Time Frequency Characteristics

$$X(j\omega) = |X(j\omega)|e^{\angle jX(j\omega)}$$
$$x(t) \rightarrow h(t) \rightarrow y(t) = x(t)*h(t)$$
$$X(j\omega)H(j\omega) = Y(j\omega)$$
$$|Y(j\omega)| = |X(j\omega)||H(j\omega)|$$

$$\angle Y(j\omega) = \angle X(j\omega) + \angle H(j\omega)$$

Changing the magnitude of the signal leads to amplification or suppression.

Altering the phase of the signal makes it unrecognizable.

Linear Phase

 $\delta(t-t_0) \leftrightarrow e^{-j\omega t_0}$

Information content at different frequencies is shifted by different amounts.

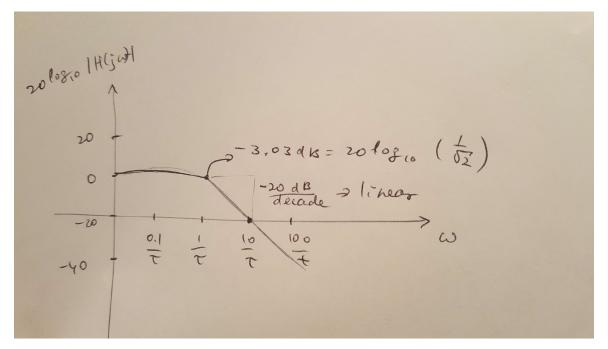
The shift in time by t_0 is a function of frequency and leads to "group delay."

Group Delay

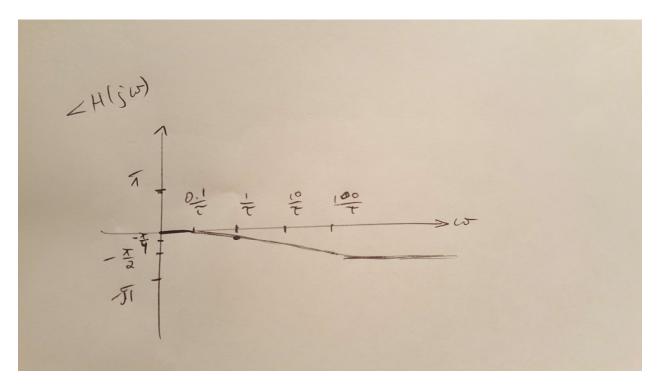
$$\alpha(\omega) = -\frac{d}{d\omega} \angle H(j\omega)$$

Bode Plots

Bode plots are standard ways of drawing magnitude and phase response. The ω -axis is on a logarithmic scale. Bode plots typically deal with real valued responses. Because of this, they only show the positive ω -axis, since the negative one can be inferred by symmetry (same magnitude and opposite phase).



If $20\log|H(j\omega)|>0 \rightarrow$ The signal is amplified If $20\log|H(j\omega)|<0 \rightarrow$ The signal is attenuated



First Order System

$$\tau \frac{dy}{dt} + y(t) = x(t)$$

$$\tau j \omega Y(j \omega) + Y(j \omega) = X(j \omega)$$

$$(1 + \tau j \omega) Y(j \omega) = X(j \omega)$$

$$H(j \omega) = \frac{Y(j \omega)}{X(j \omega)} = \frac{1}{1 + \tau j \omega}$$

At $\omega = 0$, $H(j \omega) = 1$
20log1=0
 $\omega = \frac{1}{\tau}$
 $H(j \omega) = \frac{1}{1 + \tau j \frac{1}{\tau}} = \frac{1}{1 + j}$
 $\left| \frac{1}{1 + j} \right| = \frac{1}{\sqrt{2}}$
 $\omega = \frac{10}{\tau}$

 $H(j\omega) = \frac{1}{1+10} \rightarrow \text{the imaginary term dominates}$ $H(j\omega) \approx \frac{1}{10}$ $20\log(1/10) = -20$ $\omega = \frac{100}{\tau}$ $H(j\omega) = \frac{1}{1+100} \rightarrow \text{the imaginary term dominates}$ $H(j\omega) \approx \frac{1}{100}$ $At \omega = \frac{1}{\tau}$ $\angle H(j\omega) = -\frac{\pi}{4}$ If τ is big, $\angle H(j\omega) \approx -\frac{\pi}{2}$

For 2^{nd} , 3^{rd} order systems perform a partial fraction expansion to get in the form of:

$$\Bigl(\frac{1}{1+\,\tau 1j\omega}\Bigr)\Bigl(\frac{1}{1+\,\tau 2j\omega}\Bigr)\,...$$

Multiplying magnitudes and adding phase.