
  1 

EE 301 Lab 7 – Filters in the Frequency Domain  

In this lab, we will be using the frequency response of filters to examine its use in telephone 
touchtone dialing. In touchtone dialing, we are interested in reliably transmitting and detecting 
phone numbers across a noisy audio channel. AT&T’s solution involved the transmission of a 
sum of sinusoids with particular frequencies. 

1 What you will learn 
In this lab we will be examining the frequency response of FIR filters. We will also be 

looking at dual tone multi-frequency signals, generating DTMF signals, bandpass filters and a 
DTMF decoder. 

2 Background Information and Notes 
 

2.1 DTMF signals and Touch ToneTM Dialing 
When a particular number is pressed on a telephone touch pad, a unique tone is generated. 
Each tone is a sum of two sinusoids, and the resulting signal is known as a dual-tone 
multifrequency (or DTMF) signal. Table 7.1 shows the frequencies generated for each 
number/button. For example,  the “6” button will generate a signal which is the sum of a 1336 
Hz and a 770 Hz sinusoid. 

 

 
Table 7.1: DTMF encoding table for touch tone dialing. When any button 

is pressed, the tones of the corresponding row and column are generated. 

 
The set of the seven frequencies listed on Table 7.1 is called the DTMF frequencies. One can see 
that  none of the DTMF frequencies is a multiple of another and so chosen to minimize the 
effects of signal distortions.  

 
The DTMF signal in the time domain does not convey much information, but by using a 
spectrogram we can glean more useful information of the DTMF signal. The spectrogram allows 
one to see the frequency properties of a signal as they change over time. The spectrogram 
involves taking multiple Discrete Fourier Transforms (DFTs) over small, overlapping segments of 
a signal. The resulting DFT magnitudes are then combined in a matrix and displayed as an image. 
A spectrogram of a DTMF signal is shown in Figure 7.1. The x-axis represents time and the y-axis 
represents frequency. The bars represent a sinusoid of a particular frequency existing over some 
time period. Notice that at each time, there are two bars, which show the presence of the two 
sinusoids that make up the DTMF tone. From this one can identify the number that was pressed. 



EE 301 Lab 7 – Filters in the Frequency Domain  

 

 
Figure 7.1: A spectrogram of a DTMF signal. Each horizontal bar indicates a sinusoid that exists 

over some time period. 

 

2.2 Decoding DTMF Signals 
To decode DTMF signals requires several steps. The first two steps will determine the strength 
of the signal at each of the DTMF frequencies. The signal passes through a set of bandpass filters 
with center frequencies at each of the DTMF frequencies. The output of the filters will indicate 
the signal strength. The third step involves detecting and decoding. From the filter output 
strengths, we detect whether or not a DTMF signal is present. If signal is present, we select the 
two filters with the largest output strengths and determine the button that was pressed. A block 
diagram of the DTMF decoder is shown in Figure 7.2. 

 
Figure 7.2: A block diagram of the DTMF decoder system. The input is a DTMF signal, and the 

output is a string of numbers corresponding to the original signal. 
 

Step 1: Bandpass Filters 
From previous labs, you may remember that correlating two signals involves measuring how 
similar those two signals are. Since convolution is similar to correlation except with a time 
reversal, we can use this same idea to design a filter that passes a given frequency. If our filter’s 
impulse response looks similar to the input signal, we will get a large amplitude output signal. 
Otherwise, if it is not similar, it will be a smaller amplitude output signal. 
 

The type of filter we are interested in using is a bandpass filter. The filter’s center frequency 
represents the frequency that we wish to pass. Thus for a bandpass filter with center frequency 
fc, we want our impulse response, h, to be  



 EE 301 Lab 7 – Filters in the Frequency Domain 

 

  3 

 h k {  
 sin 2 /      0

0                            else

c sf k f k M  
    (7.1) 

 
The above equation is a FIR filter with order M. (Note that the support length of the impulse 
response is M + 1.) M is a design parameter, but there is a tradeoff. If M is large, one can obtain 
a better differentiation between passed frequencies and rejected frequencies, however more 
computation is required to perform the convolution.  
 
Since we have seven DTMF frequencies, we will need seven bandpass filters in our system. Each 
bandpass filter will have a different value of M. 
 
In order to know how good a bandpass filter is at rejecting unwanted DTMF frequencies, we will 
define the gain-ratio, R , which is, 

 

 

 ˆmax

cf
R

f


Η

Η
     (7.2) 

where cf  is the  center frequency,Η is the frequency response and f̂  is in the set of DTMF 

frequencies, where ˆ
cf f  . R  is defined to be the ratio of the filter’s gain at its center 

frequency to the next-highest gain at one of the DTMF frequencies. It is desirable to have a high 
gain-ratio because it indicates that the strength at which the filter is rejecting the other possible 
frequencies. 
 
Since we need to compare the outputs of a variety of bandpass filters, one need to normalize 
each filter by the center frequency gain. The M  value and the center frequency gain will need to 
be recorded. 
 
Step 2: Determining filter output strengths 
In order to measure the strength of the filter’s output, we need to measure the envelope of the 
filter outputs. To just follow the signal’s positive envelope of the signal, we can eliminate the 
negative portion of the signal. A half-wave rectifier will eliminate all parts of the signal below 
zero. Alternatively , a full-wave rectifier will take the absolute value of the signal. In practice, 
half-wave rectifiers are easier to design. However, full-wave rectifiers are preferable, and easy 
to implement in MATLAB. Thus, for this lab we will use full-wave rectifiers. Figure 7.3 shows the 
output of these two types of rectifiers. 



EE 301 Lab 7 – Filters in the Frequency Domain  

 

 
Figure 7.3: A comparison of half-wave and full-wave rectification. Notice that full-wave 

rectification allows us to achieve a higher output signal level after lowpass filtering. 

 
The rectified signal is then passed through a smoothing filter. The output will be a nearly 
constant signal that indicates the strength of the filter’s input at the center frequency of the 
filter. This smoothing  will be performed by using a simple moving average filter with the 
following impulse response, 

LPh {  

1 
    0

1

0                            else

LP

LP

k M
M

 
     (7.3) 

    

The filter order is MLP. The value MLP (and subsequently the corresponding strength of the 
smoothing filter) is a design parameter, and there is a tradeoff between the amount of 
smoothing and transient effects. If the filter’s impulse response is not long enough, the output 
signal will continue to have significant variations. If the filter’s impulse response is too long, 
transient effects will dominate in the output. Also, if it is too short, the system may smooth over 
short DTMF tones or periods of silence. In our decoder system, the same smoothing filter is 
applied to the output of each filter. The results of smoothing for half-wave and full-wave 
rectified signals is shown in Figure 7.3. 

 
Step 3: Detect and Decode 
Once the outputs of the bandpass filters are processed, we are now ready to detect whether or 
not a DTMF tone is present or not, and, if it is, determine which button was pressed to generate 
it.  

 
The first step is to detect whether a DTMF tone is actually present at a particular time. To detect 
the presence of a DTMF tone one can compare the rectified and smoothed bandpass filter 
outputs, to a threshold, c. If a signal is greater than the threshold, then we decide that a DTMF 
tone is present.  The threshold should be high enough that noise will not trigger the detector 
during a period of silence, but low enough that noise won’t pull the signal below the threshold. 
 
When the input signal is noisy, there is another problem during the transient portions at the 
beginning and end of a DTMF tone. Near the threshold crossing, the noise could cause the signal 
to cross the threshold several times and could cause a single DTMF tone to be decoded as 



 EE 301 Lab 7 – Filters in the Frequency Domain 

 

  5 

multiple button presses. To remedy this problem, we could only make a decision every 100 
samples.  
 
The second step is to decode or decide which button was pressed to generate a particular DTMF 
tone that we detected in the previous step. We first determine which two bandpass filters have 
the largest output at each time when a DTMF tone was detected. Then we have a look-up table 
to see which button was pressed.  
 
The third step simply combines adjacent, identical numbers in the decoded sequence. A 
sequence of identical numbers is replaced by a single number. However  for this process to work 
correctly, an detection of when no tone is present is also needed. Otherwise, any repeated 
button press would be decoded as only a single button press. 

 

2.3 Searching Parameter Spaces 
The basic idea in looking for a “good value” of a design parameter is that we want to get in the 
ballpark before we concern ourselves with the optimum solution. First think about varying the 
parameter over factors of 2 or factors of 10. For example you could try  0.01, 0.1, 1, 10, and 100 
to get a general understanding of how the system responds to the varying parameter. Once that 
is understood, a smaller range could then be analyzed to obtain the optimum value. 

 

2.4 Some MATLAB commands for this lab 
 Computing the frequency response of an FIR filter: The MATLAB command freqz returns the 

frequency response of a filter at a specified number of discrete-time frequencies. The general 
usage of freqz for causal FIR filters is: 

 
>> [H,w] = freqz(bb,1,n); 
 
Here, bb is the set of filter coefficients (i.e., the impulse response) of the FIR filter, n is the 
number of points in the range [0; _) at which to evaluate the frequency response, H is the 
frequency response, and w is the set of n corresponding discrete-time frequencies, which are 
spaced uniformly from 0 to _. The frequency response, H, is a vector of complex numbers which 
define the gain (abs(H)) and phase-shift (angle(H)) of the filter at the given frequencies. 

 
Alternatively, we can evaluate the frequency response only at a specified set of frequencies by 
replacing with a vector of discrete-time frequencies. Thus, the command 
 
>> H = freqz(bb,1,[pi/3, pi/2, 2*pi/3]); 
 

returns the frequency response at the discrete-time frequencies  π/3, π/2 and 2π/3. 

When we apply a filter to a sampled signal with sampling frequency fs (in samples per second), 
we can evaluate the frequency response at the discrete-time frequencies corresponding to a 
specified set of continuous time frequencies in Hertz in the following manner: 
 
>> H = freqz(bb,1,[100 200 400 500]/fs*2*pi); 
 
This converts the specified continuous-time frequencies into discrete-time frequencies and 
evaluates the frequency response at those points. 

 
 Creating matrices of ones and zeros: In order to create arrays of arbitrary size containing only 

ones or only zeros, we use the MATLAB ones and zeros commands. Both commands take the same 



EE 301 Lab 7 – Filters in the Frequency Domain  

 

set of input parameters. If only one input parameter is used, a square matrix with the specified 
number of rows and columns is generated. For instance, the command 
 
>> x = ones(5); 
 
produces a 5 x 5 matrix of ones. Two parameters specify the desired number of rows and 
columns in the matrix. For instance, the command 
 
>> x = zeros(4, 8); 
 
produces a 4 x 8 matrix (i.e., four rows and eight columns) containing only zeros. To generate 
column vectors or row vectors, we set the first or second parameter to 1, respectively. 

 

 The DTMF Dialer: dtmf_dial.m is a DTMF “dialer” function. It takes a vector of button presses 
(i.e., a phone number) and produces the corresponding audio DTMF signal. Note that this 
function as provided is incomplete; you will be directed to complete it in the laboratory 
assignment. (The lines of code that you need to complete are marked with a ?.) To produce the 
DTMF signal that lets you dial the number 555-2198, use the command: 
 
>> signal = dtmf_dial([5 5 5 2 1 9 8]); 
 
An optional second parameter will cause the function to display a spectrogram of the resulting 
DTMF signal: 
 
>> signal = dtmf_dial([5 5 5 2 1 9 8],1); 
 
This function assumes a sampling frequency of 8192 samples per second. Each DTMF tone has a 
length of 1/2 second, and the tones are separated by 1/10 second of silence. Note that the 
number 10 corresponds to a '#', 11 corresponds to a '0', and 12 corresponds to a '*'. 

 

 The DTMF Decoder: dtmf_decode.m is an (incomplete) DTMF decoder function. (Once again, the 
lines of code that you need to complete are marked with a ?.) It takes a DTMF signal (as 
generated by dtmf_dial) and returns the sequence of button-presses used to create the signal. 
Thus, if our DTMF signal is stored in signal, we decode the signal using the command: 
 
>> decoded = dtmf_decode(signal); 
 
An optional second parameter will cause the function to display a plot of the smoothed and 
rectified outputs of each bandpass filter: 
 
>> decoded = dtmf_decode(signal,1); 

 
 Bandpass Filter Characterization: dtfm_filt_char.m is a function that we will use to help us 

calculate gain-ratios for the bandpass filters used in the DTMF decoder. We use the function to 
focus on one of the bandpass filters at a time. The function takes two parameters: the order, M, 
of one of the bandpass filter’s impulse responses and the center frequency in Hertz, frq, of that 
filter. The function returns a vector containing the gain (i.e., the magnitude of the frequency 
response) at each of the DTMF frequencies, from lowest to highest. It also produces a plot of the 
frequency response with locations of the DTMF frequencies indicated. Use the following 
command to execute the function: 
 
>> gains = dtmf_filt_char(M,frq); 



 EE 301 Lab 7 – Filters in the Frequency Domain 

 

  7 

 
A second optional parameter lets you suppress the plot: 

 
>> gains = dtmf_filt_char(M,frq,0); 

 
 Testing the robustness of the DTMF decoder: dtmf_attack.m is a function that tests the DTMF 

decoder in the presence of random noise. This function generates a standard seven digit DTMF 
signal, adds a specified amount of noise to the signal, and then passes it through your completed 
dtmf_decode function. The decoded string of button presses is compared to those that 
generated the signal. Since the noise is random, this procedure is repeated ten times. The 
function then outputs the fraction of trials decoded successfully. The function also displays the 
plot from the last execution of dtmf_decode. (Note: since each call to dtmf_decode takes a little 
time, this function is rather slow. Be patient with it.) 
 
For instance, to test the system with a noise power of 2.5, we use the following command: 
 
>> success_rate = dtmf_attack(2.5); 
 
The result is a number that provides the fraction of the 10 trials that were successful. Although 
dtmf_attack is a complete function, it calls dtmf_dial and dtmf_decode, each of which you must 
complete. 

3 Guided Exercises 
 

1. (The DTMF dialer.) Before we can decode a DTMF signal, we need to be able to produce DTMF 
signals. In this problem, we’ll write a function that takes a phone number and produces the 
corresponding DTMF signal, just like the telephone would produce if you dial the number. 
 
Download the function dtmf_dial.m, which is a nearly complete dialer function. You simply need 
to replace the question marks by code that completes the function. The first missing line of code 
generates a DTMF tone for each number in the input and appends it to the output signal. The 
second line of code appends a short silence to the signal to separate adjacent DTMF tones. 

o Complete the function and include the code in your lab report. 
o Using your newly completed dialer function, execute the following command to create a 

DTMF signal and display it’s spectrogram: 
 
>> signal = dtmf_dial([1 2 3 4 5 6 7 8 9 10 11 12],1); 
 
Include the resulting figure in your report. Note how each button press produces a 
different pattern on the spectrogram. 

o What is the phone number that has been dialed in Figure 7.1? 
 

2. (The bandpass filters of the DTMF Decoder.) As we have noted, a key part of the DTMF decoder is 
the set of bandpass filters that is used to detect the presence of sinusoids at the DTMF 
frequencies. We have specified a general form for the bandpass filters, but we still need to 
choose the filter orders and create their impulse responses. In this problem you will be 
identifying good values for M. 
 
(a) (The impulse response of one bandpass filter.) First, we need to be able to create the impulse 
response for a bandpass filter. Using equation (7.1) with a sampling frequency fs = 8192 Hz and M 



EE 301 Lab 7 – Filters in the Frequency Domain  

 

= 50, use MATLAB to create a vector containing the impulse response, h, of a 770 Hz bandpass 
filter. 

o What is the command that you used to create this impulse response? 
o Use stem to plot your impulse response. 

 
(b) (The frequency response of one bandpass filter.) When we talk about the response of a filter 
to a particular frequency, we can think about filtering a unit amplitude sinusoid with that 
frequency and measuring the amplitude and phase shift of the resulting signal. We can certainly 
do this in MATLAB, but it’s far simpler to use the freqz command. Here, you’ll use freqz to 
examine the frequency response and gain-ratio of a bandpass filter like the ones we’ll use in the 
DTMF decoder. 

o Use freqz to calculate the frequency response of your 770 Hz bandpass filter at all seven 
of the DTMF frequencies4. Calculate the gain at each frequency, and include these 
numbers in your report. 

o From the frequency response of your filter at these frequencies, calculate the gain-ratio, 
R. 
 

 (c) (Choosing M for this bandpass filter.) Now, we’d like to see what happens when we change M 
for your 770 Hz bandpass filter. We’ve provided you with a function that will facilitate this. 
Download the file dtmf_filt_char.m. This function will help you to visualize the frequency 
response of these filters and to determine their gain at the DTMF frequencies. 

o Use this function to verify that the gains you calculated in Problem 2b were correct. 
o Include the frequency-response plot that dtmf_filt_char produces in your report. 
o The frequency response of this filter is characterized by several “humps” which are 

typically called lobes. Describe the frequency response in terms of such lobes. Vary M 
and examine the plots that result (you do not need to include these plots). Describe the 
differences in the frequency response as M (which represents the length of the filter’s 
impulse response) is changed. 

o What happens to the relative heights of adjacent lobes as M is changed? 
o What features of the filter’s frequency response contribute to the gain ratio R? 
o For what values of M do we achieve gain ratios greater than 10? 

 
(d) (A function for computing gain ratios.) You’ll need to compute the gain-ratio repeatedly while 
finding good design parameters for the bandpass filters, so in this problem you’ll automate this 
task. Write a function that accepts a vector of gains (such as that returned by dtmf_filt_char) and 
computes the gain ratio, R. (Hint: This is a simple function if you use the sort command. You can 
assume that the center frequency gain is the largest value in the vector of gains.) 

o Include the code for this function in your report. 
 

(e) (Specifying the bandpass filters.) For each bandpass filter that corresponds to one of the 
seven DTMF frequencies, we want to find a choice of M that yields a good gain ratio but also 
minimizes the computation required for filtering. 
 
To do this, for each bandpass filter frequency, use dtmf_filt_char and your function from 
Problem 2d to calculate R for all M between 1 and 200. Then, plot R as a function of M. You can 
save some computation time by setting the third parameter of dtmf_filt_char to zero to suppress 
plotting. You should be able to identify at least one local maximum5 of R on the plot. The 
“optimal” value of M that we are looking for is the smallest one that produces a local maximum 
of R that is greater than 10. 

o Create this plot of R as a function of M for the bandpass filter with a center frequency of 
770 Hz. Include the resulting plot in your report. 

o Identify the “optimal” value of M for this filter, the associated center frequency gain, 
and the resulting value of R. 



 EE 301 Lab 7 – Filters in the Frequency Domain 

 

  9 

o Repeat the above two steps for the remaining six bandpass filters. (You do not need to 
include the additional plots in your report.) Create a table in which you record the 
center frequency, the optimal M value, the associated center frequency gain, and the 
resulting value of R. 

 
3. (Completing the DTMF decoder.) Now we have designed the set of bandpass filters that we need 

for the DTMF decoder. In this problem, we’ll use the parameters that we found to help us 
complete the decoder design. 
 
Download the file dtmf_decode.m. This function is a nearly complete implementation of the 
DTMF decoder system described earlier in this lab. There are several things that you need to add 
to the function. 
 
(a) (Setting the M’s and the gains of the bandpass filters.) First, you need to record your 
“optimized” values of M and the center frequency gains in the function. Replace the question 
marks on by a vector of your optimized values of M. They should be in order from smallest 
frequency to largest frequency. Do the same for the variable G, which contains the center 
frequency gains. 

o Make these modifications to the code. (At the end of this problem, make sure that you 
include your completed function in your report.) 
 

(b) (Setting the impulse responses of the bandpass filters.) Also, you need to define the impulse 
response for each bandpass filter. Use equation (7.1) for this, where the filter’s order is given by 
M(i). 

o Make this modification to the code. 
 

(c) (Selecting the order of the post-rectifier smoothing filter.) Next, you need to specify the post-
rectifier smoothing filter, h_smooth. Temporarily set both h_smooth and threshold equal to 1 
and run dtmf_decode on the DTMF signal you generated in Problem 1. This function displays a 
figure containing the rectified and smoothed outputs for each bandpass filter. With h_smooth 
equal to 1, no smoothing is done and we only see the results of the rectifier in this figure. We will 
use moving average filters of order MLP , as defined by the MATLAB command 
 
>> h_smooth = ones(M_LP+1,1)/(M_LP+1); 
 
We want the smoothed output to be effectively constant during most of the duration of the 
DTMF tones, but we don’t want to smooth so much that we might miss short DTMF tones or 
pauses between tones. 

o Examine the behavior of the smoothed signal when you replace with moving average 
filters with order MLP equal to 20, 200, and 2000. Which filter order, MLP gives us the 
best tradeoff between transient effects and smoothing? 

o Set h_smooth to be the filter you have just selected. 
 

(d) (Detection threshold.) Finally, you need to identify a good value for threshold. threshold 
determines when our system detects the presence of a DTMF signal. dtmf_decode plots the 
threshold on its figure as a black dotted line. We want the threshold to be smaller than the large 
amplitude signals during the steady-state portions of a DTMF signal, but larger than the signals 
during the start-up transients for each DTMF tone. (Hint: When choosing a threshold, consider 
what might happen if we add noise to the input signal.) 

o By looking at the figure produced by dtmf_decode, what would be a reasonable 
threshold value? Why did you choose this value? 

o Set threshold to the value you have just selected. 



EE 301 Lab 7 – Filters in the Frequency Domain  

 

o Now, execute dtmf_decode and include the resulting plot in your report. (Note: You can 
include this plot in black and white, if you like.) 

o dtmf_decode should output the same vector of “button presses” that was used to 
produce your signal. What “button presses” does the function produce? Do these match 
the ones used to generate the DTMF signal? If not, you’ve probably made a poor choice 
of threshold. 
 

(e) Remember to include the code for your completed dtmf_decode function in your report. 
 

4. (Robustness of the DTMF decoder to noise.) In the introduction to this lab, we indicated that we 
would be transmitting our DTMF signals over a noisy audio channel. So far, though, we have 
assumed that the decoder sees a perfect DTMF signal. In this problem, we will examine the 
effects of additive noise on the DTMF decoder. 
 
 Download the file dtmf_attack.m. Execute dtmf_attack with various noise powers. Find a value 
of noise power for which some but not all of the trials fail. 

o What value of noise power did you find? (Hint: use the parameter searching method 
discussed in the background section to speed your search). 

o Make a plot of the fraction of successes versus noise power. Include at least 10 values 
on your plot. Make sure that your minimum noise power has a success rate at (or at 
least near) 1 and your maximum noise power has a success rate at (or near) 0. Try to get 
a good plot of the transition between high success rates and low success rates. While 
making this plot, pay attention to the types of errors that the decoder is making. 

 

4 Review 
1. None. 

5 Lab Report 
 

1. The first page of your Lab report should be a cover sheet with your name, USC 
ID and Lab #. Please note that all reports should be typed. 

2. Answer all the questions which were asked in the lab report. Kindly display the 
code lines you executed to arrive at your answer along with figures to support 
them. Please give written explanation or put comment lines where necessary. 
Please note that each figure should have proper labels for the x and y axis and 
should have a suitable title. 

3. Answer the review questions. 
4. Submit a printout of your completed M-file documenting all the lab exercises. 

 
 
 
 
 
This lab document and the figures contained were adapted from a University of Michigan Signals and Systems course lab handout 
(2002). 


