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EE 301 Lab 4 –Signal Correlation and Detection 

In this lab we will gain experience with the signal correlation and detection in 
Matlab.  

1 What you will learn 
In this lab assignment, we will be examining a computational method called 
correlation to detect the presence of a signal with a known form. This computation 
can also measure the similarity between two signals. We will see its application 
when sending several streams of information simultaneously over a single 
communications channel, as well as sending information (for example a radar 
signal) in a noisy environment. 

2 Background Information and Notes 
2.1 Correlation 

Let us say that we have two discrete-time signals, x[n] and y[n]. The following 
formula gives the correlation, C(x,y), between the two signals, 
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where n1 and n2 define the computational interval. This will be referred to as “in-
place” correlation. Notice that correlation is achieved by multiplying the two signals 
together and then summing their product.  
 

 
Figure 2.1: Examples of positively correlated, uncorrelated, and anticorrelated 

signals. 
 

Consider the examples in Figure 2.1. In the left-most column, C(x,y) > 0, which is 
called positively correlated. This indicates that the signals are more similar than 
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they are dissimilar. In the middle column, C(x,y) is zero, and thus the two signals are 
said to be uncorrelated. In the right-most column C(x,y) < 0, which means that the 
two signals are anticorrelated and are mostly dissimilar.  
 The two signals on the left most-column are identical. This is a special case and 
looking at equation 2.1, one sees that C(x,x) is simply the energy of x[n]. When 

     ,C x y E x E y (as in the case of the left-most column), the two signals are 

perfectly correlated and represent the maximum possible correlation value.  
We can then define a normalized correlation, CN(x,y) to be, 
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The value CN(x,y) will lie within the range -1 and 1. A normalized correlation value of 
1 indicates they are perfectly correlated and a value of -1 indicates they are 
perfectly anticorrelated. When two signals have a normalized correlation of 1, they 
are perfectly correlated; if they have a normalized correlation of -1, then they are 
perfectly anticorrelated. 
 
2.2 Running correlation 

We can now modify the correlation equation to calculate the distance to a 
certain object. If we transmit a radar pulse, x[n], wait for the pulse to reflect off of 
an object and receive the returned signal, y[n], we can say that y[n] is a delayed 
version of x[n], or mathematically, 

y[n] = x[n - n0]     (2.3) 
The value of n0 is unknown but is proportional to the distance of the object. Thus 

our task is to find the value of n0. 
The process of determining n0 goes as follows. We first guess that n0 is zero, 

calculate the correlation which is just the correlation between x[n] and y[n], and 
call it r[0]. Let’s now say that n0 is equal to one. We will shift x[n] one sample, and 
now correlate x[n-1] with y[n]. This correlation value will be stored as r[1]. 
Continuing on, the general formula of this procedure is then, 
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Once r[k] equals the value of the correlated signals x[n] and y[n], we know the 
value of n0. This computation is known as running correlation. 

 
An algorithm for running correlation 
Here, we provide an algorithm for running correlation. In this algorithm we refer to 
the signal we are looking for (i.e. the transmitted radar signal) as x[n], following 
(2.4). The algorithm proceeds as: 
 
1. Initialize an input buffer to all zeros. The input buffer is an array with a length 

that is equal to the duration of x[n]. 
2. For each sample that comes in: 
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(a) Update the buffer with the method below: 
i. Discard the sample at the beginning of the buffer. 
ii. Shift the rest of the samples one place towards the beginning of the 

buffer. 
iii. Insert the incoming sample at the end of the buffer. 

(b) Initialize a running sum variable to zero. 
(c) For each position, n, in the buffer: 

i. Multiply the nth position in the input buffer by the nth sample of x[n]. 
ii. Add the resulting product to the running sum. 

(d) Output the running sum as the next sample of the correlation signal. 
 

This algorithm will be implemented in the guided exercises of this lab assignment. It 
is good to note that (a) can be accomplished using a single line of code. Similarly 
parts (b) through (d) can be implemented in a single line of code using one of 
Matlab’s built in functions and its vector arithmetic capabilities. 

 
2.3 Using running correlation for signal detection 

The running correlation example for the radar pulse is an idealized system. In 
reality, the pulse will incur multiple reflections, become distorted or pass through a 
noisy system. Thus, it is not possible to find an exact numerical match to the 
correlated signals. The remedy to this problem is to define a threshold, cT, that will 
indicate if a signal is present or not.  For the radar example, let us define the 
threshold to be cT = E(x)/2. 

 
2.4 Using correlation for simultaneous communications 
 We may also use the correlation detector to transmit multiple (binary) signals on 
a single channel. Each sender will have their own specific code signal that the receiver 
will use to decipher their message. The code signals may look like those shown in Figure 
2.3. 
 

 
Figure 2.2: Example of code signals for simultaneous communications 

 
In Figure 2.2 the code signals are made up of regions of constant 1 or -1, specifically 
each consists of ten chips. To send a binary “one,” the sender sends their code signal. To 
send a binary “zero,” the sender sends a negated version of their code signal. The 



EE 301 Lab 4 – Signal Correlation and Detection  

 

receiver then correlates the message (in-place) with the sender’s code signal. When the 
correlation is greater than zero, the receiver records a “one” and if the correlation is less 
than zero, the receiver records a “zero”. 
 The system is designed in such a way that the correlation between two different 
code signals (or between a code signal and noise) is reasonably small. Notice however 
that longer code signals have greater energy and are more easily distinguished from 
other code signals or from noise.  
 The description above involved using in-place correlation, however running 
correlation may also be used (and will be implemented in this guided exercises), as long 
as we sample the resulting correlation signal at the appropriate times. For example if 
the code signals are N samples long, we want to pick off the (k x N)th sample to decode 
the kth transmitted bit. 
 
2.5 Noise, detector errors, and setting the threshold 

 
Due to a noisy environment, the radar detector we designed has two types of 

error: a false alarm and a miss. A false alarm occurs when we detect a reflection when 
no actual reflection exists. This is found when the correlation of the noise with the 
transmitted signal exceeds the threshold. A miss occurs when the detector fails to 
detect a real reflection because the noise causes the correlation to drop below the 
threshold. The trade off is that raising the threshold decreases the likelihood of a false 
alarm, while lowering the threshold decreases the likelihood of a miss. 

We can then calculate the probability of a false alarm and a miss by knowing the 
noise signal, n[k]. This is simply done by recording a signal when no radar pulse is 
transmitted. We will then calculate the running correlation between n[k] and the radar 
pulse we intend to transmit, x[k]. If we call the resulting correlation signal nc[k], all that 
is needed is a test whether a sample has exceeded the threshold. It turns out that a 
threshold of E(x)/2 yields the same number of false alarms as misses, if the distribution 
of nc[k] is symmetric. We will also see that a histogram of the values in nc[k], can be 
used to determine the error rates.  

 
2.6 Some useful Matlab commands 

  To calculate the in-place correlation of signals x and y you can use: 
 
>> c_xy = sum(x.*y); 
 
Note that x and y need to be the same size. 
 

 To shift values in a buffer (which is just a vector) and append new values, discard 
the number at the beginning (or end) of the buffer and append the new value. If 
the buffer is named b, we can do this by either the command b = b(2:end) or b = 
(1:end-1). We can then append the new number by using an array concatenation 
operation. For example, if b is a row vector and we’d like to append a new value 
at the beginning and drop the last value in the buffer, we’d use the code line 
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>> b = [new_sample, b(1:end-1)]; 
 

 To count how many elements in a vector meet a certain condition we can use 
the count command in Matlab. The following code will count the number of 
elements in v that equal 3, 
 
>> count = sum( v ==3 ); 

3 Guided Exercises 
 

1. Download the file code_signal.m and use it to create the following signals: 

 

>> code 1 = code_signal(75,10); 

>> code 1 = code_signal(50,10); 

>> code 1 = code_signal(204,10); 

 

(a) Use subplot and stairs to plot the three code signals on three separate axes in 

the same figure. After plotting each signal, call axis([1, 100, -1.5, 1.5]) to 

make sure that the signal is visible. 

 Include your figure, with axis labels on each subplot, a figure number 

and caption, and the generating code in your report. 

 

(b) For each of the three signals generated above, calculate: 

 Their mean values 

 Their energies 

 

(c) Calculate the “in-place” correlation for the following pairs of signals. 

 Code 1 and code 2 

 Code 1 and code 3 

 Code 2 and code 3 

 

(d) Which of the above pairs are: 

 Positively correlated? 

 Uncorrelated? 

 Anticorrelated? 

 

2. Download the file run_corr.m. run_corr.m is a “skeleton” file for an 

implementation of the “real-time” running correlation algorithm described in 

Section 2.2. It accepts two input signals, performs running correlation on them, 

and produces the correlation signal with a length equal to the sum of the lengths 

of the input signal minus one. 
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(a) Complete the function, following the algorithm given in Section 2.2. You can 

use the completed demo version of the function, run_corr_demo1.p to check 

your function’s output. 

 Include your Matlab code in your report. 

(b) Use run_corr.m to compute the running correlation between the following 

pairs of signals, and plot the resulting correlation signals on the same figure 

using subplot. 

 Code1 and code 2 

 Code3 and itself 

(c) When performing running correlation with a signal and itself, the resulting 

correlation signal has some special properties. Look at the correlation signal 

that you computed between code3 and itself. 

 Is the correlation signal symmetric? It can be shown that it should be. 

 What is the maximum value of the correlation signal? How does this 

relate to the energy of the code3? 

 

3. Download the file lab4_data.mat and load it into your workspace. The file 

contains the variable dsss, which we will use in this problem. dsss is a signal that 

is the sum of four sequences of different code signals corresponding to bit 

sequences from four different users. One of the code signals is a ten chip signal 

corresponding to the integer 170, while another is a six chip signal corresponding 

to the integer 25. The other two code signals are unknown to us. In this problem, 

we will try to extract the bit sequences for the known code signals from dsss. Start 

by generating the following code signals: 

 

>> cs1 = code_signal(170,10); 

>> cs2 = code_signal(25,6); 

 

(a) Use subplot and stairs to plot dsss, cs2 and cs2 on three separate axes of the 

same figure. 

(b) Start by using run_corr to correlate the received signal dsss with the longer 

code signal cs1. Call the resulting signal cor1. Now to decode the sequence of 

message bits from this user, we need to extract the appropriate samples from 

cor1. That is, we need to extract just those samples of the running correlation 

that correspond to the appropriate in-place correlations. We can do this in 

Matlab using the following command: 

 

>>sub_cor1 = cor1(length(cs1):length(cs1):length(cor1)); 

 

Each sample of sub_cor1 is used to make the decision about one of the user’s 

bits. When it is greater than zero, i.e. the correlation of the received signal 

with the code signal is positive, the decoder decides the bit is 1. When it is 

less than zero, the decoder decides the user’s bit is 0. 

 On two subplots of the same figure, use plot to plot cor1, and stem to 

plot sub_cor1. 
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 Decode the sequence of bits. You can do this visually or with Matlab. 

Hint: The sequence is 10 bits long, and the first 3 bits are “011” 

 

(c) Repeat the procedure in a and b above, this time using the code signal cs2. 

Call your correlation signal cor2, and the vector of extracted values sub_cor2. 

 On two subplots of the same figure, use plot to plot cor2 and stem to 

plot the signal sub_cor2. 

 Decode the sequence of bits. Hint: there are 17 bits in this sequence. 

 Since the code signal cs2 has less energy (because it is shorter), there 

is a greater chance of error. Are there any decoded bits that you 

suspect might be incorrect? Which ones? Why? 

 

4. lab4_data.mat contains three other signals: radar_pulse, radar_received, and 

radar_noise. The received signal contains several reflections of the transmitted 

radar pulse and noise. The signal radar_noise contains noise with similar 

characteristics to the noise in the received signal without the reflected pulses. 

 

(a) First let’s take a look at the first two signals. 

 Calculate the energy of radar_pulse, E(x). 

 Use subplot to plot radar_pulse and radar_received in separate axes of 

the same figure. 

 Can you identify the reflected pulses in the received signal by visual 

inspection alone? 

(b) Use run_corr to correlate radar_received with radar_pulse. 

 Plot the resulting correlation signal. 

 Where are the received pulses? Visually identify simple locations of 

each pulse in the correlation signal. 

 Given the speed of light is 3 x 10
8
 m/s and the sampling frequency of 

the detector is 10
7
 samples per second, what is the approximate 

distance to each object? (Remember that the radar pulse must travel to 

the object and then back again.) 

 

(c) In a real radar detector, the correlation signal would be compared to a 

threshold to perform the detection. To estimate the error rates for such a 

detector, let’s consider a threshold that is equal to one-half the energy of the 

transmitted pulse, i.e. c = E(x)/2. Perform running correlation between 

radar_pulse and radar_noise call the resulting correlation signal noise_c. 

 Plot noise_c. 

 For how many samples is noise_c greater than this threshold? Use this 

value to estimate the false alarm rate. 

 For how many samples is noise_c less than this threshold minus the 

energy of the transmitted pulse? Use this value to estimate the miss 

rate. 

 What is the total error rate for this threshold? 

 

(d) We can also use a histogram to judge the number of errors. 
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 Use hist and plot the histogram of noise_c using 100 bins.  

 Describe how you could derive the error numbers in problem 4c from 

the histogram. 

 

(e) Suppose that the detector false alarms are considered to be more serious than 

detector misses. Thus, we have determined that we want to raise the threshold 

so that we achieve a false alarm rate of approximately 0.004. Find a threshold 

that satisfies this requirement. 

 What is your threshold? 

 What is the false alarm rate on this noise signal with your threshold? 

 What is the miss rate on this noise signal with your threshold? 

 What is the total error rate for the new threshold? Compare this to the 

total error rate of the threshold using in problem 4c. 

 

 

4 Review 
1. None. 

5 Lab Report 
 

1. The first page of your Lab report should be a cover sheet with your name, USC 
ID and Lab #. Please note that all reports should be typed. 

2. Answer all the questions which were asked in the lab report. Kindly display the 
code lines you executed to arrive at your answer along with figures to support 
them. Please give written explanation or put comment lines where necessary. 
Please note that each figure should have proper labels for the x and y axis and 
should have a suitable title. 

3. Answer the review questions. 
4. Submit a printout of your completed M-file documenting all the lab exercises. 

 

 

 

 

 

 

 

 

 

 

 
 
This lab document and the figures contained were adapted from a University of Michigan Signals and Systems course lab handout 
(2002). 


