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Lecture Objectives

= Practical Deep Model Optimization
= Background
= Optimization and lterative approaches
= [earning rate and Momentum
= Regularization

= (Co-adaptation
= Multimodal Optimization

= Variational Methods
= Variational AE

2
Language Technologies Institute



Lecture Objectives

= Practical Deep Model Optimization
= Background
= QOptimization and lterative approaches
= Learning rate and Momentum
= Regularization
= Co-adaptation
= Multimodal Optimization

= Variational Methods
= Variational AE

3
Language Technologies Institute



Background-MLP

= Multilayer Perceptron
= Superset of CNNs, LSTMs, GRUs.

= Reminder: Arecursive application of affine transformations and
nonlinearities

= (Can solve everything but often a headache to optimize

input layer

hidden layer 1 hidden layer 2
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Stochastic Gradient Descent

= | oss functions:
= Mean Squared Error: L = ||f(x) — f*(x)]]

= (Categorical Cross-Entropy (surrogate)

Softmax function

Minimizing the
negative log likelihood.
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Stochastic Gradient Descent

= Stochastic since updates are done based on a random
subset of training data:

Fori=1,2,3, ..., N:

Wi = W= V f(wy)
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Optimization

= g(x)is an unknown distribution in the nature

= Probability of shark given fin length

= You can sample—go get sharks and size the fins. Good luck!
= You can approximate it with many different functions

= Let’'s assume f(x) is the loss associated with the fitting.

f(x)
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Optimization

= Assume that approximation functionis g(x; 6)
= (Goalis to minimize f(x): g(x; 8) = g(x)

= One easy way: 9 — 0 solve for 6.
do

= Can’t do that for neural networks.

f(x)

U
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Iterative Approaches

= Start from a point on f(x) namely x,.
= Test which direction gives you a better value on f(x).
= Go to the new position.

f\

f(x)
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Iterative Approaches

What is happening in future?
How big?
Which Direction?

f(x)

U

Let’s mathematically formulate this
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Iterative Approaches

= Any differentiable loss function f(x)

()
= Taylor’s expansion: f(x) = 8°f nfxl) (x —xp)"

= Firstorder: f(x)= f(x1) + Vf(x1) - (x —x1) + O(||x — x1|?)
f(x1 4+ hu) — f(x1) = AV f(x1) - u+ h*0(1)
w= —Vf(x)/[V)l < o he drecton o
gradient
= Big step size h is unrealistic in most cases
= 5o, GD is: Fort=1,2,..., Npaz:
unetion Badl © X X — oV (%)

Language Technologies Institute



Iterative Approaches

()
= Taylor’s expansion: f(x) = 8°f n,(xl) (x —x)"

= Higher order: Second order Taylor expansion (Newton
methods)

= Learning rate can be approximated
= Bigger steps can be taken as order goes higher.
= Step size now a function of higher order derivatives

= However, we don’t have enough resources
= Maybe Quasi-Newton approaches?
= So let’s stick to first order ...
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Gradient Descent

= Most practical optimization method so far for deep
learning:

= Linearin space and time complexity per number of
parameters

= Applicable to SIMD Parallelization Paradigm
= Nice attributes for deep learning

= This is all good but how should the updates happen on
the model?
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SGD vs GD

GD SGD
(16 11 10 16 24 40 51 617 (16 11 10 16 24 40 51 61]
12 12 14 19 26 58 60 55 12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56 14 13 16 24 40 57 69 56
14 17 22 29 51 7 80 62 14 17 22 29 51 87 &80 62
18 22 37 56 68 109 103 77 18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92 24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101 49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99 (72 92 95 98 112 100 103 99
Update 3 * Update
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SGD vs GD - Tradeoff

= GD takes a global decision for updating the gradient
= SGD takes a local decision for updating the gradient

()

@ Slow Better

c

2 Results
o

(0]

@ Fast Worse
e

2 Performance

o

*Or even no results
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SGD vs GD - Tradeoff

= Let’s go speed! Going one sample at a time! How bad
can it be?

[16 11 10 16 24 40 51 61 =

12 12 14 19 26 58 60 55 —_—

14 13 16 24 40 57 69 56 —

14 17 22 29 51 87 80 62 —_—

18 22 37 56 68 109 103 77 >
24 35 55 64 81 104 113 92 —

49 64 78 87 103 121 120 101 —_—
(72 92 95 98 112 100 103 99 |

= But it’s just one sample point!

= [t really only takes one sample point to send Sigmoids
to no man’s land!
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SGD vs GD - Tradeoff

= Qk let’s not do that, how bad is my approximation of
global gradient if | use a batch instead?

(16 11 10 16 24 40 51 617 =
12 12 14 19 26 58 60 55 —l  —)
14 13 16 24 40 57 69 56 —p

14 17 22 29 51 87 80 62 —lp I
18 22 37 56 68 109 103 77 > b — i

24 35 55 64 81 104 113 92 —
49 64 78 87 103 121 120 101 —ly
(72 92 95 98 112 100 103 99| = J

1 sample batch Entire
dataset

= Law of averages helps a lot.

= @Gradient of 32 points is already extremely close to that of
all the dataset.
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Learning rate decay

= Jumping over good solutions:

= Decay learning rate
= We won’t let model jump around too much after some time

f(x)

,——>
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!

Game over zone! Plateau
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Game over point!
Saddle point
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Momentum

= Both situations avoidable if we had higher order
derivatives. Which we don’t!

= Let’s jump over/speed through them.

A Vs
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Momentum

SGD: Wep1 = W= V f(wy)
SGD+M: Wirp1 = W — (Oct 74 f(Wt) +mVw (t))

Momentum can backfire!

‘\

Language Technologies Institute



Adaptive Learning Rate

General Idea: Let neurons who just started learning
have huge learning rate.

Adaptive Learning Rate is an active area of research:
= Adadelta
= RMSProp

cache = decay_rate * cache + (1 - decay_rate) * dx**2
X += - learning_rate * dx / (np.sqgrt(cache) + eps)

= Adam
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
X += - learning_rate *m/ (np.sqrt(v) + eps)
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Comparison
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Critical Points

local min local max saddle point
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Saddle Points

= Deep Learning Optimization:
= Deep Learning problems in general have many local x

minimas
= Many (not all) of them are actually almost as good asv
global minima due to parameter permutation

= However it is NP-hard to even find a local minima x

= Lots and lots of saddles in many deep learning
problems.
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Why Saddles are Bad
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Detecting Saddles

= One way to detect saddles:
= Calculate Hessian at point x
= |f Hessian is indefinite you have a saddle for sure.
» |f Hessian is not indefinite you really can’t tell.
= My loss isn’t changing:
= You are definitely close to a critical point

= You may be in a saddle point
= You may be in the local minima/maxima

= One trick: quickly check the sorrounding
» Bestpracticaltrick if Hessian is notindefinite.
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Bad Saddle Points

(a) (b)

https://arxiv.org/pdf/1602.05908.pdf

Language Technologies Institute




Real

Not the fault of learning rate or momentum
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Example

Loss

Training e
Test -
4 4 Validation -
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Bias-Variance

=  Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

T~ No longer SOT!
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Bias-Variance

=  Problem of bias and variance

= Simple models are unlikely to find the solution to a hard
problem, thus probability of finding the right model is low.

= Complex models find many solutions to a problem, thus
probability of finding the right model is again low.

— MLP is here!

Real
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Regularization

= Parameter Regularization:

= Adding prior to the network parameters
= [P Norms

L1 L? L®
Minimize: Loss(x;0) + «||6]|

36
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Parameter Regularization

= Parameter Regularization:
= ['(Lasso) and L? (Ridge) are the most famous norms used. Sometimes
combined (Elastic)
=  QOther norms are computationally ineffective.

» Maximum a posteriori (MAP) estimation:
= Having priors one the model parameters
= ]2 can be seen as a Gaussian prior on model parameters 6
= Ageneralization of L? is called Tikhonov Regularization with Multivariate

Gaussian prior on model parameters.
= Assuming Correlation between parameters one can build a Mahalanobis
variation of Tikhonov Regularization.
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Structural Regularization

= Lots of models can learn everything. Occam’s razor
= Go for simpler ones.  «

= Use task specific models:
= CNNs
= RecNNs
= LSTMs
= GRUs
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= Aneuron learns something that is not useful:
1. Learn something useful
2. Other neurons learn to mitigate it.

Useless
neuron

input layer

. . hidden layer™, hidden layer 2 _
Learning to fight Actually learning

useless neuron something



Dropout

=  Simply multiply the output of a hidden layer with a mask of Os and
1s (Bernoulli)

X1 -
= — O
X, p=02 Yy
X3 =
p = 0.8 y
b
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Dropout

@) Forward step: multiply with a Bernoulli distribution per epoch,
batch or sample point. Question: which one works better?

Backward step: just calculate the gradients same as before.
Question: some neurons are out of the network, so how does this

work?

All good? Nope

H:: Multiply the weights by 1 — p;
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Other variations

= (Gaussian dropout: instead of multiplying with a Bernoulli

random variable, multiply with a Gaussian with mean 1.

=  Swapout: Allow skip-connections to happen

l-(e) Swapout

Y=0:10X+60:0F(X)
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Multimodal Optimization

» Biggest Challenge: e g

= Data from different sources
= Different networks :
= Example:

= Question Answering: LSTM(s) connected to a CNN

= Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-
CNNs

= CNNs work well with high decaying learning rate

= LSTMs work well with adaptive methods and normal
SGD

= MLPs are very good with adaptive methods
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Multimodal Optimization

= How to work with all of them?

= Pre-training is the most straight forward way:

= Train each individual component of the model separately
= Put together and fine tune

= Example: Multimodal Sentiment Analysis
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Pre-training

1 CNN Sentiment
2 LSTM , Sentiment
" | Representaion
3.
Verbal
Representation
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Pre-training

Visual
Representaion
all .
— ||| — Sentiment
4 =
Verbal
Representation

—. =il — Sentiment
=
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Pre-training Tricks

= In the final stage (5), it is better to not use adaptive
methods such as Adam.

= Adam starts with huge momentum on all the networks
parameters and can destroy the effects of pretraining.

= Simple SGD mostly helpful.
= |nitialization from other pre-trained models:
= VGG for CNNs

= Language models for RNNs
= Layer by layer training for MLPs
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Variational Autoencoders

51



Auto-encoder

= A combination of an Encoder and a Decoder encoding x
and decoding x

L

L

= The loss reconstruction error of x.
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Variational Inference

= When inference is not possible ‘ ;
= Either relax the problem @ @
= QOr use variational methods

= Variational inference: U
= Unroll through time (MCMC, Gibbs) — RBM

= Mean-field Approximation (Fully Connected
CRF)

= Both cases we have an approximation of the
variables.
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Variational Auto-encoder

= We assume exact inference is not possible but
approximation is possible.

L

normal (u, o)

normal (u, o)
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Variational Auto-encoder

= A probability controls the encoder space
= More meaningful representations

= Space is split in euclidean-meaningful representations.
= The normal distributions have nice properties.
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Questions?
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