can you do with them

- On their own RBMs are very interesting but not necessarily useful
- Stacking them can lead to more interesting models
 - Can use the representation directly for some task
- Use them to pre-train or initialize discriminative models
 - Initialize Deep Neural Networks from them
 - We can convert the DBN weights to those of DNN
- Major early success of deep learning for Automatic Speech Recognition



[Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, 2012]

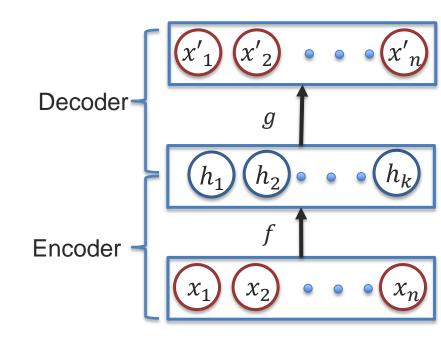
- Feed-forward DNN for features (instead of HMM emissions)
- Now the field has moved slightly away from pretraining using DBN
 - More labeled data available
 - Better training approaches for DNN available (dropout etc.)
- Still lots of tasks where huge amounts of labeled data not available though

- Used MFCC but not anymore going straight from spectrogram now
 - [Deng, et al., Binary Coding of Speech Spectrograms Using a Deep Auto-encoder, 2010]
- Sometimes even using CNN on spectrograms
 - [Abdel-Hamid et al., Convolutional Neural Networks for Speech Recognition, 2014]
- RNN and LSTM now becoming popular for language models
 - Further improvement up to up to 20%
 - [Mikolov et al., Recurrent neural network based language model]
- Fully end-to-end training (a different approach)
 - [Graves and Jaitly, Towards End-to-End Speech Recognition with Recurrent Neural Networks, 2014]
 - Not as accurate yet but potentially will overtake the current designs

Autoencoders

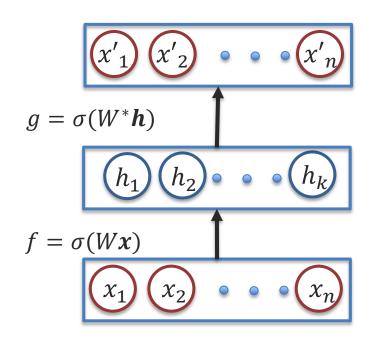
Autoencoders – an alternative to RBM

- What does auto mean?
 - Greek for self self encoding
- Feed forward network intended to reproduce the input
- Two parts encoder/decoder
 - x' = f(g(x)) -score function
 - g encoder
 - f decoder



Autoencoders

- Mostly follows Neural Network structure
 - Typically a matrix multiplication followed by a nonlinearity (e.g sigmoid)
- Activation will depend on type of x
 - Sigmoid for binary
 - Linear for real valued
- Often we use tied weights to force the sharing of weights in encoder/decoder
 - $W^* = W^T$
- word2vec is actually a bit similar to an autoencoder (except for the auto part)



Loss function

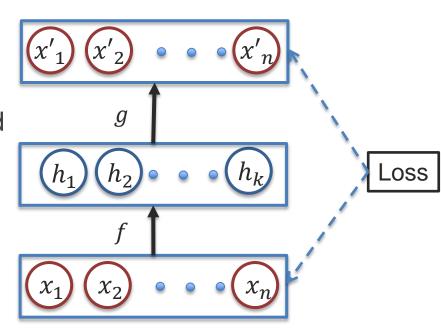
- Any differentiable similarity function
- Cross-entropy for binary x

$$L = -\sum_{k} (x_k \log(x'_k) + (1 - x_k) \log(1 - x'_k))$$

Euclidean for real valued x

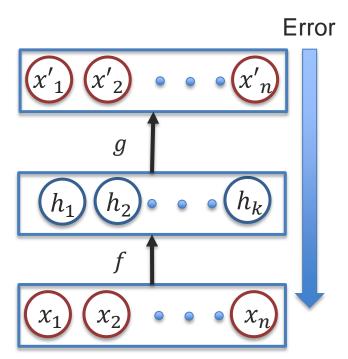
$$L = \frac{1}{2} \sum_{k} (x_k - x'_k)^2$$

- Cosine similarity etc.
- Depends on the data being modeled



Learning

- To learn the model parameters (W^*, W) use back-propagation
- In case of Euclidean (with linear act) and Cross-entropy (with sigmoid act) we just have (x' x) error to propagate
- If we're using tied weights gradients need to be summed (like back propagation through time in RNN)
- Can use batch/stochastic gradient descent as before

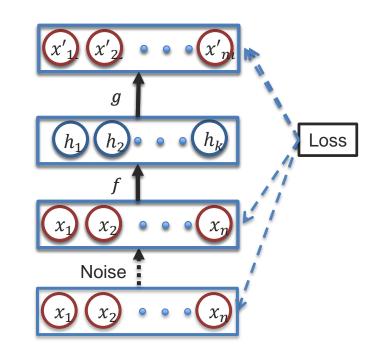


Hidden layer dimensionality

- Smaller that input Undercomplete
 - Will compress the data, reconstruction of data far from training distribution will be difficult
 - Linear-linear encoder-decoder with Euclidean loss is actually equivalent to PCA (under certain data normalization)
- Larger than input Overcomplete
 - No compression needed
 - Can trivially learn to just copy, so no structure is extracted
 - Does not encourage to lean meaningful features, a problem

Denoising autoencoder

- Simple idea
 - Add noise to input x but learn to reconstruct original
- Leads to a more robust representation and prevents copying
- Learns what the relationship is to represent a certain x
- Different noise added during each epoch

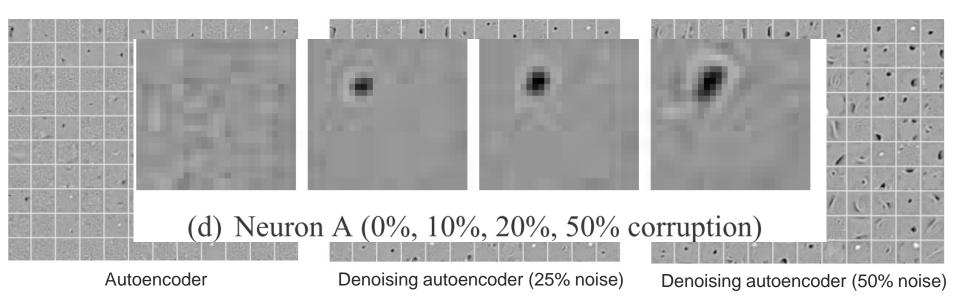


Contractive autoencoder

- A slightly different way to make the autoencoder learn a useful representation
- Intuition changing the loss function instead of adding noise
 - Making the weight derivative with respect to input small
 - More difficult to implement and leads to similar results to Denoising autoencoders
- [Rifai et al., Contractive Auto-Encoders: Explicit Invariance During Feature Extraction, 2011]

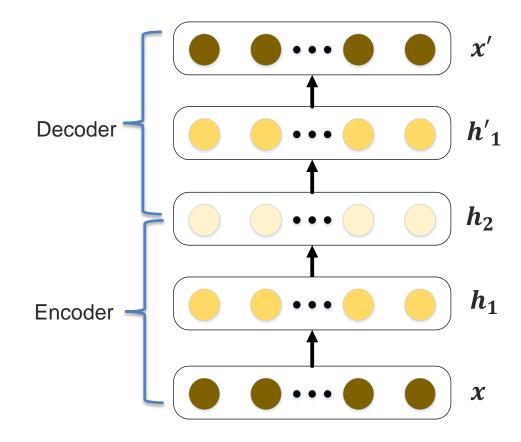
Autoencoder vs denoising autoencoder

MNIST data (as before)

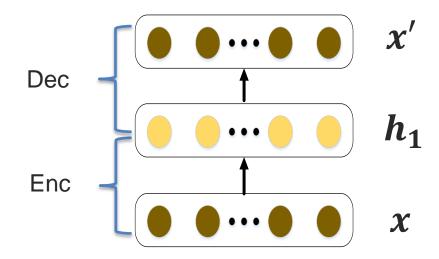


Qualitatively denoising autoencoder leads to more meaningful features

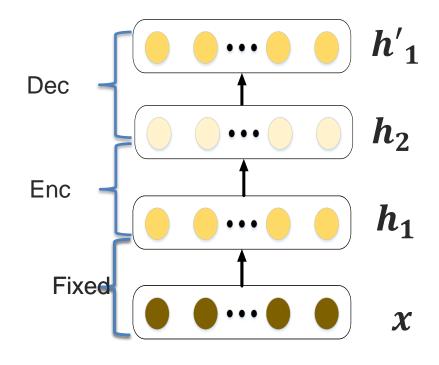
- Can stack autoencoders as well
- Each encoding unit has a corresponding decoder
- As before, inference is feedforward, but now with more hidden layers



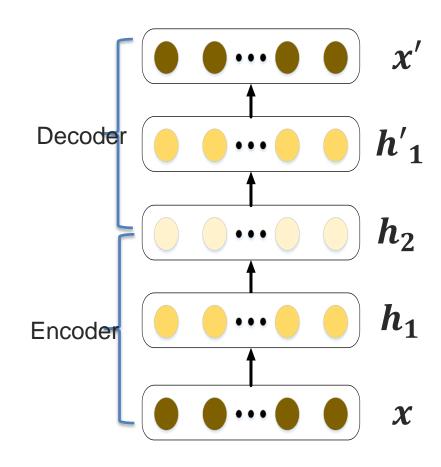
- Greedy layer-wise training
- Start with training first layer
 - Learn to encode x to h₁ and to decode x from h₁
 - Use backpropagation



- Greedy layer-wise training
- Start with training first layer
 - Learn to encode x to h₁ and to decode x from h₁
 - Use backpropagation
- Map from all x's to h_1 's
 - Discard decoder for now
- Train the second layer
 - Learn to encode h₁ to h₂ and to decode h₂ from h₁
 - Repeat for as many layers

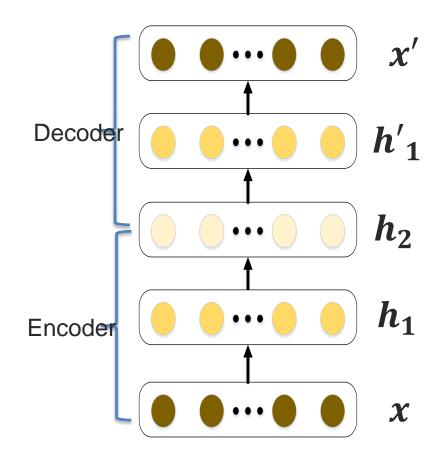


- Greedy layer-wise training
- Start with training first layer
 - Learn to encode x to h₁ and to decode x from h₁
 - Use backpropagation
- Map from all x's to h_1 's
 - Discard decoder for now
- Train the second layer
 - Learn to encode h₁ to h₂ and to decode h₂ from h₁
 - Repeat for as many layers
- Reconstruct using previously learned decoders mappings
- Fine-tune the full network end-to-end



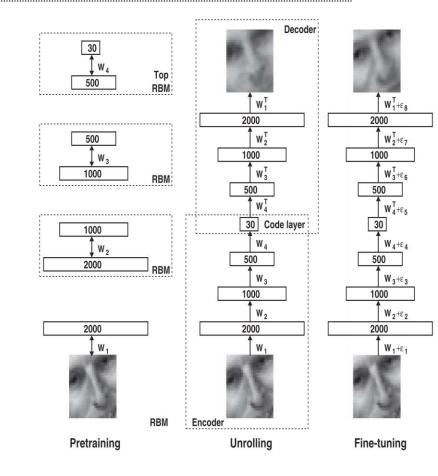
Stacked denoising autoencoders

- Can extend this to a denoising model
- Add noise when training each of the layers
 - Often with increasing amount of noise per layer
 - 0.1 for first, 0.2 for second,0.3 for third



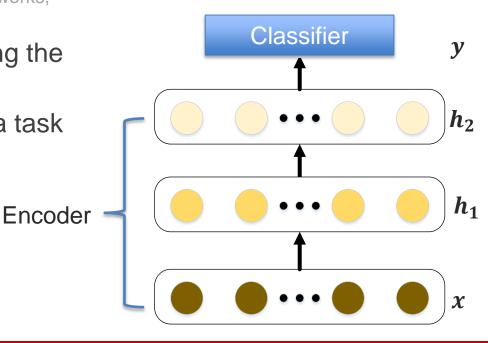
Deep representations

- What can we do with them?
- Compression
 - Can work better than PCA
 - [Hinton and Salatkhudinov, Reducing the dimensionality of data with neural networks, 2006]



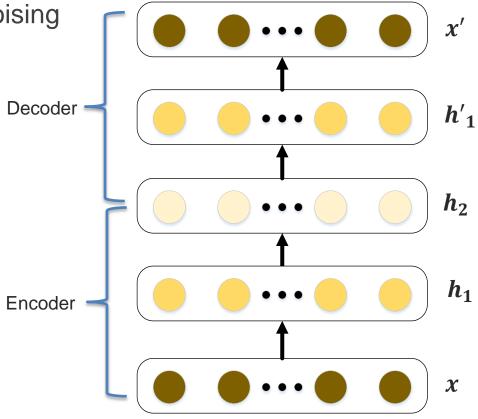
Deep representations

- What can we do with them?
- Compression
 - Can work better than PCA
 - [Hinton and Salatkhudinov, Reducing the dimensionality of data with neural networks, 2006]
- Discarding the decoder and using the middle layer as a representation
- Finetuning the autoencoder for a task

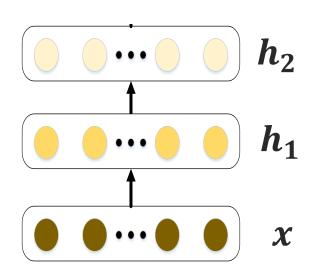


Converting in to a DNN

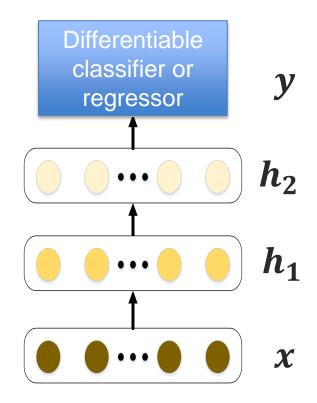
Start with a trained stacked denoising autoencoder



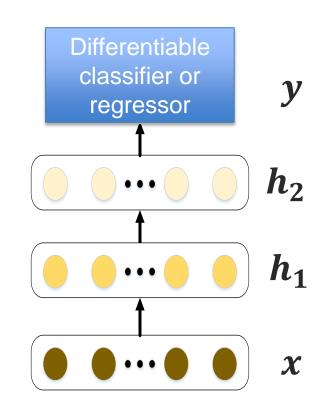
- Converting in to a DNN
- Start with a trained stacked denoising autoencoder
 - Discard the decoder



- Converting in to a DNN
- Start with a trained stacked denoising autoencoder
 - Discard the decoder
- Put a differentiable classifier/regressor on top

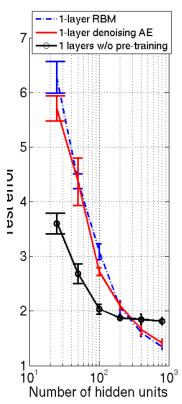


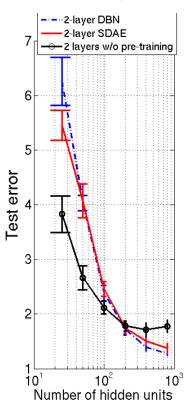
- Converting in to a DNN
- Start with a trained stacked denoising autoencoder
 - Discard the decoder
- Put a differentiable classifier/regressor on top
- Train the whole network end-to-end
 - Backpropagation
- [Erhan et al., Why Does Unsupervised Pretraining Help Deep Learning?, 2010]



Comparison

- Pretraining can be done on Deep Belief Networks as well
 - [Hinton et al., A fast learning algorithm for deep belief nets]





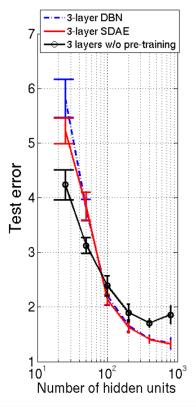
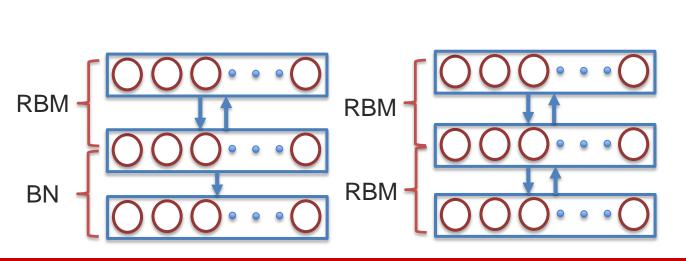


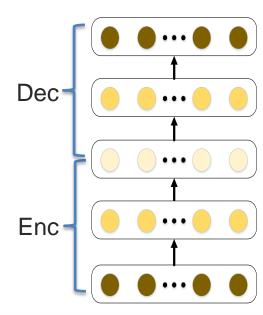
Figure from [Erhan et al., Why Does Unsupervised Pretraining Help Deep Learning?, 2010]

Deep unsupervised models

Comparison

- We have DBNs, DBMs, and stacked autoencoders
- Can actually combine them in interesting ways
 - Use RBMs or DBNs to pretrain autoencoders
- Can use either DBNs or autoencoders to initialize DNNs





Comparison

- We have DBNs, DBMs, and stacked autoencoders
 - DBNs and DBMs trickier to train but potentially more powerful

Data Set	\mathbf{SVM}_{rbf}	DBN-1	SAE-3	DBN-3	SDAE-3 (v)
MNIST	1.40 ±0.23	1.21 ±0.21	1.40 ±0.23	1.24 ±0.22	1.28±0.22 (25%)
basic	3.03 ±0.15	3.94 ± 0.17	3.46 ± 0.16	3.11±0.15	2.84 ±0.15 (10%)
rot	11.11 ± 0.28	14.69±0.31	10.30 ± 0.27	10.30 ± 0.27	9.53 ±0.26 (25%)
bg-rand	14.58±0.31	9.80 ± 0.26	11.28 ± 0.28	6.73 ±0.22	10.30±0.27 (40%)
bg-img	22.61 ± 0.37	16.15 ±0.32	23.00±0.37	16.31 ±0.32	16.68 ±0.33 (25%)
bg-img-rot	55.18±0.44	52.21±0.44	51.93±0.44	47.39±0.44	43.76 ±0.43 (25%)
rect	2.15 ±0.13	4.71±0.19	2.41±0.13	2.60 ± 0.14	1.99 ±0.12 (10%)
rect-img	24.04±0.37	23.69 ± 0.37	24.05 ± 0.37	22.50 ± 0.37	21.59 ±0.36 (25%)
convex	19.13 ± 0.34	19.92 ± 0.35	18.41 ±0.34	18.63 ±0.34	19.06 ±0.34 (10%)
tzanetakis	14.41 ±2.18	18.07 ± 1.31	16.15 ±1.95	18.38±1.64	16.02 ±1.04(0.05)

[Vincent et al., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion, 2010]

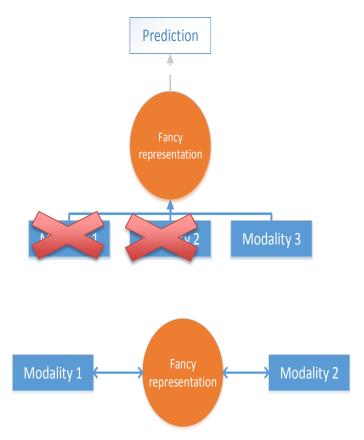
Multimodal representations

Multimodal representations

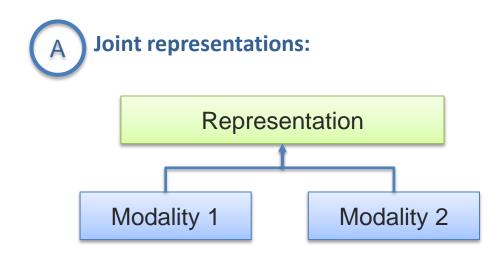
- Why do we need multimodal representations?
- Can just have unimodal ones and just fuse them
 - What if relationship is complex?
 - Doesn't exploit joint information, especially at lower/intermediate levels

Multimodal representations

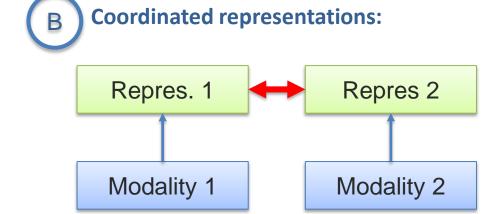
- What do we want from multi-modal representation
 - Similarity in that space implies similarity in corresponding concepts
 - Useful for various discriminative tasks – retrieval, mapping, fusion etc.
 - Possible to obtain in absence of one or more modalities
 - Fill in missing modalities given others (map between modalities)



Multimodal representation types



- Simplest version: modality concatenation (early fusion)
- Can be learned supervised or unsupervised
- Multimodal factor analysis

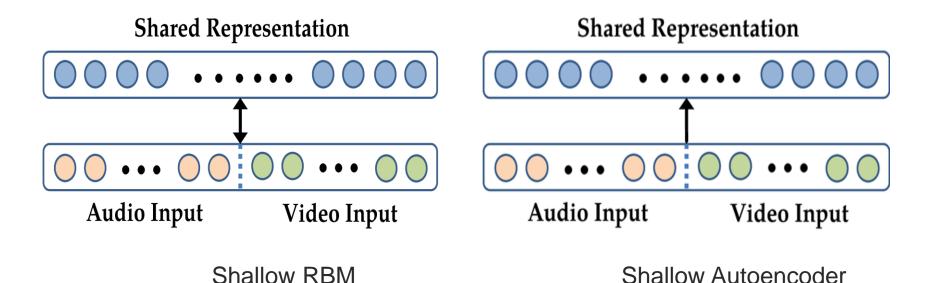


- Similarity-based methods (e.g., cosine distance)
- Structure constraints (e.g., orthogonality, sparseness)
- Talk about it today but also in two weeks (CCA)

Joint representations

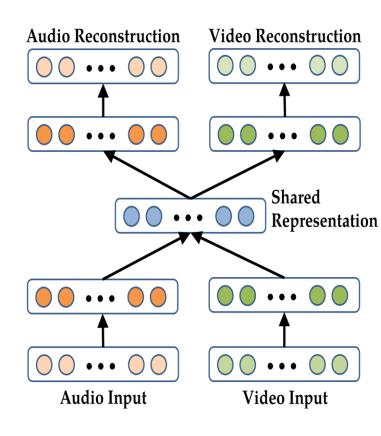
Shallow multimodal representations

- Want deep multimodal representations
 - Shallow representations do not capture complex relationships
 - Often shared layer only maps to the shared section directly



Deep Multimodal autoencoders

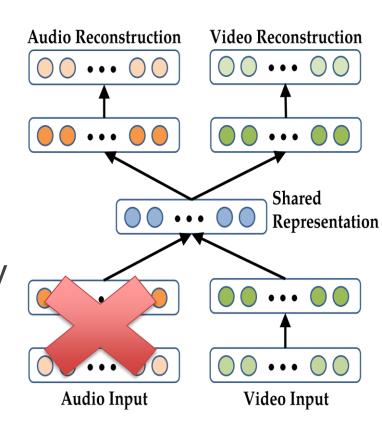
- A deep representation learning approach
- A bimodal auto-encoder
 - Used for Audio-visual speech recognition



[Ngiam et al., Multimodal Deep Learning, 2011]

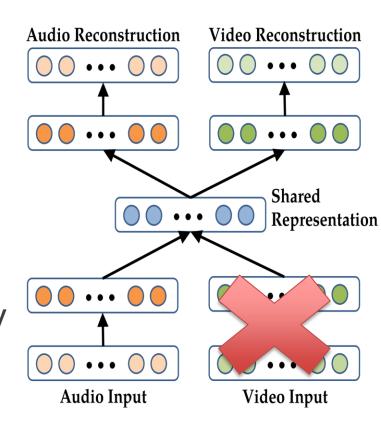
Deep Multimodal autoencoders - training

- Individual modalities can be pre-trained
 - Denoising Autoencoders
- To train the model to reconstruct the other modality
 - Use both
 - Remove audio



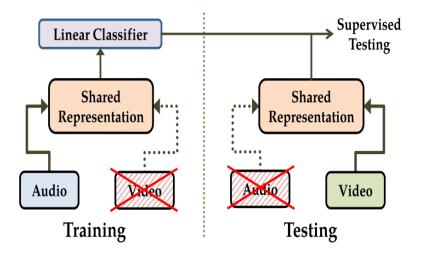
Deep Multimodal autoencoders - training

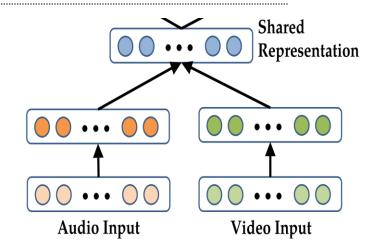
- Individual modalities can be pretrained
 - RBMs
 - Denoising Autoencoders
- To train the model to reconstruct the other modality
 - Use both
 - Remove audio
 - Remove video



Deep Multimodal autoencoders

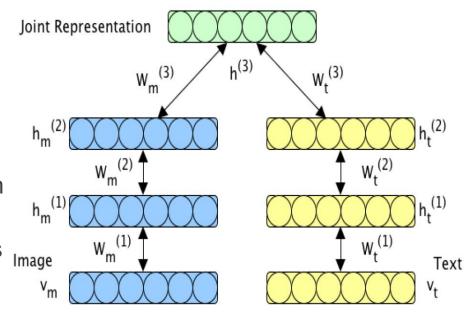
- Can now discard the decoder and use it for the AVSR task
- Interesting experiment
 - "Hearing to see"





Deep Multimodal Boltzmann machines

- Generative model
- Individual modalities trained like a DBN
- Multimodal representation trained using Variational approaches
- Used for image tagging and crossmedia retrieval
- Reconstruction of one modality from another is a bit more "natural" than in autoencoder representation
- Can actually sample text and images



 [Srivastava and Salakhutdinov, Multimodal Learning with Deep Boltzmann Machines, 2012, 2014]

Deep Multimodal Boltzmann machines

- Pre-training on unlabeled data helps
- Can use generative models

Model	MAP	Prec@50
Random	0.124	0.124
SVM (Huiskes et al., 2010)	0.475	0.758
LDA (Huiskes et al., 2010)	0.492	0.754
DBM	0.526 ± 0.007	0.791 ± 0.008
DBM (using unlabelled data)	0.585 ± 0.004	0.836 ± 0.004

christmas, nightshot, nacht, nuit, notte. longexposure, noche, nocturna

> portrait, bw, blackandwhite,

aheram, 0505 sarahc, moo

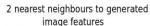
unseulpixel

naturey crap

<no text>

people, faces, girl, blackwhite, person, man fall, autumn,

Input Text



nature, hill scenery, green clouds

- Code is available
 - http://www.cs.toronto.edu/~nitish/multimodal/

Comparing deep multimodal representations

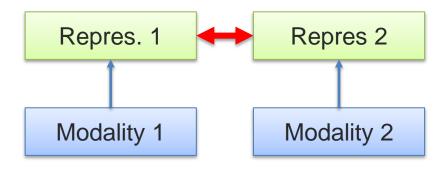
- Difference between them and the RBMs and the autoencoders
- Overall very similar behavior

Model	DBN	DAE	DBM
Logistic regression on joint layer features	0.599 ± 0.004	0.600 ± 0.004	0.609 ± 0.004
Sparsity + Logistic regression on joint layer features	0.626 ± 0.003	0.628 ± 0.004	0.631 ± 0.004
Sparsity + discriminative fine-tuning	0.630 ± 0.004	0.630 ± 0.003	0.634 ± 0.004
Sparsity + discriminative fine-tuning + dropout	0.638 ± 0.004	0.638 ± 0.004	$\textbf{0.641}\pm\textbf{0.004}$

Coordinated representations

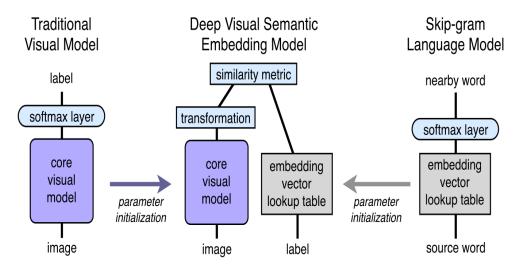
Coordinated multimodal embeddings

 Instead of projecting to a joint space enforce the similarity between unimodal embeddings



Coordinated multimodal embeddings

- Instead of projecting to a joint space enforce the similarity between unimodal embeddings (topic of our reading group on Thursday)
- Often referred to as semantic space embeddings

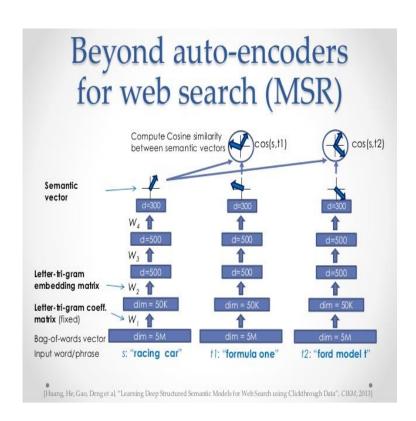


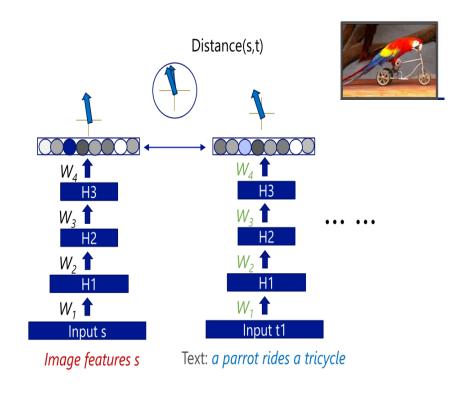
[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

[Frome et al., DeViSE: A Deep Visual-Semantic Embedding Model, 2013]

Coordinated multimodal embeddings

Deep structured semantic models



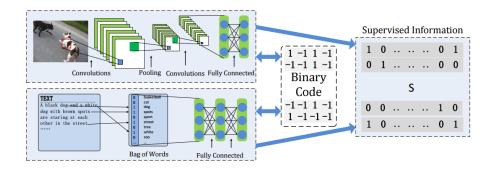


[Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013]

Structured coordinated embeddings

Instead of or in addition to similarity add alternative structure





[Vendrov et al., Order-Embeddings of Images and Language, 2016]

[Jiang and Li, Deep Cross-Modal Hashing]

Recap unsupervised representation

RBM

- Project modalities to the same space
- Use when all the modalities are present during test time
- Suitable for multimodal fusion

Autoencoder

- Project modalities to their own coordinated space
- Use when only one of the modalities is present during testtime
- Suitable for multimodal translation
- Good for retrieval

Recap multimodal representations

- Joint representations
 - Project modalities to the same space
 - Use when all the modalities are present during test time
 - Suitable for multimodal fusion
- Coordinated representations
 - Project modalities to their own coordinated space
 - Use when only one of the modalities is present during testtime
 - Suitable for multimodal translation
 - Good for retrieval