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Lecture Objectives

= Quick recap

= Multivariate statistical analysis

= Basic concepts (multivariate, covariance,...)
= Principal component analysis (+SVD)

= Canonical Correlation Analysis
= Deep Correlation Networks

= Deep CCA, DCCA-AutoEncoder
= (Deep) Correlational neural networks

= Matrix Factorization
= Nonnegative Matrix Factorization
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Administrative Stuff
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Lecture Schedule

Classes Lectures

Week 5 Multimodal representation learning

2/14 & 2/16 - Multimodal auto-encoders
Multimodal deep neural networks

Week 6 First project assignment - Presentations

2/21 & 2/23

Week 7 Multimodal component analysis

2/28 & 3/2 - Deep canonical correlation analysis
Non-negative matrix factorization

Week 8 Multimodal Optimization

3/7 & 3/9 . Optimization in deep neural networks

Variational approaches
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Lecture Schedule

Classes Lectures

Spring break

3/13-3/17

Week 9 Multimodal alighment

3/21 & 3/23 - Attention models and multi-instance learning
Multimodal synchrony and prediction

Week 10 Markov Random Fields

3/28 & 3/30 - Boltzmann distribution and CRFs
Continuous and fully-connected CRFs
Week 11 Mid-term project assignment - Presentations

4/4 & 4/6
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Lecture Schedule

Classes Lectures
Week 12 Multimodal fusion
4/11 & 4/13 - Sample-based late fusion
Multi-kernel learning and fusion
Week 13 Application: Multilingual computational models
4/18 & 4/20 . Neural Machine Translation
Sub-word Models

Week 14 Application: Language and Vision
4/25 & 4/27 . Learned visual representations
Visual activity recognition
Week 15 Final project assignment - Presentations
5/2 &5/4
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Upcoming Schedule

= First project report (Sunday 3/5)

= Second project assignment
= Midterm presentations (4/4 and 4/6)
= Midterm report (Sunday 4/9)

* Final project assignment
= Final presentation (5/2 & 5/4)
= Final report (Sunday 5/7)
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Project Proposal Report — Due on 3/5/17

= Part 1 (updated version of your pre-proposal)

= Research problem:
= Describe and motivate the research problem
= Define in generic terms the main computational
challenges
= Dataset and Input Modalities:

= Describe the dataset(s) you are planning to use for this
project.

= Describe the input modalities and annotations available in
this dataset.
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Project Proposal Report — Due on 3/5/17

= Part 2

= Related Work:

* |nclude 12-15 paper citations which give an overview of
the prior work

= Present in more details the 3-4 research papers most
related to your work
» Research Challenges and Hypotheses:

= Describe your specific challenges and/or research
hypotheses

= Highlight the novel aspect of your proposed research
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Project Proposal Report — Due on 3/5/17

= Part 3 — (teams of 2 members can pick either one)

= Language Modality Exploration:
= Explore neural language models on your dataset (using
Keras/Theano)
» Train at least two different language models (e.g., using SimpleRNN,
GRU or LSTM) on your dataset and compare their perplexity.

» Include qualitative examples of successes and failure cases.

= Visual Modality Exploration:
= Explore pre-trained Convolutional Neural Networks (CNNs) on your
dataset
= Load a pre-existing CNN model trained for object recognition (e.g.,
AlexNet or VGG-Net) and process your test images.

= Extract features at different network layers in the network and
visualize them (using t-sne visualization) with overlaid class labels

with different colors.

Language Technologies Institute



Quick Recap
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.
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Multimodal Representation Learning
Learn (unsupervised) a joint Text
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal

concepts are closely projected. D)
(D)
d Deep Multimodal :
Boltzmann machines ©
1 Stacked Autoencoder ®
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

(e.g.,
. Similarity metric | cosine
Q Deep Multimodal /3'\ distance)
Boltzmann machines

00 ---00) 0000

1 Stacked Autoencoder

' Y )
J Encoder-Decoder LL Ak ‘

d  "Minimum-distance” 00 --00) |
Multimodal Embedding Text Image

How Can We Learn Better Representations?
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Multivariate
Statistical Analysis
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Multivariate Statistical Analysis

“Statistical approaches to understand the
relationships in high dimensional data”

= Example of multivariate analysis approaches:
= Multivariate analysis of variance (MANOVA)
= Principal components analysis (PCA)
= Factor analysis
= Linear discriminant analysis (LDA)
= Canonical correlation analysis (CCA)
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Random Variables

Definition: A variable whose possible values are
numerical outcomes of a random phenomenon.

O Discrete random variable is one which may take on only a
countable number of distinct values such as 0,1,2,3,4,...

d Continuous random variable i1s one which takes an infinite
number of possible values.

Examples of random variables:

« Someone’s age Discrete or
« Someone’s height continuous?
 Someone’s weight Correlated?
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Definitions

Given two random variables X and Y
Expected value probability-weighted average of all possible values
u=E[X]= ExiP(xi)

[
» If same probability for all observations x;, then same as arithmetic mean

Variance measures the spread of the observations

o2 = Var(X) = E[(X — )X — )] = E[XX] If data is

centered
» Variance is equal to the square of the standard deviation o

Covariance measures how much two random variables change together
cov(X,Y) = E[(X — u)(Y — )] = E[XY]

Language Technologies Institute



Definitions

Pearson Correlation measures the extent to which two
variables have a linear relationship with each other

cov(X,Y)
var(X)var(Y)

pxy = corr(X,Y) =
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Pearson Correlation Examples
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Definitions

Multivariate (multidimensional) random variables

(aka random vector)
X = [Xl,XZ,XS, ...,XM]

Y = [Yl, Y2 Y3, ..., YN]
Covariance matrix generalizes the notion of variance
Yx = Zxx = var(X) = E[(X — E[XD(X — E[X])"] = E[XX"]

Cross-covariance matrix generalizes the notion of covariance

Zxy = cov(X,Y) = E[(X — E[XD(Y — E[Y])'] = E[XY"]
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Definitions

Multivariate (multidimensional) random variables

(aka random vector)
X = [Xl,XZ,XS, ...,XM]

Y =[YLvsvs ... YN
Covariance matrix generalizes the notion of variance

Yx = Zxx = var(X) = E[(X — E[XD(X — E[X])"] = E[XX"]
Cross-covariance matrix generalizes the notion of covariance

Tcov(Xy,Yy) cov(X,,Yy) - cov(Xy,Yi)

Sxy = cov(X,Y) = cov(Xy, 12) COU(}:(Z'Yz) COU(X:M;YZ)

_COU(Xl, YN) COU(Xz,YN) COU(XM, YN)_
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Definitions — Matrix Operations

Trace is defined as the sum of the elements on the main diagonal

of any matrix X
n

tr(X) = z Xij

=1
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Eigenvalues and Eigenvectors

Eigenvalue decomposition

If A IS an nxn matrix, do there exist nonzero vectors X

in R" such that Ax is a scalar multiple of x?

» (The term eigenvalue is from the German
word Eigenwert, meaning “proper value”)

Eigenvalue equation:

AX = AX

Eigenvector lgenvalue

A: an nxn matrix
A. a scalar (could be zero)
X: a nonzero vector in R"

Geometric Interpretation
y

AX = AX

» X
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Principal component analysis

PCA converts a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated

variables called principal components
= Eigenvectors are orthogonal towards each other and have
length one
= The first couple of eigenvectors explain the most of the
variance observed in the data
= Low eigenvalues indicate little loss of information if omitted
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Singular Value Decomposition (SVD)

= SVD expresses any matrix A as

A = USVT

= The columns of U are eigenvectors of AA?, and
the columns of V are eigenvectors of ATA.

AATlli — Sizlli
ATAVl' = Sizvi
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Canonical
Correlation Analysis
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Multi-view Learning
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Canonical Correlation Analysis

“canonical’: reduced to the simplest or clearest
schema possible

@ Learn two linear projections, one -1 |
for each view, that are maximally
correlated: H A'f
projection of X
(u*,v*) = argmax corr(H,, H,) H, ,,/' \\ H,
“r 00 00 @00 00
= argmax corr(u’ X, v'Y) vl 8%
wy rrex 99
Text Image
X Y
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Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

(u*,v*) = argmax corr(uf X, v'Y)

u,v
AERN vl
SREE =

Two views X, Y where same instances have the same color
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Canonical Correlation Analysis

Learn two linear projections, one for each view,
that are maximally correlated:

(w*,v*) = argmax corr(u’ X, v'Y)

u,v
/vvhere \

B cov(u'X,v'Y)
B ar%ff,‘ax var(u X)var(w?Y)

Yyy = cov(X,Y) = XYT

If both X, Y have 0 mean

ux =0 uy=20
\_ )

ul XyTv
= argmax
wr  VuTXXTuvvTYYTv

uTZva

= argmax
u,v \/uTZXXu\/szl(yv
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Canonical Correlation Analysis

We want to learn multiple projection pairs (u )X, v;Y):

uinExy v

(u’(‘iy”?i)) - arshas T T
() ¥(0) \/u(i)zxxu(i)\/v(i)zYYv(i)

We want these multiple projection pairs to be orthogonal
(“canonical”) to each other:

u{l)Zva(]) = uz})szv(i) =0 for i :/:]

UyyV = tT(UZXyV) where U = [ll(l),ll,(z),..., u(k)]
and V = [v(l),v(z),..., I?(k)]
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Canonical Correlation Analysis

tr(UTEyyV
(U*,V*) = argmax U 2x V)
UV JUTZxxUJVTZy vV

@ Since this objective function is invariant to scaling, we
can constraint the projections to have unit variance:

Ul yU=1 VIZpV=I
Canonical Correlation Analysis:

maximize:  tr(UTZxyV)

subjectto:  UTZy,yU =VTZ, V=1
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Canonical Correlation Analysis

maximize:  tr(UTZxyV)

subjectto:  UTZ, U =VTZ,, VW =1

1 0 O A4 0 0

y y 0O 1 O 0 A, O

N T o lwlo 0o 10 0 2
XY YY 0 4, 0 0 1 o0

0 0 A; 0 0 1
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Canonical Correlation Analysis

maximize: |tr(UTZxyV)

SUbjeCt to: UTZY)/U — VTZY)/V —_

How to solve it? » Lagrange Multipliers!
Lagrange function
L=tr(UTsxyV) + a(UTZyyU — 1) + B(VIZyyV — I)

. . . 0L JdL
» And then find stationary points of L: P 0 v

0
ZxxZxyZyy ExyU = AU
Yo ivExsZxyV = AV where 1 = 4ap

36
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Canonical Correlation Analysis

maximize:  tr(UTZyy V)

subjectto:  UTZ, U =VTZ,, VW =1

f 2
T 2 X 8/ 28 yyZot/?

(U, V") = (24 1/2USVD:Z 1/2VSVD) )

» Can solve these eigenvalue \. - I
equations with Singular Value Igenvalues

Decomposition (SVD) /|4Eigenvectors
(

Eigenvalue SyxZxy Iy ygyU = AU

equations izt owily V=2V where 1 = 4af
\
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Canonical Correlation Analysis

maximize:  tr(UTZxyV)

subjectto:  UTZ, U =VTZ,, VW =1

@ Linear projections : #
maximizing correlation g
projection of Xr

L ) .

@ Orthogonal projections H, / \ H,
@ Unit variance of the 00 .00 (0000
projection vectors U 74
@0 - 00 00 - 00
Text Image
X Y
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Exploring Deep
Correlation Networks
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Deep Canonical Correlation Analysis

Same objective function as CCA:

argmax corr (H o H y)
V.UW, W,

But need to compute gradients:

aCOTT(Hx’ Hy) Hx Q Ql}"‘ . Q Q Q Q * "‘ i/@ Q Hy
au 90 - 00 ..
w.,| W,
ocorr(H,, H,) 00 - 00 @0 -
1% Text Image
Andrew et al., ICML 2013 X Y
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Deep Canonical Correlation Analysis

Training procedure:

X' Y’

1. Pre-train the models Text Image
parameters using 00 ---00) OO 00
denoising autoencoders

00 --00
H, (00 ...00] 00.--00JH,
Ul V
99 - 00 e
w.,| W,
rrex Y .
Text Image
Andrew et al., ICML 2013 X Y

Language Technologies Institute



Deep Canonical Correlation Analysis

Training procedure:

1. Pre-train the models
parameters using
denoising autoencoders

2. Optimize the CCA
objective functions using g _
large mini-batches or
full-batch (L-BFGS)

Andrew et al., ICML 2013
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Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and
autoencoders loss functions

> A trade-off between multi-view
correlation and reconstruction
error from individual views

Wang et al., ICML 2015
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Deep Correlational Neural Network

1. Learn a shallow CCA autoencoder (similar to 1
layer DCCAE model)

2. Use the learned weights for initializing the
autoencoder layer

3. Repeat procedure

| || | | | | I
W T W v
I - | b | | | b b | || | b
w v
b
w '\f
l | | b || | b b | || | b
w T‘f W v
I || | I || I
step-1 step-2 step-3

Chandar et al., Neural Computation, 2015
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Matrix Factorization
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Data Clustering

How to discover groups in your data?

K-mean is a simple clustering algorithm
based on competitive learning

« |terative approach

o Assign each data point to one
cluster (based on distance metric)

o Update cluster centers
o Until convergence

« “Winner takes all”

0000 0000
Text Image
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Enforcing Data Clustering in Deep Networks

How to enforce data clustering in our
(multimodal) deep learning
algorithms?
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Nonnegative Matrix Factorization (NMF)

Given: Nonnegative n x m matrix M (all entries = 0)

4 ™ [ G J

N Y, L

Want: Nonnegative matrices F (n xr) and G (r x m),
s.t. X = FG.

» easier to interpret
» provide better results in information retrieval, clustering
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Semi-NMF and Other Extensions

SVD:  Xi~ F.GL
NMF: X, ~ F.GT
Semi-NMF: X, ~ F,.G"
¥
Convex-NMF: Xy~ X W, GI , //
00 ---00
00 .- 00
00 - 00
Text
X

Ding et al., TPAMI2015
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Deep Matrix Factorization

I'd
~\ i st
I Learning Data User-provided / N e e -
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Li and Tang, MMML 2015
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Deep Semi-NMF Model

Squint

f-means

) ) Zy | Identity |
k-means Z Expression ‘___...—-—-—-—“/’1 Features
> \ 2 : :
‘ Pose / Features ‘ H3
Features Hz
L Loh ) 7.7,7
H1 Zl Z 1Z2 17273

Trigerous et al., TPAMI 2015
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Multivariate Statistics

= Multivariate analysis of variance (MANOVA)
= Principal components analysis (PCA)

= Factor analysis

* Linear discriminant analysis (LDA)

= Canonical correlation analysis (CCA)

= Correspondence analysis

= Canonical correspondence analysis

= Multidimension scaling

= Multivariate regression

= Discriminant analysis
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