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Cell Telephone

Base Station Handsets

Base station talks to all of the handsets in the cell.

Simple solution, each link has a frequency. However, there are a limited
number of frequencies.

We would like to have multiple connections for each frequency. How do we
do this?

EE102A:Signal Processing and Linear Systems I; Win 14-15, Pauly 2



Sharing a Channel

If all of the handsets try to use the same frequency, the signals superimpose,
and we can’t sort them out.
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Two methods (out of many) for sharing the channel are

• Time division multiplexing (TDMA)

• Code division multiplexing (CDMA)
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Time Division Multiplexing

Each transmit bit is divided into several subintervals.

Each handset only talks during its allotted times.
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Here there are four time slots. C1 only transmits during the first time slot,
C2 the second time slot, etc.
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There are a limited number of time slots, limiting the number of
simultaneous users. We could add one more user, but the second would fail.

The received signal bandwidth is increased by a factor of four in this case
(the spectrum is spread by that factor).

Higher data rates can be obtained by allocating one user several time slots.
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Identifying Individual Channels

What we’d like is a ”tag” that allows each channel to be selected, while
ignoring all of the others.

If φ1(t) is the tag, or code for one channel, we send a sequence of
(−φ1(t),+φ1(t),+φ1(t), · · ·) to represent the sequence (−1,+1,+1, · · ·)
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The received signal at one interval contains these superimposed codes from
each channel, weighted by channel gain, transmit power, etc

y(t+ kT ) =
∑
n

Dn,kφn(t)

Dn,k is the information from the nth channel at the kth sample.

How do we choose the code waveforms to make it easy to find the signal of
interest, and ignore all the others?
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Orthogonal Codes

What we want is to choose the φn(t) so that we can extract Dn,k (the
information we are trying to receive) by a simple matched filter,

D̃n,k =
1

T

∫ T

0

φn(t)y(t+ kT )dt

=
1

T

∫ T

0

φn(t)
∑
m

Dm,kφm(t)dt

=
∑
m

Dm,k
1

T

∫ T

0

φn(t)φm(t)dt

If we choose
1

T

∫ T

0

φn(t)φm(t)dt =
{
1 if n=m
0 otherwise
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Then we only get the term we get is the term we want,

D̃n,k = Dn,k

and we ignore all of the other channels!

We want to choose φn(t) to be orthogonal signals.

There are many possible choices. For example

φn(t) = cos(nω0t)

where ω0 = 2π
T . The Dn,k are then the coefficients of the cosine Fourier

series of the signal. This effectively shifts each channel to a different
frequency!

However, what we really want is something very easy to compute ...
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Hadamard Waveforms

Hadamard waveforms are an orthogonal set made up of only ±1’s.

The first couple of Hadamard signals are (in sequency order):
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The signs of the Hadamard signals can be generated (in a different order)
by defining

H2 =

(
1 1
1 −1

)
and then defining

H4 =

(
H2 H2

H2 −H2

)
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


and similarly for H8, H16, ...

It is easy to show that the columns of HN are orthogonal, and hence that
the Hadamard functions with these signs are orthogonal (try this!).

We can tag each channel by assigning it a Hadamard waveform φn(t).

We can continue to add users by adding new codes (at some point we run
out of bandwidth, though).
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Synchronous Detection

Hadamard decoding fails if it is not synchronized

y(t)

y(t− T
2
)

φ2−φ2 −φ1 −φ2 φ1 φ2 −φ2 φ2

φ1 φ1 φ1 φ1−φ1 −φ1 −φ1 −φ1 −φ1
φ1 =

φ2 =

Without a delay, the signal decodes to channel 1.

With a delay, the decoding is completely different.
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The Hadamard codes only work if all of the signals are synchronized.

Fine when the basestation is talking to the handsets (the downlink). The
basestation can synchronize all the signals before transmitting.

Base Station Handsets

Downlink
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Does not work well when the handsets are talking to the basestation (the
uplink).

Each channel has it’s own delay:

Base Station Handsets

Uplink

Even if we could synchronize to one channel, we would be decoding the
other channels with delays, and these interfere with our channel.
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Uplink Codes

Ideally, we would like a code that

• Is orthogonal, so that we can isolate a particular channel

• Has a sharp autocorrelation, so that we can accurately identify the delay
of a channel, and decode it properly.

Unfortunately, Hadamard codes have broad autocorrelations:

! =

! =

Not good for estimating delays!
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We would like autocorrelations like the Barker codes from last week,

! =

However, there are no orthogonal sets of signals with the autocorrelation
properties of Barker codes.
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Pseudo-Noise Codes

Pseudo-noise codes approximate the ideal sharp auto-correlation, orthogonal
codes. These are deterministic codes that approximate the characteristics
of a noise sequence.

They are ±1 with probability of 1/2, and have the run lengths of −1’s and
1’s of a random sequence.

! =

At zero shift, the product of the two is a contant ”1”, and the autocorrelation
is ”N”. At other shifts, the product of each interval is just is likely to be
+1 as −1, so the autocorrelation is small.
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They are not completely orthogonal, although

1

T

∫ T

0

φn(t)φk(t)dt

should be small (again, ±1 equally likely, so the integral will be small).

Other channels appear as noise-like interference.

If we correlate the received signal with φn(t) we get a large signal for the
nth channel, with a peak at the delay for the nth channel.

Adding users looks likes like an increased background noise level, which
softly degrades performance.
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y(t)

(φ1 ! y)(t)

(φ2 ! y)(t)

Each channel properly decoded, with its own delay.

Other channel just adds noise.
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Summary

Orthogonal codes allow users to share a channel.

Hadamard codes work well when the channels can be synchronized, such as
when the basestation is talking to multiple handsets.

For unsynchronized channels, we want both orthogonality, and good
autocorrelations. Psuedo-random codes are a good approximation.

We can continue to add users by handing out more codes, with a soft
degradation of performance. Other users look like an increased noise level.
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