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§ Optimization and Iterative approaches
§ Learning rate and Momentum
§ Regularization
§ Co-adaptation
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Background-MLP

§ Multilayer Perceptron
§ Superset of CNNs, LSTMs, GRUs. 
§ Reminder: A recursive application of affine transformations and 

nonlinearities
§ Can solve everything but often a headache to optimize 
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Stochastic Gradient Descent

§ Loss functions: 
§ Mean Squared Error: 

§ Categorical Cross-Entropy (surrogate)

𝐿" = −log	
  
𝑒*+,

∑ 𝑒*+./

Softmax function

Minimizing    the  
negative  log    likelihood.

𝐿 = | 𝑓 𝑥 − 𝑓∗ 𝑥 |
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Stochastic Gradient Descent

§ Stochastic since updates are done based on a random 
subset of training data:

𝑤567 = 	
  𝑤5−∝5 𝛻	
  𝑓 𝑤5

For i=1,2,3, …, N:
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Optimization

𝑓(𝑥)

§ 𝑔 𝑥 is an unknown distribution in the nature
§ Probability of shark given fin length
§ You can sample–go get sharks and size the fins. Good luck!
§ You can approximate it with many different functions
§ Let’s assume 𝑓 𝑥 is the loss associated with the fitting. 
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Optimization

𝑓(𝑥)

§ Assume that approximation function is 𝑔̅(𝑥; 	
  𝜃)
§ Goal is to minimize 𝑓 𝑥 : 𝑔̅ 𝑥; 	
  𝜃 	
  ⋍ 𝑔(𝑥)

§ One easy way: A*BC = 0 solve for 𝜃. 
§ Can’t do that for neural networks. 



10

Iterative Approaches

𝑓(𝑥)

§ Start from a point on 𝑓(𝑥) namely 𝑥7.
§ Test which direction gives you a better value on 𝑓(𝑥).
§ Go to the new position.
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Iterative Approaches

𝑓(𝑥)

Let’s mathematically formulate this

What is happening in future?
How big?
Which Direction?
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Iterative Approaches

§ Any differentiable loss function 𝑓 𝑥

§ Taylor’s expansion: 𝑓 𝑥 = ∑ *(E)	
  (FG)
H! 	
  (𝑥 − 𝑥7)HJ

K

§ First order:

§ Big step size ℎ is unrealistic in most cases 
§ So, GD is:

Best unit solution – go
in the direction of
gradient

Step size is a simple 
function! Bad!



13

Iterative Approaches

§ Taylor’s expansion: 𝑓 𝑥 = ∑ *(E)	
  (FG)
H! 	
  (𝑥 − 𝑥7)HJ

K

§ Higher order: Second order Taylor expansion (Newton 
methods)

§ Learning rate can be approximated
§ Bigger steps can be taken as order goes higher.
§ Step size now a function of higher order derivatives

§ However, we don’t have enough resources
§ Maybe Quasi-Newton approaches?
§ So let’s stick to first order …
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Gradient Descent

§ Most practical optimization method so far for deep 
learning:
§ Linear in space and time complexity per number of 

parameters
§ Applicable to SIMD Parallelization Paradigm
§ Nice attributes for deep learning

§ This is all good but how should the updates happen on 
the model?
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SGD vs GD

𝑈𝑝𝑑𝑎𝑡𝑒 3	
   ∗ 	
  𝑈𝑝𝑑𝑎𝑡𝑒

GD SGD
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SGD vs GD - Tradeoff

§ GD takes a global decision for updating the gradient
§ SGD takes a local decision for updating the gradient

Ba
tc

h 
si

ze Slow 
Performance

Better 
Results

Ba
tc

h 
si

ze Fast 
Performance

Worse 
Results *

* Or even no results
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SGD vs GD - Tradeoff

§ Let’s go speed! Going one sample at a time! How bad 
can it be? 

§ But it’s just one sample point!
§ It really only takes one sample point to send Sigmoids

to no man’s land! 
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SGD vs GD - Tradeoff

§ Ok let’s not do that, how bad is my approximation of 
global gradient if I use a batch instead?

§ Law of averages helps a lot. 
§ Gradient of 32 points is already extremely close to that of 

all the dataset. 

1 sample batch Entire 
dataset



Learning rate decay

𝑓(𝑥)

§ Jumping over good solutions: 
§ Decay learning rate
§ We won’t let model jump around too much after some time
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Example

Game over zone! Plateau
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Example

Game over point! 
Saddle point 

Why?
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Momentum

§ Both situations avoidable if we had higher order 
derivatives. Which we don’t!

§ Let’s jump over/speed through them. 
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Momentum

𝑤567 = 	
  𝑤5 − (∝5 𝛻	
  𝑓 𝑤5 + 𝑚	
  𝛻	
  𝑤	
   𝑡 )

𝑤567 = 	
  𝑤5−∝5 𝛻	
  𝑓 𝑤5SGD:

SGD+M:

Momentum can backfire! 
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Adaptive Learning Rate

§ General Idea: Let neurons who just started learning 
have huge learning rate. 

§ Adaptive Learning Rate is an active area of research:
§ Adadelta
§ RMSProp

cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / (np.sqrt(cache) + eps)

§ Adam
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
x += - learning_rate * m / (np.sqrt(v) + eps)
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Comparison
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Critical Points
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Saddle Points

§ Deep Learning Optimization:
§ Deep Learning problems in general have many local 

minimas
§ Many (not all) of them are actually almost as good as 

global minima due to parameter permutation
§ However it is NP-hard to even find a local minima 

§ Lots and lots of saddles in many deep learning 
problems. 
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Why Saddles are Bad
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Detecting Saddles

§ One way to detect saddles:
§ Calculate Hessian at point 𝑥
§ If Hessian is indefinite you have a saddle for sure.
§ If Hessian is not indefinite you really can’t tell.

§ My loss isn’t changing:
§ You are definitely close to a critical point

§ You may be in a saddle point
§ You may be in the local minima/maxima

§ One trick: quickly check the sorrounding
§ Best practical trick if Hessian is not indefinite. 
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Bad Saddle Points

https://arxiv.org/pdf/1602.05908.pdf
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Example

Real Our 
Model

Not the fault of learning rate or momentum



Example
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Bias-Variance

§ Problem of bias and variance
§ Simple models are unlikely to find the solution to a hard 

problem, thus probability of finding the right model is low. 

Real

No longer SOT!
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Bias-Variance

§ Problem of bias and variance
§ Simple models are unlikely to find the solution to a hard 

problem, thus probability of finding the right model is low. 
§ Complex models find many solutions to a problem, thus 

probability of finding the right model is again low. 

MLP is here!
Real
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Regularization

§ Parameter Regularization:
§ Adding prior to the network parameters
§ 𝐿U Norms

𝐿7 𝐿V 𝐿J

Minimize: 𝐿𝑜𝑠𝑠 𝑥; 𝜃 + ∝‖𝜃‖



Parameter Regularization

§ Parameter Regularization:
§ 𝐿7(Lasso) and 𝐿V (Ridge) are the most famous norms used. Sometimes 

combined (Elastic)
§ Other norms are computationally ineffective.

§ Maximum a posteriori (MAP) estimation: 
§ Having priors one the model parameters
§ 𝐿V can be seen as a Gaussian prior on model parameters 𝜃
§ A generalization of 𝐿V is called Tikhonov Regularization with Multivariate 

Gaussian prior on model parameters. 
§ Assuming Correlation between parameters one can build a Mahalanobis

variation of Tikhonov Regularization. 
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Structural Regularization

§ Lots of models can learn everything.
§ Go for simpler ones. 
§ Use task specific models:

§ CNNs
§ RecNNs
§ LSTMs
§ GRUs

Occam’s razor
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Example

§ A neuron learns something that is not useful:
1. Learn something useful
2. Other neurons learn to mitigate it. 

Useless 
neuron

Learning to fight 
useless neuron

Actually learning 
something
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Dropout

§ Simply multiply the output of a hidden layer with a mask of 0s and 
1s (Bernoulli)

𝑥7

𝑥V

𝑥Z

𝑏

Bernoulli

𝑝 = 0.2

𝑝 = 0.8

𝑦 = 0

𝑦
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Dropout

Forward step: multiply with a Bernoulli distribution per epoch, 
batch or sample point. Question: which one works better?  

Backward step: just calculate the gradients same as before. 
Question:  some neurons are out of the network, so how does this 
work?

All good? 

Multiply the weights by 1 − 𝑝"

Nope
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Dropout

Stop co-adaptation + learn ensemble
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Other variations

§ Gaussian dropout: instead of multiplying with a Bernoulli 
random variable, multiply with a Gaussian with mean 1.

§ Swapout: Allow skip-connections to happen 
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Multimodal Optimization

§ Biggest Challenge:
§ Data from different sources
§ Different networks

§ Example:
§ Question Answering: LSTM(s) connected to a CNN
§ Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-

CNNs
§ CNNs work well with high decaying learning rate
§ LSTMs work well with adaptive methods and normal 

SGD
§ MLPs are very good with adaptive methods

CNN

LSTM

M
LP



Multimodal Optimization

§ How to work with all of them?
§ Pre-training is the most straight forward way:

§ Train each individual component of the model separately 
§ Put together and fine tune

§ Example: Multimodal Sentiment Analysis



Pre-training

CNN Sentiment1.

LSTM Sentiment2.

CNN
Visual 
Representaion

3.

LSTM
Verbal 
Representation



Pre-training

Sentiment4.

Visual 
Representaion

Verbal 
Representation

M
LP

CNN

LSTM

5. M
LP Sentiment



Pre-training Tricks

§ In the final stage (5), it is better to not use adaptive 
methods such as Adam. 
§ Adam starts with huge momentum on all the networks 

parameters and can destroy the effects of pretraining. 
§ Simple SGD mostly helpful.

§ Initialization from other pre-trained models:
§ VGG for CNNs
§ Language models for RNNs
§ Layer by layer training for MLPs
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Variational Autoencoders



Auto-encoder

§ A combination of an Encoder and a Decoder encoding 𝑥
and decoding 𝑥

§ The loss reconstruction error of 𝑥.

Encoder Decoder𝑥 𝑥



Variational Inference

§ When inference is not possible
§ Either relax the problem
§ Or use variational methods

§ Variational inference:
§ Unroll through time (MCMC, Gibbs) – RBM
§ Mean-field Approximation (Fully Connected 

CRF)
§ Both cases we have an approximation of the 

variables. 

𝑣7 𝑣V



Variational Auto-encoder

§ We assume exact inference is not possible but 
approximation is possible. 

Encoder

Decoder

𝑥

𝑥

𝑛𝑜𝑟𝑚𝑎𝑙	
  (𝜇, 𝜎)

𝑛𝑜𝑟𝑚𝑎𝑙	
  (𝜇, 𝜎)



Variational Auto-encoder

§ A probability controls the encoder space
§ More meaningful representations

§ Space is split in euclidean-meaningful representations. 
§ The normal distributions have nice properties. 



Questions?


