A\ Language
; =+ Technologies
77 Institute

Lecture 10.1: Probabilistic
Graphical Models

Louis-Philippe Morency
Tadas Baltrusaitis




Lecture Objectives

= Probabilistic Graphical Models

= Markov Random Fields
= Boltzmann/Gibbs distribution
= Factor graphs

» Conditional Random Fields

« Multi-View Conditional Random Fields
= CRFs and Deep Learning

= DeepConditional Neural Fields

= CRF and Bilinear LSTM

= Continuous and Fully-Connected CRFs
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Administrative Stuff
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Lecture Schedule

Classes Lectures

Spring break

3/13 -3/17

Week 9 Multimodal alignment

3/21 & 3/23 e Attention models and multi-instance learning
e Multimodal synchrony and prediction

Week 10 Probabilistic Graphical Models

3/28 & 3/30 e Markov random field and Boltzmmann machines
e Latent, continuous and fully-connected CRFs

Week 11 Mid-term project assignment - Presentations

4/4 & 4/6

4
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Lecture Schedule

Classes Lectures
Week 12 Multimodal fusion
4/11 & 4/13 e Multi-kernel learning and fusion
e Sample-based late fusion
Week 13 Advanced multimodal representations

4/18 & 4/20 e Image and video description
e Guest lecture: Ruslan Salakhutdinov

Week 14 Multilingual computational models
4/25 & 4/27 e Neural Machine Translation

e Guest lecture: Graham Neubig
Week 15 Final project assignment - Presentations
5/2 &5/4

5
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Upcoming Schedule

= Second project assignment
= Midterm presentations (4/4 and 4/6)
= Midterm report (Sunday 4/9)

= Final project assignment
= Final presentation (5/2 & 5/4)
= Final report (Sunday 5/7)
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Midterm Presentation Instructions

= 8-9 minute presentations (12-18 slides)
= +2-3 minutes for written feedback and notes

= All team members should be involved during the
presentation.

= The ordering of the presentations (Tuesday vs.
Thursday) will be inverted based on proposal
presentations.

= The presentations will be from 4:30pm — 6:15 to
give everyone more time

= Let us know if you need to leave before then
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Midterm Project Report Instructions

= PART 1

= Research problem: describe and motivate the research problem you are
planning to work on. Explain why this problem is important for the research
community and, if possible, the society in general. Define in generic terms the
main computational challenges involved in this research problem.

= Related Work: Present an overview of the work happening in this research
area. This section should include about 12-15 citations of prior work, grouped in
similar topics. Also, you should present in more details the 3-4 research papers
most related to your proposed work. The related work section should end
emphasizing how your proposed approach differ from previous work.

= Dataset and Input Modalities: Describe the dataset(s) you are planning to
use for this project. If many options exist, please motivate your choice of
dataset for this research problem. Describe the input modalities and
annotations available in this dataset. Specify which subset of these modalities
and annotations you are planning to use.

Read carefully all the comments we gave
you in the proposal reports. We will be
Language Tec StrlCter fOI’ the mldterm repOrtS




Midterm Project Report Instructions

PART 2

Problem statement: formalize mathematically your research problem. This
should include the mathematical definition of the variables involved in your
problem.

Multimodal baseline models: Describe mathematically at least one
multimodal baseline model for your research problem.

Experimental methodology: Describe your experimental methodology for
evaluating the multimodal baseline model(s).

Results and Discussion: Present in tables and/or figures your experimental
results. This section should include more than re-running existing baseline
models.

Proposed approach: Describe what models you are planning to test for the
final report experiments. Whenever possible, you should write down the loss
function of these models, following the same mathematical formulation
previously used.
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Quick Recap
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

@@ - - -@® @) softmax

Q Deep Multimodal !
Boltzmann machines [O‘O/'O O\OAO
00 ---00) ]
. .
009 - 00 00 ---00)
Text Image
X Y
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Multimodal Representation Learning

X' Y’
Learn (unsupervised) a joint Text Image
representation between multiple 0000 | — |
modalities where similar unimodal ) )
concepts are closely projected. 00 - 00 ]
d Deep Multimodal \ /
Boltzmann machines 000 ---000)
d Stacked Autoencoder / \
00--.00) ]
©0---:00) O0---00]
Text Image
X Y
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Multimodal Representation Learning
Learn (unsupervised) a joint

representation between multiple

modalities where similar unimodal

concepts are closely projected. 0)
(D)
d  Deep Multimodal :
Boltzmann machines / ©
d Stacked Autoencoder L \
“YER Y ..
J  Encoder-Decoder [ ' - ’ |
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Multimodal Representation Learning
Learn (unsupervised) a joint
representation between multiple
modalities where similar unimodal
concepts are closely projected.

(e.g.,
Similarity metric |cosine

/ \ distance)

d Deep Multimodal
Boltzmann machines

00 - 00 .- Q@]
d Stacked Autoencoder 4 ;
00 --- 00 | ..
- Encoder-Decoder ‘ ) o )
d “Minimum-distance” 00---00) |
Multimodal Embedding Te;d 'mayge
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Recurrent Neural Network using LSTM Units

How can we improve reasoning by including prior
domain knowledge?
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Probabilistic
Graphical Models
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Probabilistic Graphical Model

Definition: A probabilistic graphical model (PGM)
IS a graph formalism for compactly modeling joint
probability distributions and dependence structures
over a set of random variables.

= Random variables: X,,...,X_
= P is a joint distribution over X,,...,X,

Can we represent P more compactly?
- Key: Exploit independence properties
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Independent Random Variables

= Two variables X and Y are independent if
» P(X=xlY=y) = P(X=x) for all values x,y

= Equivalently, knowing Y does not change predictions
of X

» |[f X and Y are independent then:

« P(X,Y) = PXIY)P(Y) = P(X)P(Y) @ @
« If X,,..., X, are independent then:

« P(X,,....X ) =P(X,)...P(X)
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Conditional Independence

= X and Y are conditionally independent given Z if
» P(X=xlIY=y, Z=2z) = P(X=xIZ=z) for all values x, vy, z
= Equivalently, if we know Z, then knowing Y does not
change predictions of X @

& ®
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Graphical Model

= Atool that visually illustrate conditional
dependence among variables in a given problem.

» Consisting of nodes (Random variables or
States) and edges (Connecting two nodes,
directed or undirected).

= The lack of edge represents conditional
iIndependence between variables.
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Graphical Model

= Chain, Path, Cycle, Directed Acyclic Graph
(DAG), Parents and Children
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Reasoning

= The activity of guessing the state of the domain
from prior knowledge and observations.
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Uncertain Reasoning (Guessing)

» Some aspects of the domain are often
unobservable and must be estimated indirectly
through other observations.

= The relationships among domain events are
often uncertain, particularly the relationship
between the observables and non-observables.
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Developing a
Graphical Model
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Example: Inferring Emotion from Interaction Logs

Student

(

L

Student
Traits

\

Emotion?

Language Technologies Institute

Tutoring

[Sabourin et al., 2011]
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Example: Graphical Model Representation

[Sabourin et al., 2011]
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Observable environment variables = Survey-based personality variables
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Example: Direct Prediction Approach

[Sabourin et al., 2011]
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(non-observable)

_____________________________________________

Mastery
|dance
Mastery
approach

Observable environment variables = Survey-based personality variables

Evidences
(observable)
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Appraisal Theory of Emotion

[Scherer et al., 2001]
= World
Events
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Argues for importance of If we know two of these
three interrelated concepts variables, we can make
« World events predictions about the third
« Mental state Bod _
« Emotional Response y Response= f(Env., Mind)
Expression

Action tendency

_Physiological response
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Example: Graphical Model Approach

[Sabourin et al., 2011]
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Example: Dynamic Graphical Model Approach
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Example: Dynamic Bayesian Network Approach

[Sabourin et al., 2011]
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What if the “evidences” require neural network
architectures to perform automatic perception?




Markov Random
Fields
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Restricted Boltzmann Machine (RBM)

= Undirected Graphical Model
= A generative rather than discriminative model

= Connections from every hidden unit to every visible
one

= No connections across units (hence Restricted),
makes it easier to train and do inference

Hidden
layer

Visible
layer

Language Technologies Institute



Restricted Boltzmann Machine (RBM)

exp(—E(x, h; 6))
p(x, h; 6) —_ p ; Partition
Zx’ Zh_’ exp(—E(x ) h; 9)) ™ function 2

» Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

= Model parameters 6 = {W, b, a}

E=—-—xWh — bx —ah
E = —Zizj Xih; — Yibix; — zj a; h

Hidden

L ' J \ Y J \ Y J layer
Interaction Bias terms

term Visible

layer
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Boltzmann Machine

exp(—E(x, h; 0))
2y 2pt €Xp(—E(x', h'; 0))

Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

p(x, h;0) =

Hidden
h1h2 s layer
1 z)® @ layer
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Statistical Mechanics: Boltzmann Distribution

[also called Gibbs measure]

exp(—E(h; 6)/kT)
2 exp(—E(h'; 0)/kT)

» probability distribution that gives the probability
that a system will be in a certain state h

p(h;0) =

E(h; 6): Energy of state h
Kk: Boltzmann constant

T: Thermodynamic temperature
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Markov Random Fields

exp(-E(h; 6))  @(h;6)
S exp(—E(R;0)) ~ X, d(R';6)

» Set of random variables H having a Markov
property described by undirected graph

p(H=h;6) =

Potential
Y ™ functions
q)(h, 9) — ¢k(h, ek) i (h;8) >0

k

= exp (— > Ehs ek))
k
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Markov Random Fields

PCh;0) 2Pk, x0)
e PR;0) Xy 2 O (¥, %5 6)

®(h;0) = P12(hq, ho: 012) X
P16(hq, he: O15) X
Pu6(hy, hes Oz6) X

@ @ ¢25(h2, hsigzs) X
@ ¢'4S (_h4, hs; 045) X
@ b34(h3, hyi 034)

p(H="h;0) =
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Markov Random Fields: Factor Graphs

PCh;0) 2Pk, x0)
e PR;0) Xy 2 O (¥, %5 6)

D(h; 0) = ¢p12(hy,hy; 042) X
b16(hy, he; O16) X
b26(hz, he; O26) X
¢b25(hy, hs; O25) X

¢'4S (_h4, hs; 045) X
b34(h3, hyi 034)

p(H="h;0) =

Language Technologies Institute



Markov Random Fields (Factor Graphs)

o) k(%0
P =0) =5 o0 3,5, 0x V% 0)
~

®(h; 0) = ¢p12(hqy,ha; 042) X
P16(hy, he; O16) X
bas(hy, hes O26) X > pairwise
Boc(hy, he: Ops) X potentials
$Pas(ha, hs; O45) X
h34(hs3, hy: 034) ¥

/

Y4 (hy; 01) X YPs(hs; Os)
X pz4s (hz, hy, hs; O345)
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Markov Random Fields — Clique Factorization

PCh;0) 2Pk, x0)
e PR;0) Xy 2 O (¥, %5 6)

Clique factorization T ®(h;0) = ¢p12(hq, hy; 043) X A
' b16(hy, he: 015) X

Pus(hz, hes Oz6) X > bairwise
¢25(_h2, hs: 925) < potentials

¢4S (h4- hs; 045) X

h34(hs3, hy: 034) ¥
/

Y4 (hy; 01) X YPs(hs; Os)
X pz4s (hz, hy, hs; O345)

p(H="h;0) =
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Chain Markov Random Fields (Factor Graphs)

PCh;0) 2Pk, x0)
e PR;0) Xy 2 O (¥, %5 6)

'\

p(H="h;0) =

®(h; 0) = ¢p12(hq, ha: 042) X
ot )% (I,
P341(hs hys O34) X Dy

Y, (hqy; 01) X

Yo (hy; 05) %

Y3 (hs; 03) %

Ya(hags 84)
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Conditional
Random Fields
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Conditional Random Fields (Factor Graphs)

OY,%6) _ Tidr(,%0)
y,d)(y’,x;e) Z,,ercbk(y',x;B)

Py, x;0) = Py12(y1, Y2, x:042) X B

23 (V2. V3, X; 023) X > pairwi§e
potentials

p(ylx; 0) = 5

P34(33, V4. X; O34) X p
Y1(Vy, x: 01) X

o (y2, x;03) X

W3 (y3, x; 03) X

P4 (Va, x; 04)
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Conditional Random Fields (Factor Graphs)

OY,%6) _ Tidr(,%0)
y,d)(y’,x;e) Z,,ercbk(y',x;B)

Py, x;0) = Py12(y1, Y2, x:042) X B

23 (V2. V3, X; 023) X > pairwi§e
potentials

p(ylx; 0) = 5

P34(33, V4. X; O34) X p
Y1(V1, x5 01) X

Yo (2, x2:03) X

W3 (y3, x3;03) %

Vs (Va. X4: 04)
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Conditional Random Fields (Log-linear Model)

p(y|x; 6) = PO.%6) _ 2k P9, %:0)
' Zy, d(y', x;0) Zy, 2 Py, x;0)
_ expQ Ok fi (¥, X))
Zy’ EXP(Zk kak(J"»x))
e ¢ . fr. (v, x): feature function

e Pairwise feature function
fi i, vj, x; 0°)

* Unary feature function
fi(vi, x; 0%)
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Learning Parameters of a CRF Model

argmax log(p(y|x; 6))
y

» Gradient can be computed analytically

= |Inference of marginal probabilities using belief propagation
(or loopy belief propagation for cyclic graphs)

= Optimized with stochastic or batch approaches
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CRFs for Shallow Parsing

3, %60)  exp(Ei Oufu (X))
Zyr d(y', x;0) Zyr EXP(Zk 9kfk()"»x))

>~ How many 8* parameters?

p(¥|x;0) =

~ Whatdid é° learmn™?

~ Whatdid é* learn?

B-NP  I-NP 0
54 By B |5, By 6x |9, By 6
B-NP 8 | 8y fig |9 B fig |9 S Gm
Yoy bay by | Py Ban by | By ba by
54 By B |5, By 6x |9, By 6
I-NP 8 | 8y fig |9 B fig |9 S Gm
Yoy bay by | Py Ban by | By ba by
54 By B |5, By 6x |9, By 6
o) 9:; . Sy fig | 9 | Sy fig | 9 | S fip
Yoy bay by | Py Ban by | By ba by

Labels:

B-NP: Beginning of a noun phrase
I-NP: Continuation of a noun phrase
O: Outside a noun phrase

Dictionary size: 10,000 words
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Latent-Dynamic CRF

P10 = p(ylh; O)p(hIx;0)
h

Al 6) b(h,x,0)
= LX; =
plhix Ly (k' x;8)
hvheEHy, WleEN y,
I-NP
NN Latent variables (e.g., POS tags)

@ h=fh . iz h .. h) wihsre &, & i3, 3

For example:

@ H={Hg_np H1—Np Fol
H = {IJ, l:. ’1 h / / 1‘,1‘. 0,0, 0 !)..}

dog Dictionary size: 10,000 words
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Latent-Dynamic CRF

\AF (A
ey B h2))
p(y|x:0) . ) p‘; U
'lsfh Hn.ml( 9 h )
\o
~ How many 8% parameters? ~ How many 8¢ parameters?
> What did é* learn? »~ Whatdid ¢° learn?

* Intrinsic dynamics
* Extrinsic dynamics

Latent variables (e.g., POS tags)
h=fh . iz h .. h) wihsre &, & i3, 3

For example:

H ={Hg_np Hi1—Np ol

H ={B,, B, BBy I,,1..1.,1, 0,0, 0,0,}
Dictionary size: 10,000 words
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Latent-Dynamic CRF for Shallow Parsing

Experiment — Analyzing latent variables

* Task: Shallow parsing with CoNLL 2000 dataset
* Input features: word feature only
* Output labels: Noun phrase labels

Label State Words  POS | Freq. Label State Words | POS Freg.
That  WDT  0.85 but CC 0.88
1) Select hidden state a” with highsst marcinal: o Twe Toas b‘y‘ N 073
s _ R _ . Who WP 0.33 or IN 0.67
G = alg nmak p(h[ ke x'g) any DT 1.00 4.6 CD 1.00
a an DT 1.00 1 CD 1.00
: a DT 0.98 11 CD 0.62
2) Compute relative frequency for each word T G T —To5—Toor
we PRP 1.00 rose VBD 0.93
he PRP 1.00 have |VBP | 0.92
| NP Nasdaq  NNP 1.00 been VBN 0.97
- Florida NNP  ,0.99 be VB ,0.94
@ cities |NNS  [0.99 to 10 [o092
@ @ Latent variables (e.g., POS tags)

@ h=fh . iz h .. h) wihsre &, & i3, 3

For example:

@ H ={Hg_np Hi1-Np ol
H =B, B, By, By 1,101, 0,,0,, 0, 0,)

dog Dictionary size: 10,000 words
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Hidden Conditional Random Field

Sequence label:
romment ECH2; ) Energy of state -2

Latent variables with shared hidden states:

’l = {}Ll’ ’LZ) }LE) e p ’L(} ¢(h;9)=E[¢k(h;9k)

I: Thermodynamict¢: * Inference is tractable: O(YH?T)
* Linearin sequence length T!

» Parameter learning (0%, 0¢, 67).
* Gradientdescent or L-BFGS
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Learning Multimodal Structure

Modality- structure
 Internal grouping of observations

Modality-shared structure
* Interaction and synchrony

Early / Late fusion is inappropriate =~ —z=-=-------------——-
We saw theyellowdog

- erereety

Early — strong modality can dominate
Late — cross-modality dependency is discarded

Early Late fusion

Language TechnologN




Multi-view Latent Variable Discriminative Models

Modality- structure
 Internal grouping of observations

Modality-shared structure
* Interaction and synchrony

Early / Late fusion is inappropriate

Early — strong modality can dominate

Late — cross-modality dependency is discarded

p(yl x4,x7; 6) = Z p(y,h4, RV |x4,x"; 0)
ha,hY
> Approximate inference using loopy-belief
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CRFs and
Deep Learning
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Conditional Neural Fields

G'(xe, W) = [g1(xi- W), 95(x, - WP), ..., gl (x; - W)

p(y | x;8) « exp {Z 8- f*(yi.x;) + Z 6° ‘fe:}’i'}’iﬂ)}
i i

/_A

Y
f*ix) =1y = y'1- 6(x, w)
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Deep Conditional Neural Fields

G'(xe, W) = [g1(xi- W), 95(x, - WP), ..., gl (x; - W)

p(y | x;0) o exp {Z 8- f*(y.x;) + Z 6° - e:yi'yi—l)}
i /_/\ i

N\
f*ux) =1y =y'1- G(a*, wh)

a' = gG(at"1,89) fori=2.m—1

Iterate
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CRF and Bilinear LSTM , .

ge 6° 6° Output labels:
@ @ / @ . pName entities
Learning:

1. Feedforward . e e
2. Gradient | | \ " |
a) Belief
propagation “ _ _ _

3.Backpropagation
. _ d Input features:
. = 4 » Word embedding

=~ What did 9 paramters learn?

> »

> \What does LSTM parameters learns?
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CNN and CRF and Bilinear LSTM , . ...

Output labels:
@ @ / @ -pName entities
Learning:

1. Feedforward N
2. Gradient
a) Belief
propagation
3.Backpropagation

Input features:
* Character
embedding
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Continuous and
Fully-Connected CRFs
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Continuous Conditional Neural Field

[Baltrusaitis 2014]

Continuous output variables: (e.g., continuous emotional label) 0.2 0.8

Yy (371, x: B0 X 3> =

1
p(y x;0) = 2(x; O)CXP{ZO F(ye,Ye-1, X 0*7)
A

-
S SN S & S I I S Il S ESEEE-. e

> How to solve

\ [Radosavljevic et al., 2010]
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Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label) 0.3 0.2 0.7 0.8 0.5

Wq (371, X: 8410 X 3> 2 , , , , ,
1 g g g g g
POy %0) = 5o Gyexp {ZO-F(yt.y:-l,x,,o") - é} é) é:) “’ é:)
A )
\

4
We saw the yellowdoo
. 4

o

|

W (v, x: @) <
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Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label) 0.3 0.2 0.7 0.8 0.5

o s 990

Multivariate Gaussian distribution:

A AR Y

saw the yellowdog
v, (.."4*‘/ T
- Since CCNF can be viewed as a multivariate Gaussian, the |

: B3 (Va1 prediction of y' is simply the mean value of distribution:
y =arg myax(P(ylx)) =

> Optimized using gradient ascent or BFGS.

- g
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High-Order Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label) 0.3 0.2 0.7 0.8 0.5

o s 9900

Multivariate Gaussian distribution:

G R RN

th 1lowdoc
k-order potential functions:

W (. X4 85 >
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Fully-Connected Continuous Conditional Neural Field

Continuous output variables: (e.g., continuous emotional label)

YWy (7. Xx: 840 X 3" 3

Multivariate Gaussian distribution:

b G s 03 = @‘@%‘b‘@

k-order potential functions:

YWy (3. X435 €45 >

Grid potential functions:

2
fZD(yvy]) = _%511()’! . }’j)

whera 5, ; spocifics which nodes are conmnected.
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Fully-Connected CRF

[Krahenbuhl and Koltun, 2013]

“Semantic” image segmentation

w M R e -

vi: objeclt class label

x;: local pixel features

p(ylx; 6) = *(,; 0) Mixture of kernels
Ey" Cb(y” X; 9) A
C [ \
where  y;(y1,y;:0) = D ul™ (5, 5[0k ™ (x;, %;)
m=1

66
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CNN and Fully-Connected CRF ., .... ,o4

Aeroplane
Coarse Score map
Deep
’ Convolutional > P
Neural ._A“
Network
Final Output Fully Connected CRF Bi-linear Interpolation
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Fully Connected Deep Structured Networks
[Zheng. et al., 2015; Schwing.and Urtasun,..2015]

“Semantic” image segmentation

o

g1|g2|g3|g4|g5

1ejege]e]

Algorithm: Learning Fully Connected Deep Structured Models
Repeat until stopping criteria
I, Forwand pass to compute (e e Ve € Ry € V. Us|ng mean f|e|d
2. Computation of marginals ¢’ (i) via filtering for ¢ & {1.....7} = . .
‘ o ) = ,{ ’ approximation
3. Backiracking through the marginals i, (m)tromt =1 ldowntoi =1
4, Backward pass through definition of tunction via chain rule
5. Parameter updaie
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