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Louis-Philippe Morency

Tadas Baltrusaitis

Advanced
Multimodal Machine Learning

Lecture 7.1: Multivariate Statistics



Lecture Objectives

 Quick recap

 Multivariate statistical analysis
 Basic concepts (multivariate, covariance,…)

 Principal component analysis (+SVD)

 Canonical Correlation Analysis

 Deep Correlation Networks
 Deep CCA, DCCA-AutoEncoder

 (Deep) Correlational neural networks

 Matrix Factorization
 Nonnegative Matrix Factorization
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Administrative Stuff
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Lecture Schedule

Classes Lectures 
Week 5
2/14 & 2/16

Multimodal representation learning
 Multimodal auto-encoders
 Multimodal deep neural networks 

Week 6
2/21 & 2/23

First project assignment - Presentations

Week 7
2/28 & 3/2

Multimodal component analysis
 Deep canonical correlation analysis
 Non-negative matrix factorization 

Week 8
3/7 & 3/9

Multimodal Optimization
 Optimization in deep neural networks
 Variational approaches
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Lecture Schedule

Classes Lectures 
Spring break
3/13 – 3/17

Week 9
3/21 & 3/23

Multimodal alignment
 Attention models and multi-instance learning
 Multimodal synchrony and prediction

Week 10
3/28 & 3/30

Markov Random Fields
 Boltzmann distribution and CRFs
 Continuous and fully-connected CRFs

Week 11
4/4 & 4/6

Mid-term project assignment - Presentations
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Lecture Schedule

Classes Lectures 
Week 12
4/11 & 4/13

Multimodal fusion
 Sample-based late fusion
 Multi-kernel learning and fusion

Week 13
4/18 & 4/20

Application: Multilingual computational models
 Neural Machine Translation
 Sub-word Models 

Week 14
4/25 & 4/27

Application: Language and Vision
 Learned visual representations
 Visual activity recognition

Week 15
5/2 & 5/4

Final project assignment - Presentations



Upcoming Schedule

 Pre-proposal (tomorrow Wednesday 2/5 at 9am)

 First project assignment:
 Proposal presentation (2/21 and 2/23) 

 First project report (Sunday 3/5)

 Second project assignment
 Midterm presentations (4/4 and 4/6)

 Midterm report (Sunday 4/9)

 Final project assignment
 Final presentation (5/2 & 5/4)

 Final report (Sunday 5/7)



Project Proposal Report – Due on 3/5/17

 Part 1 (updated version of your pre-proposal)

 Research problem:

 Describe and motivate the research problem

 Define in generic terms the main computational 

challenges

 Dataset and Input Modalities:

 Describe the dataset(s) you are planning to use for this 

project. 

 Describe the input modalities and annotations available in 

this dataset. 



Project Proposal Report – Due on 3/5/17

 Part 2

 Related Work: 

 Include 12-15 paper citations which give an overview of 

the prior work

 Present in more details the 3-4 research papers most 

related to your work

 Research Challenges and Hypotheses: 

 Describe your specific challenges and/or research 

hypotheses 

 Highlight the novel aspect of your proposed research



Project Proposal Report – Due on 3/5/17

 Part 3 – (teams of 2 members can pick either one)

 Language Modality Exploration: 

 Explore neural language models on your dataset (using 

Keras/Theano)

 Train at least two different language models (e.g., using SimpleRNN, 

GRU or LSTM) on your dataset and compare their perplexity. 

 Include qualitative examples of successes and failure cases.

 Visual Modality Exploration: 

 Explore pre-trained Convolutional Neural Networks (CNNs) on your 

dataset

 Load a pre-existing CNN model trained for object recognition (e.g., 

AlexNet or VGG-Net) and process your test images. 

 Extract features at different network layers in the network and 

visualize them (using t-sne visualization) with overlaid class labels 

with different colors. 
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Quick Recap
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Multimodal Representation Learning

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

 Deep Multimodal 

Boltzmann machines

· · · softmax

𝒀𝑿
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Multimodal Representation Learning

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

Text Image

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

 Deep Multimodal 

Boltzmann machines

 Stacked Autoencoder

𝒀𝑿

𝒀′𝑿′
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Multimodal Representation Learning

· · ·

· · ·

· · ·

· · ·

Text Image

···

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

 Deep Multimodal 

Boltzmann machines

 Stacked Autoencoder

 Encoder-Decoder

𝒀𝑿
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Multimodal Representation Learning

· · ·

· · ·

· · ·

· · ·

Text Image

· · · · · ·

Similarity metric

(e.g., 

cosine 

distance)

Learn (unsupervised) a joint 

representation between multiple 

modalities where similar unimodal 

concepts are closely projected. 

 Deep Multimodal 

Boltzmann machines

 Stacked Autoencoder

 “Minimum-distance” 

Multimodal Embedding
𝒀𝑿

 Encoder-Decoder

How Can We Learn Better Representations?
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Multivariate 

Statistical Analysis



Multivariate Statistical Analysis

“Statistical approaches to understand the 

relationships in high dimensional data”

 Example of multivariate analysis approaches:

 Multivariate analysis of variance (MANOVA)

 Principal components analysis (PCA)

 Factor analysis 

 Linear discriminant analysis (LDA)

 Canonical correlation analysis (CCA)
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Random Variables

Examples of random variables:

Definition: A variable whose possible values are 

numerical outcomes of a random phenomenon. 

 Discrete random variable is one which may take on only a 

countable number of distinct values such as 0,1,2,3,4,…

 Continuous random variable is one which takes an infinite 

number of possible values.

• Someone’s age

• Someone’s height

• Someone’s weight

Discrete or 

continuous?

Correlated?
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Definitions

Given two random variables 𝑋 and 𝑌: 

Expected value

Variance

𝜇 = 𝐸 𝑋 =෍

𝑖

𝑥𝑖𝑃(𝑥𝑖)

𝜎2 = 𝑉𝑎𝑟(𝑋) = 𝐸[ 𝑋 − 𝜇 𝑋 − 𝜇 ]

 If same probability for all observations 𝑥𝑖, then same as arithmetic mean

 Variance is equal to the square of the standard deviation 𝜎

Covariance

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[ 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑦 ]

= 𝐸[ ത𝑋 ത𝑋] If data is 

centered

= 𝐸[ ത𝑋 ത𝑌]

probability-weighted average of all possible values

measures the spread of the observations

measures how much two random variables change together
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Definitions

Pearson Correlation measures the extent to which two 

variables have a linear relationship with each other

𝜌𝑋,𝑌 = 𝑐𝑜𝑟𝑟 𝑋, 𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝑣𝑎𝑟 𝑋 𝑣𝑎𝑟(𝑌)
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Pearson Correlation Examples
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Definitions

Multivariate (multidimensional) random variables

𝑿 = [𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑀]

𝒀 = [𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑁]

Σ𝑿 = Σ𝑿,𝑿 = 𝑣𝑎𝑟(𝑿) = 𝐸 𝑿 − 𝐸[𝑿] 𝑿 − 𝐸[𝑿] 𝑇

Covariance matrix generalizes the notion of variance

(aka random vector)

Σ𝑿,𝒀 = 𝑐𝑜𝑣(𝑿, 𝒀) = 𝐸 𝑿 − 𝐸[𝑿] 𝒀 − 𝐸[𝒀] 𝑇

Cross-covariance matrix generalizes the notion of covariance

= 𝐸[ഥ𝑿ഥ𝑿𝑇]

= 𝐸[ഥ𝑿ഥ𝒀𝑇]
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Definitions

Σ𝑿,𝒀 = 𝑐𝑜𝑣(𝑿, 𝒀) =

𝑐𝑜𝑣(𝑋1, 𝑌1) 𝑐𝑜𝑣(𝑋2, 𝑌1)
𝑐𝑜𝑣(𝑋1, 𝑌2) 𝑐𝑜𝑣(𝑋2, 𝑌2)

…
…

𝑐𝑜𝑣(𝑋𝑀, 𝑌1)
𝑐𝑜𝑣(𝑋𝑀, 𝑌2)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑋1, 𝑌𝑁) 𝑐𝑜𝑣(𝑋2, 𝑌𝑁) … 𝑐𝑜𝑣(𝑋𝑀, 𝑌𝑁)

Multivariate (multidimensional) random variables

𝑿 = [𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑀]

𝒀 = [𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑁]

Σ𝑿 = Σ𝑿,𝑿 = 𝑣𝑎𝑟(𝑿) = 𝐸 𝑿 − 𝐸[𝑿] 𝑿 − 𝐸[𝑿] 𝑇

Covariance matrix generalizes the notion of variance

(aka random vector)

Cross-covariance matrix generalizes the notion of covariance

= 𝐸[ഥ𝑿ഥ𝑿𝑇]
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Definitions – Matrix Operations

Trace is defined as the sum of the elements on the main diagonal 

of any matrix 𝑿

𝑡𝑟 𝑿 =෍

𝑖=1

𝑛

𝑥𝑖𝑖



Eigenvalues and Eigenvectors

If A is an nn matrix, do there exist nonzero vectors x

in R
n

such that Ax is a scalar multiple of x?

A: an nn matrix

: a scalar (could be zero)

x: a nonzero vector in R
n

A x x

Eigenvalue
Eigenvector

Geometric Interpretation

 (The term eigenvalue is from the German 

word Eigenwert, meaning “proper value”)

x

A x = x

x

y

Eigenvalue decomposition

Eigenvalue equation:
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Principal component analysis

PCA converts a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated 

variables called principal components

 Eigenvectors are orthogonal towards each other and have 

length one

 The first couple of eigenvectors explain the most of the 

variance observed in the data

 Low eigenvalues indicate little loss of information if omitted



Singular Value Decomposition (SVD)

 SVD expresses any matrix 𝐀 as 

𝐀 = 𝐔𝐒𝐕𝑇

 The columns of 𝐔 are eigenvectors of 𝐀𝐀𝑇, and 

the columns of 𝐕 are eigenvectors of 𝐀𝑇𝐀.

𝐀𝐀𝑇𝐮𝑖 = 𝑠𝑖
2𝐮𝑖

𝐀𝑇𝐀𝐯𝑖 = 𝑠𝑖
2𝐯𝑖
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Canonical 

Correlation Analysis
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demographic properties responses to survey

audio features at time i video features at time i

Multi-view Learning

𝑿 𝒀



30

Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

1 Learn two linear projections, one 

for each view, that are maximally 

correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

“canonical”: reduced to the simplest or clearest 

schema possible

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·
𝑯𝒙 𝑯𝒚

= argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀
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Correlated Projection

1 Learn two linear projections, one for each view, 

that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

𝑿
𝒀

𝒖
𝒗

Two views 𝑿,𝒀 where same instances have the same color
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Canonical Correlation Analysis

1 Learn two linear projections, one for each view, 

that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

= argmax
𝒖,𝒗

𝑐𝑜𝑣(𝒖𝑻𝑿, 𝒗𝑻𝒀)

𝑣𝑎𝑟 𝒖𝑻𝑿 𝑣𝑎𝑟(𝒗𝑻𝒀)

= argmax
𝒖,𝒗

𝒖𝑻𝑿𝒀𝑇𝒗

𝒖𝑻𝑿𝑿𝑻𝒖 𝒗𝑻𝒀𝒀𝑻𝒗

𝚺𝑿𝒀 = 𝑐𝑜𝑣(𝑿, 𝒀) = 𝑿𝒀𝑻

where

if both 𝑿, 𝒀 have 0 mean

𝝁𝑿 = 𝟎 𝝁𝒀 = 𝟎

= argmax
𝒖,𝒗

𝒖𝑻𝚺𝑿𝒀𝒗

𝒖𝑻𝚺𝑿𝑿𝒖 𝒗𝑻𝚺𝒀𝒀𝒗
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Canonical Correlation Analysis

2

We want to learn multiple projection pairs 𝒖(𝑖)𝑿, 𝒗(𝑖)𝒀 :

𝒖(𝑖)
∗ , 𝒗(𝑖)

∗ = argmax
𝒖 𝑖 ,𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝑿𝒖(𝑖) 𝒗(𝑖)

𝑻 𝚺𝒀𝒀𝒗(𝑖)

We want these multiple projection pairs to be orthogonal 

(“canonical”) to each other:

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑗) = 𝒖(𝑗)

𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎 for 𝑖 ≠ 𝑗

𝑼𝚺𝑿𝒀𝑽 = 𝑡𝑟(𝑼𝚺𝑿𝒀𝑽) where 𝑼 = [𝒖 1 , 𝒖 2 ,…, 𝒖 𝑘 ]

and 𝑽 = [𝒗 1 , 𝒗 2 ,…, 𝒗 𝑘 ]
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Canonical Correlation Analysis

3

𝑼∗, 𝑽∗ = argmax
𝑼,𝑽

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)

𝑼𝑻𝚺𝑿𝑿𝑼 𝑽𝑻𝚺𝒀𝒀𝑽

Since this objective function is invariant to scaling, we 

can constraint the projections to have unit variance:

𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑰 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

Canonical Correlation Analysis:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

Σ =

𝚺𝑿𝑿 𝚺𝒀𝑿

𝚺𝑿𝒀 𝚺𝒀𝒀

𝑼,𝑽

1 0 0
0 1 0
0 0 1

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

1 0 0
0 1 0
0 0 1
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

How to solve it?  Lagrange Multipliers!

𝑳 = 𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽) + 𝛼 𝑼𝑻𝚺𝒀𝒀𝑼 − 𝑰 + 𝛽(𝑽𝑻𝚺𝒀𝒀𝑽 − 𝑰)

Lagrange function

 And then find stationary points of 𝐿:
𝜕𝐿

𝜕𝑼
= 0

𝜕𝐿

𝜕𝑽
= 0

𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝚺𝒀𝒀

−𝟏𝚺𝑿𝒀
𝑻 𝑼 = 𝝀𝑼

𝚺𝒀𝒀
−𝟏𝚺𝑿𝒀

𝑻 𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝑽 = 𝝀𝑽 where 𝜆 = 4𝛼𝛽
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Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝚺𝒀𝒀

−𝟏𝚺𝑿𝒀
𝑻 𝑼 = 𝝀𝑼

𝚺𝒀𝒀
−𝟏𝚺𝑿𝒀

𝑻 𝚺𝑿𝑿
−𝟏𝚺𝑿𝒀𝑽 = 𝝀𝑽 where 𝜆 = 4𝛼𝛽

Eigenvalue 

equations

Eigenvalues

Eigenvectors

 Can solve these eigenvalue 

equations with Singular Value 

Decomposition (SVD)

𝑻 ≜ 𝚺𝑿𝑿
− Τ𝟏 𝟐𝚺𝑿𝒀𝚺𝒀𝒀

− Τ𝟏 𝟐

𝑼∗, 𝑽∗ = (𝚺𝑿𝑿
− Τ𝟏 𝟐𝑼𝑺𝑽𝑫, 𝚺𝒀𝒀

− Τ𝟏 𝟐𝑽𝑺𝑽𝑫)



38

Canonical Correlation Analysis

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

1
Linear projections 

maximizing correlation

2 Orthogonal projections

3
Unit variance of the 

projection vectors
· · · · · ·

Text Image
𝒀𝑿

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·
𝑯𝒙 𝑯𝒚
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Exploring Deep 

Correlation Networks
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

Same objective function as CCA:

argmax
𝑽,𝑼,𝑾𝒙,𝑾𝒚

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

But need to compute gradients:

𝜕𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

𝜕𝑈

𝜕𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

𝜕𝑉

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

· · · · · ·
𝑾𝒙 𝑾𝒚

· · ·

· · ·

· · ·

· · ·

Text Image
𝒀′𝑿′

Training procedure:

1. Pre-train the models 

parameters using 

denoising autoencoders

Andrew et al., ICML 2013
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Deep Canonical Correlation Analysis

Training procedure:

1. Pre-train the models 

parameters using 

denoising autoencoders

2. Optimize the CCA 

objective functions using 

large mini-batches or 

full-batch (L-BFGS)

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

· · ·

· · ·

· · ·

· · ·

Text Image
𝒀′𝑿′

Jointly optimize for DCCA and 

autoencoders loss functions

 A trade-off between multi-view 

correlation and reconstruction 

error from individual views

Wang et al., ICML 2015



Deep Correlational Neural Network

1. Learn a shallow CCA autoencoder (similar to 1 

layer DCCAE model)

2. Use the learned weights for initializing the 

autoencoder layer

3. Repeat procedure

Chandar et al., Neural Computation, 2015
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Matrix Factorization



46

Data Clustering

· · · · · ·

Text Image
𝒀𝑿

How to discover groups in your data?

K-mean is a simple clustering algorithm 

based on competitive learning

• Iterative approach 

o Assign each data point to one 

cluster (based on distance metric)

o Update cluster centers 

o Until convergence

• “Winner takes all”
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Enforcing Data Clustering in Deep Networks

· · · · · ·

Text Image
𝒀𝑿

· · · · · ·

· · · · · ·

How to enforce data clustering in our 

(multimodal) deep learning 

algorithms?



48

Nonnegative Matrix Factorization (NMF)

X F

G

=

Given: Nonnegative n x m matrix M (all entries ≥ 0) 

Want: Nonnegative matrices F (n x r) and G (r x m),

s.t. X = FG.

 easier to interpret

 provide better results in information retrieval, clustering
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Semi-NMF and Other Extensions

· · · · · ·

Text Image
𝒀𝑿

· · · · · ·

· · · · · ·

Ding et al., TPAMI2015
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Deep Matrix Factorization

Li and Tang, MMML 2015
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Deep Semi-NMF Model

Trigerous et al., TPAMI 2015
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Multivariate Statistics

 Multivariate analysis of variance (MANOVA)

 Principal components analysis (PCA)

 Factor analysis 

 Linear discriminant analysis (LDA)

 Canonical correlation analysis (CCA)

 Correspondence analysis

 Canonical correspondence analysis 

 Multidimension scaling

 Multivariate regression

 Discriminant analysis


