
Chapter 1

Preliminaries

1.1. Complex Numbers

1.1.1. Basic Arithmetics. From middle/high school, we learned that the qua-
dratic equation x2 + 1 = 0 does not have any real root because x2 + 1 > 0 for any
x ∈ R. Complex numbers are introduced to make it possible for the equation x2 + 1 = 0
to have roots. We denote:

i =
√
−1 so that i2 = −1.

While complex numbers make their appearance for purely algebraic purposes, their
uses branch out to many scientific fields beyond Mathematics, including Quantum
Mechanics, String Theory, Electrical Engineering, Fluid Mechanics, etc.

Definition 1.1 (Complex Numbers). A complex number z is a number of the form:

z = a + bi

where a and b are real numbers, and i =
√
−1. We call:

• a is the real part of z and is denoted by a =: Re(z); and
• b is the imaginary part of z and is denoted by b =: Im(z).

The set of all complex numbers is denoted by C. Precisely, we have:

C := {a + bi : a, b ∈ R}.

Remark 1.2. Note that a real number is also considered as a complex number, since
a = a + 0i. In other words, we have R ⊂ C.

A complex number z = x + yi can be geometrically represented by the point (x, y)
in R2 (see Figure 1.1). The x-axis is now called the real axis as it represents numbers
of the form a + 0i. Likewise, the y-axis is called the imaginary axis, which represents
numbers of the form 0 + bi.
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z = x + yi

z = x− yi
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Figure 1.1. geometry of complex numbers

Given two complex numbers z1 = a + bi and z2 = c + di, the arithmetics between
them are defined by:

z1 + z2 = (a + c) + (b + d)i

z1 − z2 = (a− c) + (b− d)i

z1z2 = (a + bi)(c + di)

= (ac− bd) + (ad + bc)i
z1

z2
=

a + bi
c + di

· c− di
c− di

(where z2 6= 0)

=
(ac + bd)
c2 + d2 +

(bc− ad)i
c2 + d2

1.1.2. Conjugate and Modulus. Two important operations on complex numbers
are taking conjugates and modulus:

Definition 1.3 (Conjugate and Modulus). Given z = a + bi ∈ C, we denote and
define:

• z := a− bi as the conjugate of z; and

• |z| :=
√

a2 + b2 as the modulus of z.

Remark 1.4. It is important to note that complex numbers are un-ordered. It does not
make sense to say z1 < z2 or z1 > z2. However, since |z| is a real number, it makes
sense to make comparison of |z1| and |z2|.
Remark 1.5. Geometrically, z is obtained by reflecting z across the Re-axis (see Figure
1.1), and |z| is the magnitude of the position vector representing z.

Listed below are some very useful properties of complex numbers. Given any z, z1, z2 ∈
C, we have:

zz = |z|2 z = z |z| = |z|

Re(z) =
z + z

2
Im(z) =

z− z
2i

z1 ± z2 = z1 ± z2 z1 z2 = z1 z2

(
z1

z2

)
=

z1

z2
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The proofs are all straight-forward and hence omitted. Simply let z = x + yi and
verify LHS and RHS are equal in each property. Let’s look at some examples on how
to make good use of these properties:

Example 1.1. Show that for any z1, z2 ∈ C, we have:

|z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z2).

Solution

The key step is to use the property that |z|2 = zz for any z ∈ C.

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + z1z2 + z1z2 + z2z2

= |z1|2 + z1z2 + z1z2 + |z2|2

= |z1|2 + |z2|2 + 2Re(z1z2)

Example 1.2. Let α, β ∈ C\{0}. Show that αβ ∈ R if and only if β
α ∈ R.

Solution

(=⇒) Suppose αβ ∈ R, then we have αβ = αβ, and so αβ = αβ. Since α, β 6= 0, by
rearrangement we get:

β

α
=

β

α
=

(
β

α

)

Therefore, β
α is equal to its conjugate. It concludes that β

α ∈ R.

(⇐=) Conversely, let β
α = λ ∈ R. Then: αβ = αλα = λαα = λ |α|2 ∈ R.

It is important to note that in general |z1 + z2| 6= |z1|+ |z2|. However, we do have:

Proposition 1.6 (Triangle Inequality). Let z1, z2 ∈ C, we have:

|z1 + z2| ≤ |z1|+ |z2| .

Proof. From Example 1.1, we have:

|z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z2).

Let z1z2 = u + vi, where u, v ∈ R. Then, we have:

2Re(z1z2) = 2u ≤ 2
√

u2 + v2 = 2 |z1z2| = 2 |z1| |z2| = 2 |z1| |z2| .
Finally, we get:

|z1 + z2|2 ≤ |z1|2 + |z2|2 + 2 |z1| |z2| = (|z1|+ |z2|)2

and it completes the proof by taking square root on both sides. �

Exercise 1.1. Let z1, z2 ∈ C, show that:

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

Exercise 1.2. Let α, β ∈ C. Suppose αz + βz ∈ R for any z ∈ C. Show that α = β.
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Exercise 1.3. Let z1, z2 ∈ C. Show that ||z1| − |z2|| ≤ |z1 − z2|.

Exercise 1.4. Let p be the polynomial p(z) = c0 + c1z+ · · ·+ cdzd where d ≥ 1 and
{c0, c1, c2, . . . , cd} is a (monotone) decreasing sequence of positive real numbers.
Prove that the polynomial equation p(z) = 0 does not have any roots with modulus
(strictly) less than 1.

1.1.3. Polar Form. There are two common types of coordinates in R2, namely rect-
angular and polar. Apart from the standard (rectangular) form x + yi for representing
a complex number, we can also represent a complex number by a polar form. The
conversion rule between rectangular and polar coordaintes is given by:

x = r cos θ

y = r sin θ

Therefore, a complex number z = x + yi can be written as:

z = (r cos θ) + i(r sin θ) = r(cos θ + i sin θ).

The form z = r(cos θ + i sin θ) is commonly called the polar form of z.

Note that |cos θ + i sin θ| =
√

cos2 θ + sin2 θ = 1. When z = r(cos θ + i sin θ), it is
easy to see that r = |z|. However, the value of θ is not unique as both sin and cos
are periodic functions of period 2π. We define the principal argument of a complex
number to be the angle θ with a specified range described below:

Definition 1.7 (Principal Argument). Given a complex number z, the principal argu-
ment of z, denoted by Arg(z), is defined to be the angle θ0 ∈ (−π, π] such that:

z = |z| (cos θ0 + i sin θ0).

For example, −1−
√

3i has modulus 2 and so the r-coordinate is 2:

−1−
√

3i = 2

(
−1

2
−
√

3
2

i

)
.

To find the θ-coordinate, we solve cos θ = − 1
2 and sin θ = −

√
3

2 . From standard
trigonometry, we get θ = 4π

3 + 2kπ for any integer k. The only θ that falls into the
range (−π, π] is − 2π

3 = 4π
3 − 2π. Therefore, we have:

−1−
√

3i = 2
(

cos
(
−2π

3

)
+ i sin

(
−2π

3

))

and Arg(−1−
√

3i) = − 2π
3 .



1.1. Complex Numbers 5

Re

Im

r

z = r(cos θ + i sin θ)

2

z = −1−
√

3i

θ

− 2π
3

In general, Arg(x + yi) can be found using tan−1 y
x since if x = r cos θ and y =

r sin θ, then tan θ = y
x . However, it is important to note that Arg(x + yi) is NOT simply

equal to tan−1 y
x because by definition of the inverse tangent, tan−1 y

x takes the value
in (−π

2 , π
2 ) only. Precisely, we have (when x 6= 0):

Arg(x + yi) =





tan−1 y
x if (x, y) is in 1st and 4th quadrants;

tan−1 y
x + π if (x, y) is in 2nd quadrant;

tan−1 y
x − π if (x, y) is in 3rd quadrant;

Furthermore, Arg(0 + yi) = π
2 when y > 0; and Arg(0 + yi) = −π

2 when y < 0. Note
that Arg(0 + 0i) is undefined.

tan−1 y
x

tan−1 y
x

tan−1 y
x + π

tan−1 y
x − π

Re

Im

Exercise 1.5. Express the following complex numbers in polar form, and find their
principal arguments Arg:

(a) 1 + 2i
(b) 1− 2i
(c) cos(−π) + i sin(−π)

(d) −i

Exercise 1.6. Given |z| = 1, show that:

(a) Re
(

1 + z
1− z

)
= 0

(b)
∣∣∣∣

z−ω

1−ωz

∣∣∣∣ = 1 for any ω ∈ C such that ωz 6= 1.
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Exercise 1.7. Given z, ω ∈ C such that |z + ω| = |z−ω|, show that:

(a) izω ∈ R

(b) Arg(z)−Arg(ω) =
π

2
or

3π

2

Exercise 1.8. Show that the real-valued function f : R2\{(x, 0) : x ≤ 0} defined
by f (x, y) := Arg(x + yi) is continuous.

1.1.4. De Moivre’s Theorem. By expressing complex numbers using polar form,
one can see that multiplications and divisions between two complex numbers are
rotations in the complex plane C. It thanks to the fact that:

(cos θ + i sin θ)(cos φ + i sin φ)(1.1)

= (cos θ cos φ− sin θ sin φ) + i(cos θ sin φ + sin θ cos φ)

= cos(θ + φ) + i sin(θ + φ)

Using (1.1), we can see that given z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 +
i sin θ2), then we have:

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

Therefore, z1z2 is obtained by rotating z1 by Arg(z2), and lengthen (or shorten) z1
by a factor of |z2|. See the figure below:

Re

Im

z1

z1z2

θ1

θ2

An important consequence of (1.1) is the following celebrated theorem:

Theorem 1.8 (De Moivre’s Theorem). For any θ ∈ R and n ∈ Z, we have:

(1.2) (cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof. We prove by induction for positive n’s. Clearly (1.2) is true when n = 1. Assume
that (1.2) is true when n = k for some positive integer k. Then, for n = k + 1, we have:

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)k(cos θ + i sin θ)

= (cos(kθ) + i sin(kθ))(cos θ + i sin θ) (induction assumption)

= cos(kθ + θ) + i sin(kθ + θ) (from (1.1))

= cos((k + 1)θ) + i sin((k + 1)θ)

Hence (1.2) is true when n = k + 1. By induction, (1.2) is true for all positive integer n.

When n = 0, (1.2) also holds because (cos θ + i sin θ)0 = 1.
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Finally we consider negative integers n. When n < 0, let m = −n then m is a
positive integer. From above, (1.2) holds for this m:

(cos θ + i sin θ)m = cos(mθ) + i sin(mθ)

(cos θ + i sin θ)−n = cos(−nθ) + i sin(−nθ)

1
(cos θ + i sin θ)n = cos(nθ)− i sin(nθ)

(cos θ + i sin θ)n =
1

cos(nθ)− i sin(nθ)

=
1

cos(nθ)− i sin(nθ)
· cos(nθ) + i sin(nθ)

cos(nθ) + i sin(nθ)

=
cos(nθ) + i sin(nθ)

cos2(nθ) + sin2(nθ)
= cos(nθ) + i sin(nθ).

This proves (1.2) holds for negative integers n, and hence completing the proof of the
theorem. �

De Moivre’s Theorem can be used to derive some trigonometric identities. For
example, consider (cos θ + i sin θ)3. On one hand, De Moivre’s Theorem shows that:

(cos θ + i sin θ)3 = cos 3θ + i sin 3θ

and on the other hand, by expanding (cos θ + i sin θ)3 we get:

(cos θ + i sin θ)3 = cos3 θ + 3(cos2 θ)(i sin θ) + 3 cos θ(i sin θ)2 + (i sin θ)3

cos 3θ + i sin 3θ = (cos3 θ − 3 cos θ sin2 θ) + i(3 cos2 θ sin θ − sin3 θ)

By equating the real and imaginary parts, we get:

cos 3θ = cos3 θ − 3 cos θ sin2 θ = cos3 θ − 3 cos θ (1− cos2 θ) = 4 cos3 θ − 3 cos θ

sin 3θ = 3 cos2 θ sin θ − sin3 θ = 3(1− sin2 θ) sin θ − sin3 θ = 3 sin θ − 4 sin3 θ

Exercise 1.9. Use De Moivre’s Theorem to show that:

cos nθ =
[ n

2 ]

∑
k=0

k

∑
r=0

Cn
2kCk

r (−1)k+r cosn−2k+2r θ

for any n ∈N. Here [ n
2 ] denotes the integer part of n

2 .

1.1.5. Roots of Complex Numbers. In the real number system, the root equation
xn = a where a 6= 0 and n ∈N, has at most two solutions. When n is odd (no matter
whether a is positive or negative), the only real solution is x = n

√
a. When n is even

and a > 0, there are two real solutions x = n
√

a or − n
√

a. The equation has no solution
when n is even and a < 0.

However, in the complex number system, the root equation zn = a, where a ∈
C\{0} and n ∈ N, always has n solutions! Let’s first look at the simplest equation
zn = 1:

Certainly, 1 is a solution to the equation. Furthermore, using De Moivre’s Theorem,
we get:
(

cos
2π

n
+ i sin

2π

n

)n
= cos

(
2π

n
· n
)
+ i sin

(
2π

n
· n
)
= cos(2π) + i sin(2π) = 1.
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Clearly, this shows the complex number cos 2π
n + i sin 2π

n satisfies the equation zn = 1.
In fact, any number which can be expressed in form of cos 2kπ

n + i sin 2kπ
n , where k is

an integer, is a solution to the root equation zn = 1:
(

cos
2kπ

n
+ i sin

2kπ

n

)n
= cos(2kπ) + i sin(2kπ) = 1.

Note that the set of roots
{

cos
2kπ

n
+ i sin

2kπ

n
: k ∈ Z

}
consists of n distinct

elements only (instead of infinitely many), since

cos
2kπ

n
+ i sin

2kπ

n
= cos

2mπ

n
+ i sin

2mπ

n
if and only if k−m is a multiple of n. In other words, when k = n, the root cos 2kπ

n +

i sin 2kπ
n is the same as the one with k = 0. Likewise, the root when k = n + 1 gives the

same root as the one with k = 1, etc. Overall, the set of n-th roots of 1 is essentially
given by the finite set:

{
cos

2kπ

n
+ i sin

2kπ

n
: k ∈ {0, 1, 2, . . . , n− 1}

}

and these n numbers are called the n-th root of 1. In terms of notations, we write:

1
1
n =

{
cos

2kπ

n
+ i sin

2kπ

n
: k ∈ {0, 1, 2, . . . , n− 1}

}
.

It is important to note that unlike the real number system, the n-th root of 1 is no
longer a single number. In contrast, 1

1
n represents a set of roots for the equation zn = 1.

Due to this distinctive difference from the real number system, from now on we
will use n

√
a to denote the n-th root of a in the real number system; while we will use

a
1
n to denote the n-th root of a in the complex number system, which will be discussed

in the next paragraph.
Now consider the general root equation zn = a where a 6= 0. Suppose a can be

expressed in polar form as:
a = |a| (cos θ + i sin θ)

Then, one can show that:

n
√
|a|

︸ ︷︷ ︸
real n-th root

(
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
, k ∈ Z

are solutions to the root equation zn = a, since:
[

n
√
|a|
(

cos
(

θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))]n

=

(
n
√
|a|
)n (

cos
(

θ + 2kπ

n
· n
)
+ i sin

(
θ + 2kπ

n
· n
))

= |a| (cos(θ + 2kπ) + i sin(θ + 2kπ))

= |a| (cos θ + i sin θ)

= a
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Again, two numbers cos
(

θ+2kπ
n

)
+ i sin

(
θ+2kπ

n

)
and cos

(
θ+2mπ

n

)
+ i sin

(
θ+2mπ

n

)

are equal if and only if k − m is a multiple of n. Therefore, we conclude that the
following n complex numbers:

n
√
|a|
(

cos
(

θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))

are all the solutions to the root equation zn = a. Similar to the case of roots of 1, we
write the n-th root of a as:

Definition 1.9 (Roots of a Complex Number). Given any a ∈ C\{0} and n ∈N, the
n-th roots of a is a set given by:

a
1
n =

{
n
√
|a|
(

cos
(

Arg(a) + 2kπ

n

)
+ i sin

(
Arg(a) + 2kπ

n

))
: k ∈ {0, 1, . . . , n− 1}

}

Example 1.3. Find i
1
3 and (1−

√
3i)

1
2 .

Solution

First express i into polar form i = cos π
2 + i sin π

2 . Hence by Definition 1.9, we
have:

i
1
3 =

{
cos

π
2 + 2kπ

3
+ i sin

π
2 + 2kπ

3
: k = 0, 1, 2

}

=





cos
π

6
+ i sin

π

6︸ ︷︷ ︸
k=0

, cos
5π

6
+ i sin

5π

6︸ ︷︷ ︸
k=1

, cos
3π

2
+ i sin

3π

2︸ ︷︷ ︸
k=2





=

{√
3 + i
2

,

√
3− i
2

, −i

}

Similarly, to find
{
(1−

√
3i)

1
2

}
, we first express:

1−
√

3i = 2
(

cos
(
−π

3

)
+ i sin

(
−π

3

))

Hence, by Definition 1.9, we have:

(1−
√

3i)
1
2 =

{√
2
(

cos
(−π

3 + 2kπ

2

)
+ i sin

(−π
3 + 2kπ

2

))
: k = 0, 1

}

=

{√
2

(√
3− i
2

)
,
√

2

(
−
√

3 + i
2

)}

=

{√
3− i√

2
,
−
√

3 + i√
2

}

Exercise 1.10. First, show that the roots of z4 + 1 = 0 are:{
1 + i√

2
,

1− i√
2

,
−1 + i√

2
,
−1− i√

2

}
.

Then, use this result to factorize z4 + 1 into the product of two quadratic polyno-
mials with real coefficients.
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Exercise 1.11. By considering the roots of the equation zn − 1 = 0 (where n > 2
is an integer), show that zn − 1 can be factorized into a product of linear and
quadratic polynomials with real coefficients:

zn − 1 =

{
(z− 1)(z + 1)∏k−1

r=1
(
z2 − 2z cos 2πr

n + 1
)

if n = 2k
(z− 1)∏k−1

r=1
(
z2 − 2z cos 2πr

n + 1
)

if n = 2k− 1

Next we discuss a useful observation about the n-th root of 1. Let

ω = cos
2π

n
+ i sin

2π

n
where n is an integer with n ≥ 1, then one can show the following identity holds:

1 + ω + ω2 + . . . + ωn−1 = 0.

(1−ω)(1 + ω + ω2 + . . . + ωn−1)

= (1 + ω + ω2 + . . . + ωn−1)−ω(1 + ω + ω2 + . . . + ωn−1)

= (1 + ω + ω2 + . . . + ωn−1)− (ω + ω2 + . . . + ωn−1 + ωn)

= 1−ωn

= 1−
(

cos
2π

n
+ i sin

2π

n

)n

= 1− (cos(2π) + i sin(2π)) = 1− 1 = 0.

Since ω 6= 1 as n ≥ 1, we conclude that:

1 + ω + ω2 + . . . + ωn−1 = 0.

Using this result, one can derive some trigonometric identities. Express ω in terms of
its real and imaginary parts:

1 +
(

cos
2π

n
+ i sin

2π

n

)

︸ ︷︷ ︸
ω

+

(
cos

2π

n
+ i sin

2π

n

)2
+ . . . +

(
cos

2π

n
+ i sin

2π

n

)n−1
= 0

1 +
(

cos
2π

n
+ i sin

2π

n

)
+

(
cos

4π

n
+ i sin

4π

n

)
+ . . .

+

(
cos

2(n− 1)π
n

+ i sin
2(n− 1)π

n

)
= 0

By equating the real and imaginary parts, we obtain two trigonometric identities:

cos
2π

n
+ cos

4π

n
+ . . . + cos

2(n− 1)π
n

= −1

sin
2π

n
+ sin

4π

n
+ . . . + sin

2(n− 1)π
n

= 0
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Exercise 1.12. Show that for any z 6= 1, we have

1 + z + z2 + . . . + zn =
1− zn+1

1− z
,

and use it to show:

1 + cos θ + cos 2θ + . . . + cos nθ =
1
2
+

sin
(
(2n+1)θ

2

)

2 sin θ
2

for any θ ∈ (0, 2π).

Exercise 1.13. Let n ≥ 2 be an integer.

(a) Solve the equation (z + 1)n − 1 = 0.

(b) Hence, show that sin
π

n
· sin

2π

n
· · · sin

(n− 1)π
n

=
n

2n−1 .

(c) Consider a circle of radius 1, and let P1, P2, . . . , Pn be the vertices of a regular
n-sided polygon inscribed in the circle. Denote the distance between any pair
of points P and Q by PQ. Using (b), show that:

n

∏
k=2

P1Pk = n.

Exercise 1.14. Let Pk(xk, yk), where k = 1, 2, 3, be three distinct points in C and
let zk := xk + yki be the complex number representing Pk. Denote ω = cos 2π

3 +

i sin 2π
3 . Show that 4P1P2P3 is equilateral if and only if

z1 + ωz2 + ω2z3 = 0.

Using this, show that it is impossible for 4P1P2P3 being equilateral if xk, yk ∈ Q

for all k = 1, 2, 3.
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1.2. Sequences and Series

1.2.1. Sequences of Complex Numbers. In this section, we will extend the
notion of sequences and series to complex numbers. As we shall see, many results and
convergence tests which hold for real numbers will carry over to complex numbers.
Let’s begin with the definition of convergence of complex sequences:

Definition 1.10 (Limit of Sequences). Let {zn}∞
n=1 be a sequence of complex numbers.

We say zn converges to w as n→ ∞ if for any ε > 0, there exists an integer N > 0 such
that whenever n ≥ N, we have |zn − w| < ε.

Remark 1.11. We may abbreviate “zn converges to w as n→ ∞” by simply saying:

lim
n→∞

zn = w.

Remark 1.12. It is easy to see that lim
n→∞

zn = w is equivalent to lim
n→∞

|zn − w| = 0.

Remark 1.13. The definition of convergence of complex sequences is almost the same
as the that of real sequences. The only difference is now |·| represents the modulus
while for real sequence it represents the absolute value. Therefore, many computational
rules about limits carry over to complex sequences. For instance, if lim

n→∞
zn = L and

lim
n→∞

wn = M, then we have

lim
n→∞

(zn ± wn) = L±M

lim
n→∞

(znwn) = LM

lim
n→∞

zn

wn
=

L
M

(whenever M 6= 0)

Example 1.4. Consider the sequence zn = zn where z ∈ C is a fixed complex
number. Show from the definition of limits that:

• if |z| < 1, then zn converges to 0 as n→ ∞;
• if z = 1, then zn converges to 1 as n→ ∞;

Solution

First consider the case |z| < 1: if z = 0, then zn = 0 for any n and the desired
result clearly holds. From now on we assume z 6= 0. For any ε > 0, we pick a
positive integer N >

log ε
log|z| . Whenever, n ≥ N, we have:

|zn − 0| = |zn| = |z|n ≤ |z|N .

Here we have used the fact that |z| < 1 and n ≥ N. By our choice of N, we have:

|z|N < |z|
log ε

log|z|

= |z|log|z| ε = ε.

This shows lim
n→0

zn = 0 in case of |z| < 1. The case of z = 1 is trivial.
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When |z| ≥ 1 and z 6= 1, the sequence zn = zn can be shown to diverge using the
squeezing principle (see Exercise 1.16). It can also be proved using the following useful
fact:

Proposition 1.14. A sequence {zn} ∈ C converges to w as a complex sequence if and only
if {Re(zn)} converges to Re(w) and {Im(zn)} converges to Im(w) as real sequences.

Proof. (=⇒)-part follows from the inequalities:

|Re(zn)− Re(w)| ≤ |zn − w| and |Im(zn)− Im(w)| ≤ |zn − w|
and the squeezing principle.

(⇐=)-part follows from the fact that:

|zn − w| =
√
|Re(zn)− Re(w)|2 + |Im(zn)− Im(w)|2

�

Now given a complex number z expressed in polar form as z = r(cos θ + i sin θ),
and suppose |z| ≥ 1 (i.e. r ≥ 1) and z 6= 1. Consider again the sequence zn = zn. By
De Moivre’s Theorem, we have:

zn = rn(cos nθ + i sin nθ).

It is well known in real analysis that when θ 6= 2kπ (where k ∈ Z), at least one of
the real sequences {cos nθ} and {sin nθ} diverges as n→ ∞. Hence, when r ≥ 1 and
θ 6= 2kπ (k ∈ Z), at least one of the real sequences {rn cos nθ} and {rn sin nθ} diverges.
This shows zn diverges.

Exercise 1.15. Show that if lim
n→∞

zn = L, then lim
n→∞

zn = L and lim
n→∞

|zn| = |L|.

Exercise 1.16. Show (without using Proposition 1.14) that if |z| ≥ 1 and z 6= 1,
then the sequence {zn} must diverge. [Hint: First prove the following inequality:

|z− 1| ≤
∣∣∣zn+1 − w

∣∣∣+ |zn − w|
for any z ∈ C such that |z| ≥ 1, and any w ∈ C.]

In Real Analysis, there is a notion of Cauchy sequences which describe sequences
that are closer and closer to each other. It is a priori different from convergent sequences,
which are sequences that are closer and closer to a certain limit. However, it is well-
known that for sequences in R, the Cauchy condition will guarantee convergence. This
important fact is known as completeness of real numbers.

In Complex Analysis, we have a similar notion of Cauchy sequences and completeness,
to be discussed below.

Definition 1.15 (Cauchy Sequence). A sequence {zn}∞
n=1 of complex numbers is said

to be a Cauchy sequence if and only if for any ε > 0, there exists an integer N ∈ N

such that whenever m, n ≥ N, we have |zn − zm| < ε.

Theorem 1.16 (Completeness of C). Every Cauchy sequence of complex numbers converges
to a certain complex number. In other words, C is complete.
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Proof. Let {zn} be a Cauchy sequence of complex numbers. We need to show it
converges. Write zn = xn + iyn, where xn, yn ∈ R. Since we have:

|xn − xm| ≤ |zn − zm|
|yn − ym| ≤ |zn − zm|

and given that {zn} is a Cauchy sequence, the real sequences {xn} and {yn} are also
Cauchy sequences. By Completeness of R, both {xn} and {yn} converge to some real
numbers x∞ and y∞ respectively. By Proposition 1.14, the complex sequence {zn}
converges to x∞ + iy∞. �

Exercise 1.17. Suppose {zn}∞
n=0 is a complex sequence. Suppose there exists a real

constant α ∈ [0, 1) such that:

|zn+1 − zn| ≤ α |zn − zn−1| for any n ∈N.

Show that the complex sequence {zn}∞
n=0 converges.

1.2.2. Series of Complex Numbers. An (infinite) series
∞

∑
n=1

zn of complex num-

bers zn ∈ C is the limit (if exists) of the N-th partial sums
N

∑
n=1

zn as N → ∞. In Real

Analysis, we learned that many series convergence tests rely on the fact that R is
complete. Now that we know C is also complete (Theorem 1.16), we can generalize
many (although not all) series convergence tests for C.

Definition 1.17 (Absolute and Conditional Convergences). A series of complex num-

bers
∞

∑
n=1

zn is said to converge absolutely if the series
∞

∑
n=1
|zn| converges. A series

∞

∑
n=1

zn

is said to converge conditionally if it converges but does not converge absolutely.

Proposition 1.18 (Absolute Convergence Test). If the series
∞

∑
n=1
|zn| converges, then the

complex series
∞

∑
n=1

zn also converges.

Proof. Given that
∞

∑
n=1
|zn| converges, its N-th partial sum

N

∑
n=1
|zn| is a Cauchy sequence.

Now consider the sequence of N-th partial sums
N

∑
n=1

zn. We want to show the later is

also a Cauchy sequence.
For any ε > 0, there exists an integer K > 0 such that whenever M > N ≥ K, we

have
M

∑
n=1
|zn| −

N

∑
n=1
|zn| < ε.

It implies:
∣∣∣∣∣

M

∑
n=1

zn −
N

∑
n=1

zn

∣∣∣∣∣ =
∣∣∣∣∣

M

∑
n=N+1

zn

∣∣∣∣∣ ≤
M

∑
n=N+1

|zn| =
M

∑
n=1
|zn| −

N

∑
n=1
|zn| < ε.
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Therefore,
N

∑
n=1

zn is also a Cauchy sequence. By completeness of C (Theorem 1.16), the

N-th partial sum
N

∑
n=1

zn (and hence the infinite series
∞

∑
n=1

zn) converges. �

Example 1.5. Does the series
∞

∑
n=1

in

n
converge absolutely, conditionally, or does

not converge? How about the series
∞

∑
n=1

in

n2 ?

Solution

The series
∞

∑
n=1

∣∣∣∣
in

n

∣∣∣∣ =
∞

∑
n=1

1
n

diverges by p-test. The N-th partial sum can be

decomposed into:

N

∑
n=1

in

n
=





(
− 1

2 + 1
4 − . . . + (−1)k

2k

)
+
(

1− 1
3 + 1

5 + . . . + (−1)k−1

2k−1

)
i if N = 2k(

− 1
2 + 1

4 − . . . + (−1)k

2k

)
+
(

1− 1
3 + 1

5 + . . . + (−1)k+1

2k+1

)
i if N = 2k + 1

In either case, the real and imaginary parts converge by alternating series test. By

Proposition 1.14, the series
∞

∑
n=1

in

n
converges, and so it converges conditionally.

Now consider
∞

∑
n=1

in

n2 . The series
∞

∑
n=1

∣∣∣∣
in

n2

∣∣∣∣ =
∞

∑
n=1

1
n2 converges by p-test. There-

fore, the series
∞

∑
n=1

in

n2 converges absolutely.

One good property of an absolute convergent series is that we can rearrange the
terms as we wish without changing the value of the series. Precisely, given an absolute

convergent series
∞

∑
n=1

zn =: L and a bijection σ : N → N, then the rearranged series

∞

∑
n=1

zσ(n) also converges absolutely to the limit L. The proof is the same as in the real

case (hence omitted here).
Recall from Real Analysis that the ratio test and root test follow from the absolute

convergence test and completeness of R. Now we learned that both hold on C, hence
the ratio test and root test can be extended to complex series:

Proposition 1.19 (Ratio Test). Consider the complex series
∞

∑
n=1

zn:

• If lim
n→∞

∣∣∣∣
zn+1

zn

∣∣∣∣ < 1, then
∞

∑
n=1

zn converges absolutely.

• If lim
n→∞

∣∣∣∣
zn+1

zn

∣∣∣∣ > 1, then
∞

∑
n=1

zn diverges.

• If lim
n→∞

∣∣∣∣
zn+1

zn

∣∣∣∣ = 1, then no conclusion can be drawn.
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Proposition 1.20 (Root Test). Consider the complex series
∞

∑
n=1

zn:

• If lim
n→∞

n
√
|zn| < 1, then

∞

∑
n=1

zn converges absolutely.

• If lim
n→∞

n
√
|zn| > 1, then

∞

∑
n=1

zn diverges.

• If lim
n→∞

n
√
|zn| = 1, then no conclusion can be drawn.

Remark 1.21. The proofs of the ratio and root tests are the same as in the real case. We
omit their proofs but we encourage readers to write down their proofs as an exercise.

Example 1.6. Show that for any z ∈ C, the complex series
∞

∑
n=0

zn

n!
converges

absolutely.

Solution

We use the ratio test. Consider:

lim
n→∞

∣∣∣∣
zn+1/(n + 1)!

zn/n!

∣∣∣∣ = lim
n→∞

∣∣∣∣
zn+1

zn
n!

(n + 1)!

∣∣∣∣

= lim
n→∞

∣∣∣∣
z

n + 1

∣∣∣∣ = lim
n→∞

|z|
n + 1

= 0 < 1 for any z ∈ C.

Hence, the series
∞

∑
n=0

zn

n!
converges absolutely by ratio test (Proposition 1.19).

Alternatively, we can also use the root test (Proposition 1.20) by showing that:

lim
n→∞

n

√∣∣∣∣
zn

n!

∣∣∣∣ = lim
n→∞

|z|
n
√

n!
= 0 < 1

for any z ∈ C. Here we have used the fact that lim
n→∞

n√n! = ∞.

Example 1.7. Determine all complex numbers z such that the series
∞

∑
n=0

nzn

converges.

Solution

Consider the limit lim
n→∞

∣∣∣∣
(n + 1)zn+1

nzn

∣∣∣∣ = lim
n→∞

(n + 1)
n

|z| = |z|. Therefore, by ratio

test (Proposition 1.19), the series converges absolutely when |z| < 1; and diverges
when |z| > 1.

When |z| = 1, the ratio test fails to conclude anything. In this case, we let z =

cos θ + i sin θ where θ ∈ R. Then, the series is given by
∞

∑
n=0

(n cos nθ + in sin nθ),
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and the real and imaginary parts are:

Re

(
∞

∑
n=0

nzn

)
=

∞

∑
n=0

n cos(nθ) and Im

(
∞

∑
n=0

nzn

)
=

∞

∑
n=0

n sin(nθ).

By Proposition 1.14, if the complex series converges, then both their real and
imaginary parts converge, and in particular we have:

lim
n→∞

n cos(nθ) = 0 and lim
n→∞

n sin(nθ) = 0.

By Squeeze Theorem, it will imply:

lim
n→∞

cos(nθ) = lim
n→∞

sin(nθ) = 0.

However, it would contradict the fact that cos2(nθ) + sin2(nθ) = 1; and so the

series
∞

∑
n=0

nzn does not converge when |z| = 1.

Conclusion: the series
∞

∑
n=0

nzn converges if and only if |z| < 1.

Exercise 1.18. Determine whether each of the following complex series converges
absolutely, conditionally, or diverge:

(a)
∞

∑
n=0

(1− 3i)n

(4 + i)2n

(b)
∞

∑
n=1

n2

n + n3i

(c)
∞

∑
n=1

(cos n− i sin n)

Exercise 1.19. In each of the following complex series: (i) determine all complex
numbers z such that the series converges, (ii) sketch the range of these z’s on the
complex plane C.

(a)
∞

∑
n=1

zn

(b)
∞

∑
n=1

(
z

z + 1

)n

(c)
∞

∑
n=1

(−1)nz5n

n!

(d)
∞

∑
n=1

zn!

n2
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Exercise 1.20. Suppose z ∈ C.

(a) Assume |z| 6= 1 and z 6= 0, show that for any n ∈N, we have:
∣∣∣∣

zn

1 + z2n

∣∣∣∣ ≤
1∣∣∣|z|n − |z|−n

∣∣∣

(b) Using (a), or otherwise, find all z ∈ C such that the sequence
{

zn

1 + z2n

}∞

n=1converges.

(c) Find all z ∈ C such that the series
∞

∑
n=1

zn

1 + z2n converges.

1.2.3. Euler’s Identity. The series
∞

∑
n=0

zn

n!
considered in Example 1.6 is an impor-

tant one – it defines the complex exponential function. When z = x is a real number,
the value of the series is given by ex. Given that the series converges for any z ∈ C, we
define ez to be the limit of this series:

Definition 1.22 (Complex Exponential). Let z ∈ C, the exponential ez, or equivalently
exp(z), of z is defined by:

ez :=
∞

∑
n=0

zn

n!
.

Remark 1.23. Please do NOT ask why ez =
∞

∑
n=0

zn

n!
, as it is by the definition. A more

appropriate question is what motivates such a definition. One motivation is that by
such a definition, many nice properties about ex in the real case can be extended to ez

in the complex case. These properties may include ez+w = ezew, ez 6= 0, etc. We will
look into them soon.

Here is the famous Euler’s identity that relates complex exponentials with the
polar form of a complex number:

Theorem 1.24 (Euler’s Identity). For any θ ∈ R, we have:

(1.3) eiθ = cos θ + i sin θ.

Proof. The key idea is to split the defining series into real and imaginary parts.

eiθ =
∞

∑
n=0

(iθ)n

n!
= lim

N→∞

2N

∑
n=0

inθn

n!

= lim
N→∞

(
N

∑
k=0

i2kθ2k

(2k)!
+

N−1

∑
k=0

i2k+1θ2k+1

(2k + 1)!

)
[by rearrangement]

= lim
N→∞

N

∑
k=0

(−1)kθ2k

(2k)!
︸ ︷︷ ︸

=cos θ

+i

(
lim

N→∞

N−1

∑
k=0

(−1)kθ2k+1

(2k + 1)!

)

︸ ︷︷ ︸
=sin θ

[using i2k = (i2)k = (−1)k]

= cos θ + i sin θ

�
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Remark 1.25. From (1.3), it is evident that we have:

eiπ + 1 = 0

which is a single identity involving 5 most important constants in mathematics, namely
1, 0, e, π and i.

Remark 1.26. From the Euler’s identity, we can now write down the polar form of a
complex number in a simpler way: if z = r(cos θ + i sin θ), then we can write:

z = reiθ .

In particular, any z ∈ C such that |z| = 1 can be expressed as z = eiθ for some θ ∈ R.

We are going to show that the complex exponential has the property that ezew =
ez+w just like the real case. Informally, we express both ez and ew into two infinite series.
After multiplying the two series, we express the double sum diagonally:

ezew =

(
∞

∑
n=0

zn

n!

)(
∞

∑
m=0

wm

m!

)
=

∞

∑
n=0

∞

∑
m=0

znwm

n!m!

=
∞

∑
k=0

∑
m+n=k

znwm

n!m!
=

∞

∑
k=0

k

∑
n=0

znwk−n

n!(k− n)!
[since m = k− n]

=
∞

∑
k=0

k

∑
n=0

Ck
nznwk−n

k!
[since Ck

n =
k!

(n− k)!n!
]

=
∞

∑
k=0

(z + w)k

k!
= ez+w [Binomial Theorem]

Although this “proof” above seems convincing and neat, there is a little step we need
to justify, namely why we can rearrange the infinite double sum ∑n ∑m in a diagonal
way: ∑k ∑m+n=k? We have seen in Real Analysis that even switching ∑n and ∑m may
sometimes result in a different sum. Below we give a rigorous (and more refined) proof
of this fact:

Proposition 1.27. For any z, w ∈ C, we have ezew = ez+w.

Proof. Consider the N-th partial sums
N

∑
n=0

zn

n!
and

N

∑
m=0

wm

m!
, then:

(
N

∑
n=0

zn

n!

)(
N

∑
m=0

wm

m!

)
=

N

∑
n=0

N

∑
m=0

znwm

n!m!
︸ ︷︷ ︸

Region I in Fig. 1.2

=
2N

∑
k=0

∑
m+n=k

znwm

n!m!
︸ ︷︷ ︸

Region I+II+III in Fig. 1.2

−
N

∑
m=0

2N−m+1

∑
n=N+1

znwm

n!m!
︸ ︷︷ ︸

Region II in Fig. 1.2

−
N

∑
n=0

2N−n+1

∑
m=N+1

znwm

n!m!
︸ ︷︷ ︸

Region III in Fig. 1.2

Here we break down the finite double sum ∑N
n ∑N

m into three triangular sums. See
Figure 1.2 for illustration. For the sum corresponding to the large triangle (Region
I+II+III in Figure 1.2), we can rewrite it as:

2N

∑
k=0

∑
m+n=k

znwm

n!m!
=

2N

∑
k=0

k

∑
n=0

znwk−n

n!(k− n)!
=

2N

∑
k=0

k

∑
n=0

Ck
nznwk−n

k!
=

2N

∑
k=0

(z + w)k

k!
→ ez+w

as N → ∞.
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For Region II in Figure 1.2, we can show that it converges to 0 as N → ∞:
∣∣∣∣∣

N

∑
m=0

2N−m+1

∑
n=N+1

znwm

n!m!

∣∣∣∣∣ ≤
N

∑
m=0

2N−m+1

∑
n=N+1

∣∣∣∣
znwm

n!m!

∣∣∣∣

≤
N

∑
m=0

∞

∑
n=N+1

|z|n
n!
|w|m
m!

=

(
N

∑
m=0

|w|m
m!

)(
∞

∑
n=N+1

|z|n
n!

)

≤ e|w|
(

∞

∑
n=N+1

|z|n
n!

)
→ 0

as N → ∞ since the infinite sum
∞

∑
n=0

|z|n
n!

converges (to e|z|). The sum corresponding to

Region III in Figure 1.2 can be shown to converge to 0 by switching m and n, and z
and w in the above argument.

Overall, we have shown:

lim
N→∞

(
N

∑
n=0

zn

n!

)(
N

∑
m=0

wm

m!

)

= lim
N→∞

2N

∑
k=0

∑
m+n=k

znwm

n!m!
− lim

N→∞

N

∑
m=0

2N−m+1

∑
n=N+1

znwm

n!m!
− lim

N→∞

N

∑
n=0

2N−n+1

∑
m=N+1

znwm

n!m!

= ez+w − 0− 0,

which implies ezew = ez+w as desired. �

N

N

2N

2N

O

I

II

III

m

n

Figure 1.2

Exercise 1.21. Given two series
∞

∑
n=0

zn and
∞

∑
n=0

wn which converge absolutely to A

and B respectively, show that the series below converges absolutely to AB:
∞

∑
k=0

(
k

∑
n=0

znwk−n

)
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Exercise 1.22. Suppose {an}∞
n=1 is a (monotonically) decreasing sequence of real

numbers such that lim
n→∞

an = 0, and {zn}∞
n=1 be a sequence of complex numbers

with the property that there is a constant C > 0 such that

∣∣∣∣∣
N

∑
n=1

zn

∣∣∣∣∣ ≤ C for any N.

Show that the series
∞

∑
n=1

anzn converges. [Hint: First prove the following summation-

by-parts formula
N

∑
n=1

anzn =
N

∑
n=1

aN+1zn +
N

∑
n=1

n

∑
k=1

(an − an+1)zk,

and make good use of the given conditions.]
Furthermore, use the above result to prove the alternating series test in Real

Analysis.

Exercise 1.23. Using the result from Exercise 1.22, show that the series
∞

∑
n=1

zn

n
converges for any z such that |z| = 1 and z 6= 1.

Using the multiplicative property ezew = ez+w, one can show the following proper-
ties about the complex exponential function. We leave the proofs for readers.

Remark 1.28. For any z = x + yi ∈ C where x, y ∈ R, we have:

• (ez)n = enz for any integer n.

• ez = exeiy = ex(cos y + i sin y), and hence |ez| = ex.
• ez 6= 0.

The complex exponential az with other real base a > 0 is defined via the natural
exponential ez. Recall that a = eln a, and we define:

az := e(ln a)z.

Using this definition, some properties of ez extend to complex exponentials az with an
arbitrary real base a > 0. Proofs are again left for readers.

Remark 1.29. For any real a, b > 0 and z, w ∈ C we have:

• (az)n = anz for any integer n.
• azaw = az+w

• |az| = aRe(a)

• az 6= 0
• (ab)z = azbz

Remark 1.30. For any positive integer n, the rational number 1
n is no doubt also a

complex number. Therefore, now e
1
n could mean two different things, namely the

value of the series
∞

∑
k=0

(
1
n

)k

k!
, or the n-th roots of e. It is a confusing ambiguity but

fortunately we seldom deal with both of them in the same context. One way to avoid
such a confusion is to represent the n-th roots of e by e

1
n , and use exp( 1

n ) to represent
the value of the aforesaid series.
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1.2.4. Riemann ζ Function: the first encounter. The Riemann zeta function,
denoted by ζ(z), is of central importance in Complex Analysis and Number Theory. It
is an infinite series defined as:

ζ(z) :=
∞

∑
n=1

1
nz

for Re(z) > 1. This complex series motivates the discussions of the famous Riemann
Hypothesis, which is a conjecture purposed by Riemann in 1859 and remains unsolved
as of today (January 20, 2017). The statement of the Riemann Hypothesis will be
explained after we learn about analytic continuation of holomorphic functions. The
Riemann zeta function has deep connections with Number Theory, in particular on the
study of distribution of prime numbers. It is used to show the renowned Prime Number
Theorem, which asserts that:

lim
x→∞

π(x)
x/ ln x

= 1

where π(x) is the number of positive prime numbers less than or equal to x.
The deep connection between ζ(z) and prime numbers is beyond the scope of this

course. Meanwhile, we would like to point out that this series converges absolutely
when Re(z) > 1 by the (real) p-test. The main reason is as follows. Write z = x + yi
where x, y ∈ R, then we have:

∣∣∣∣
1
nz

∣∣∣∣ =
∣∣∣∣

1
ez log n

∣∣∣∣ =
1∣∣ex log neiy log n

∣∣ =
1

nx =
1

nRe(z)
.

By (real) p-test, the series
∞

∑
n=1

1
nRe(z)

converges if and only if Re(z) > 1. Therefore, by

the (complex) absolute convergence test, the series
∞

∑
n=1

1
nz converges absolutely when

Re(z) > 1.
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1.3. Point-Set Topology of C

In this section, we will introduce several terminologies and topological concepts about
subsets of C. These topological concepts will come up from time to time in the course.

To begin, let’s define some standard notations we will use in the rest of the course.
Let z0 ∈ C and r > 0. From now on, we will denote:

Br(z0) = {z ∈ C : |z− z0| < r}
Br(z0) = {z ∈ C : |z− z0| ≤ r}

∂Br(z0) = {z ∈ C : |z− z0| = r}
which are respectively the open ball, closed ball and circle with radius r centered at z0.
In the literature of Complex Analysis, it is often that the term disc is used instead of
ball.

1.3.1. Open and Closed Subsets. Intuitively, an open subset Ω in C is one that
does not have a boundary. However, this “definition” is not rigorous enough since
the term “boundary” has not been defined so far. We are going to give a rigorous
definition of open and closed subsets here. We first define:

Definition 1.31 (Interior, Boundary and Exterior Points). Consider a set U ⊂ C. We
say that z ∈ C is an interior point of U if there exists ε > 0 such that Bε(z) ⊂ U.
We say that w ∈ C is a boundary point of U if for any ε > 0, both Bε(w) ∩U and
Bε(w) ∩ (C\U) are non-empty. We say η ∈ C is an exterior point of U if there exists
δ > 0 such that Bδ(η) ⊂ C\U.

In the figure below, the yellow set is the subset U ⊂ C. The point z ∈ U is an
interior ball because by drawing a ball with a small enough radius (i.e. the blue ball),
the ball is completely inside U. In layman terms, an interior point of U is a point z
whose “nearby” points are contained in U.

On the other hand, the point w in the figure below is a boundary point. No matter
how small the ball you draw around w, that ball must contain some points in U, and
some points not in U. In layman terms, a boundary point of U is a point w at which if
you look around it, you can see “nearby” some points in U and some point not in U.

The point η in the figure is an exterior point of U. In layman terms, it is a point
whose “nearby” are outside U.

w

z
εη

δ

U
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Remark 1.32. Since z ∈ Bε(z) for any z ∈ C and ε > 0, if z is an interior point of U, it
is automatically that z ∈ U. In other words, an interior point of a set must belong to
that set. However, a boundary point of a set can be contained or not contained in the
set. Furthermore, according to the definitions, interior points, boundary points and
exterior points are mutually exclusive.

Example 1.8. Find all interior, boundary and exterior points of the set:

U = {z ∈ C : Re(z) > 1}.

Solution

We claim that the set of interior points is U itself. For any z ∈ U, we have
Re(z) > 1. Write z = x + yi, then we have x > 1. We need to find a small ε > 0
such that Bε(x + yi) ⊂ U. According to the figure below, an appropriate choice of
ε should be ε = x−1

2 . We next verify that it is indeed Bε(z) ⊂ U for this choice of
ε.

For any α ∈ Bε(z), we have |α− z| < ε =
x− 1

2
. Then, by Re(z− α) ≤ |z− α|,

we know that:

Re(z− α) <
x− 1

2
=⇒ x− Re(α) <

x− 1
2

.

By rearrangement, we get Re(α) > x− x− 1
2

=
x + 1

2
>

1 + 1
2

= 1, which is equiv-

alently to saying that α ∈ U. This shows Bε(z) ⊂ U, and hence z is an interior
point.

z

w

η

x1

U

Next we show that every point w with Re(w) = 1 is a boundary point of U.
Given any ε > 0, we consider the ball Bε(w). The point w− ε

2 lies in the ball Bε(w)
and has real part 1− ε

2 and hence is not in U; while the point w + ε
2 is also in the

ball Bε(w) but has real part 1 + ε
2 and so is inside U. Therefore, both Bε(w) ∩U

and Bε(w) ∩ (C\U) are non-empty, it concludes that w is a boundary point of U.
Finally, we claim that any point η ∈ C with Re(η) < 1 is an exterior point

of U. To prove this claim, we choose a δ = 1−Re(η)
2 and show that Bδ(η) ⊂ C\U:

Given any β ∈ Bδ(η), we have:

Re(β− η) ≤ |β− η| < δ =
1− Re(η)

2
=⇒ Re(β) <

1 + Re(η)
2

< 1.

Therefore, β 6∈ U, and it shows Bδ ⊂ C\U. It completes the claim that η is an
exterior point of U.
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Exercise 1.24. Find all the interior, boundary and exterior points of each set below:

(a) U1 = {z ∈ C : Re(z) ≥ 0 and Im(z) < 0}.
(b) U2 = Br(z0) where z0 ∈ C is a fixed number and r > 0

(c) U3 = Br(z0) where z0 ∈ C is a fixed number and r > 0.
(d) U4 = ∂Br(z0) where z0 ∈ C is a fixed number and r > 0.
(e) U5 = C.

From now on, given any set U ⊂ C, we denote and define:

Uc := C\U = the complement of U in C

U◦ := set of all interior points of U
∂U := set of all boundary points of U

U := U ∪ ∂U = the closure of U

There is no standard notation for the set of all exterior points though. According to the
definition of interior points, we must have U◦ ⊂ U.

We are now ready to define what are open sets and closed sets. The way we define
open sets is very common in many other textbooks, while the way we define closed sets
may sound different from some textbooks but it is more intuitive and is nonetheless
equivalent to the definition found in other textbooks.

Definition 1.33 (Open and Closed Sets). A set Ω ⊂ C is said to be open if every point
z ∈ Ω is an interior point of Ω (i.e. Ω = Ω◦). A set E ⊂ C is said to be closed if all
boundary points of E belong to E (i.e. ∂E ⊂ E).

Remark 1.34. Note that it is always true that Ω◦ ⊂ Ω.

Let’s look at some examples. Consider the set Ω = {z ∈ C : Re(z) > 1}:
Ω◦ = {z ∈ C : Re(z) > 1} = Ω

∂Ω = {z ∈ C : Re(z) = 1} 6⊂ Ω

Therefore, Ω is an open set, but is not closed.
Let’s look at another example: E = {z ∈ C : Re(z) ≥ 1}. By inspection (we left the

detail for readers), we can see:

E◦ = {z ∈ C : Re(z) > 1} 6= E

∂E = {z ∈ C : Re(z) = 1} ⊂ E

Therefore, E is not open, but is closed.
There are sets which are not open and not closed! For instance, consider the unit

circle W = {z ∈ C : Re(z) ≥ 0 and Im(z) > 0}. We can see from Figure 1.3 that:

W◦ = {z ∈ C : Re(z) > 0 and Im(z) > 0} 6= W

∂W = {x + 0i ∈ C : x ≥ 0} ∪ {0 + yi ∈ C : y ≥ 0} 6⊂W.

W is neither open nor closed.
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(a) W (b) W◦ (c) ∂W

Figure 1.3. The set W = {z ∈ C : Re(z) ≥ 0 and Im(z) > 0} and its interior and boundary sets

Surprisingly, there are sets which are both open and closed (so “open” and “closed”
are not exactly opposite, which is a linguistic nightmare)! For subsets of C, there are
not many though. They are the empty set ∅ and the whole C. It is easy to see that
C◦ = C and ∂C = ∅ ⊂ C (the empty-set is a subset of every set). This shows C is both
open and closed.

The argument that shows ∅ is both open and closed has a bit of philosophical favor.
We claim that ∅◦ = ∅. Suppose otherwise, then we must have ∅◦ 6⊂ ∅ (since ∅ is a
subset of every set). This means there exists z ∈ ∅◦ such that z 6∈ ∅. Then, z being
an interior point of ∅ implies there exists ε > 0 such that Bε(z) ⊂ ∅, which is clearly
impossible! This shows ∅◦ = ∅ and so the empty set is open. To show ∅ is closed as
well, we claim ∂∅ = ∅. Suppose ∂∅ is non-empty, then we can pick w ∈ ∂∅, then for
any δ > 0, both Bδ(w) ∩ ∅ and Bδ(w) ∩ (C\∅) are non-empty. However, the former
cannot happen! This concludes ∂∅ = ∅, and so ∅ is closed as well!

Remark 1.35. There is an interesting YouTube video titled “Hitler learns Topology”.

Exercise 1.25. Determine whether each set U1 to U5 in Exercise 1.24 is open, closed,
neither or both.

Readers who have learned a bit point-set topology may have seen another definition
of closed sets, namely a set E is closed if its complement Ec is open. We are going to
show that this is equivalent to our definition:

Proposition 1.36. For any set E ⊂ C, we have

∂E ⊂ E ⇐⇒ Ec is open.

Proof. (=⇒)-part: Suppose ∂E ⊂ E. Consider z ∈ Ec, by the given condition ∂E ⊂ E,
we know z 6∈ ∂E. This shows there exists ε > 0 such that at least one of the sets
Bε(z) ∩ E or Bε(z) ∩ Ec is empty. Since z ∈ Ec, we must have Bε(z) ∩ E = ∅, which is
equivalent to saying Bε(z) ⊂ Ec. This shows Ec is open.

(⇐⇒)-part: Suppose Ec is open. Consider w ∈ ∂E, and we need to show w ∈ E.
Suppose not, then w ∈ Ec. By the openness of Ec, there exists δ > 0 such that
Bδ(w) ⊂ Ec. However, it would imply Bδ(w) ∩ E = ∅, contradicting to the fact that
w ∈ ∂E. This shows w ∈ E, completing the proof that ∂E ⊂ E. �

Therefore, from now on we can say a set is closed if and only if its complement is
open, which is more convenient sometimes. For instance, this fact can be used to show
an important and nice property about a closed set E: if there is a convergent sequence
in E, then the limit must be inside E.

Proposition 1.37. Let E ⊂ C be a closed set. Suppose {zn}∞
n=1 is a complex sequence such

that zn ∈ E for any n. If lim
n→∞

zn = w, then w ∈ E.
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Proof. We prove by contradiction. The key idea is that if w 6∈ E, then one can draw a
small ball around w such that the ball is completely outside E. However, then zn which
approaches w must go within the ball, and hence outside E, when n is large (see Figure
1.4).

Here we present the detail: suppose w 6∈ E, then w ∈ Ec. By Proposition 1.36, Ec

is open and so there exists ε > 0 such that Bε(w) ⊂ Ec. By the fact that zn → w, there
exists N ∈N such that whenever n ≥ N, we have |zn − w| < ε. However, it implies:

zn ∈ Bε(w) ⊂ Ec =⇒ zn 6∈ E

which is clearly a contradiction. It proves w ∈ E. �

Ez1z2
z3

z4

w
zn

Figure 1.4. If E is closed, w 6∈ E and zn → w, then zn must go outside E for large n.

Below is a list of useful facts about open and closed sets. We will prove some of
them and leave the others as exercises for readers.

Proposition 1.38. Open and closed sets in C have the following properties:

• The union
⋃

α

Uα of any family (finite or infinite) of open sets {Uα} in C is open.

• The intersection
N⋂

k=1

Uk of a finite family of open sets U1, . . . , UN in C is open.

• The union
N⋃

k=1

Ek of a finite family of closed sets E1, . . . , EN in C is closed.

• The intersection
⋂

α

Eα of any family (finite or infinite) of closed sets {Eα} in C is closed.

Proof. Let’s prove the second statement only, that if U1, . . . , UN are open, then their

intersection is also open. Let z ∈
N⋂

k=1

Uk, then z ∈ Uk for any k = 1, . . . , N. For each

k, since Uk is open, z is an interior point of Uk and so there exists εk > 0 such that
Bεk (z) ⊂ Uk. Let ε = min{ε1, . . . , εN}, which is positive, then ε ≤ εk for any k, and so
we have:

Bε(z) ⊂ Bεk (z) ⊂ Uk for any k = 1, . . . , N.
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Therefore, Bε(z) ⊂
N⋂

k=1

Uk. This shows z is an interior point of
N⋂

k=1

Uk. As a result,

N⋂

k=1

Uk is an open set.

We leave the proof of the first statement as an exercise for readers. Once the
first two statements are established, the third and fourth statements about closed sets

easily follow from Proposition 1.36 and De Morgan’s Rule:

(
⋃

k

Ek

)c

=
⋂

k

Ec
k and

(
⋂

α

Eα

)c

=
⋃

α

Ec
α. �

Exercise 1.26. Prove all the other three statements in Proposition 1.38. Give an
example of a family of open sets whose intersection is not open. Also give an
example of a family of closed sets whose union is not closed.

Exercise 1.27. Given any two sets U and V in C, show that:

(a) ∂(U ∪V) ⊂ ∂U ∪ ∂V
(b) ∂(∂U) = ∂U
(c) U := U ∪ ∂U is always closed.

Here are two more terminologies which we will use sometimes:

• A set Ω in C is said to be bounded if there exists M > 0 such that |z| < M for any
z ∈ Ω, i.e. Ω ⊂ BM(0).

• A set Ω in C is said to be compact if it is closed and bounded.

Exercise 1.28. Use the Bolzano-Weierstrass’s Theorem for R to show the Bolzano-
Weierstrass’s Theorem for C, which asserts that if {zn}∞

n=1 is a complex sequence in
a bounded set Ω, then there exists a convergent subsequence {znk}∞

k=1 of {zn}∞
n=1.

Exercise 1.29. Supoose Ω1 ⊃ Ω2 ⊃ Ω3 ⊃ · · · is an infinite sequence of non-empty
compact sets in C. Show that:

∞⋂

k=1

Ωk 6= ∅.

[Hint: Pick zk ∈ Ωk for each k. What can you say about {zk}∞
k=1?]

1.3.2. Connected Sets. Intuitively, a connected set is one that is in one “piece”.
However, such a definition is not rigorous as the word “piece” is quite vague. To define
connectedness, we first need to understand what it means by a disconnected set:

Definition 1.39 (Disconnected Sets). A set Ω ⊂ C is said to be disconnected if there
exists two disjoint open sets U and V (disjoint means U ∩V = ∅) such that:

Ω ⊂ U ∪V, Ω ∩U 6= ∅ and Ω ∩V 6= ∅.

Remark 1.40. The condition Ω ⊂ U ∪V means that U and V together cover the whole
set Ω. The condition Ω ∩U and Ω ∩V being non-empty means that Ω has something
inside U and something inside V. Since the definition requires U and V are disjoint
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(i.e. separated in some sense), these sets U and V create a separation for the set Ω, and
hence we say Ω is disconnected (see Figure 1.5).

V

U

Figure 1.5. Ω is the yellow set. It is disconnected with disjoint open sets U and V that
separate Ω.

A set Ω is said to be connected if it is not disconnected, meaning that whenever there
are disjoint open sets U and V covering the set Ω, then at least one of Ω ∩U or Ω ∩V
must be empty. In practice, it is not straight-forward to verify that a set is connected
using the definition, even for simple examples such as an open ball Br(z), an open
rectangle or an annulus 1 < |z| < 2. However, thanks for a proposition that we will
state, one can verify that they are all connected easily. Before we state the proposition,
we need to define:

Definition 1.41 (Polygonally Path-Connected Sets). A non-empty set Ω ⊂ C is said to
be polygonally path-connected if any pair of points in Ω can be joined by a continuous
path consisting of finitely many line segments contained inside Ω.

For instance, any convex set is polygonally path-connected since every pair of
points can be joined by a single line segment contained inside the set. The annulus
1 < |z| < 2 is also polygonally path-connected (see the figure below):

z1

z2

The following proposition asserts that for any open set Ω, connectedness and
polygonal-path-connectedness are equivalent:

Proposition 1.42. An open set Ω in C is connected if and only if it is polygonally path-
connected.

We omit the proof in this lecture note. Interested readers may consult Stein-
Shakarchi’s book (Exercise 5 in P.25) for an outline of the proof and try to complete the
detail as an exercise. Using this proposition, it is easy to see that any convex open sets
(and many other non-convex open sets) are connected.
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The last notion about sets in C to be introduced is simply-connectedness. Readers
should have encountered this concept in Multivariable Calculus (typically in the chapter
about conservative vector field).

Definition 1.43 (Simply-Connected Sets). A set Ω is said to be simply-connected if Ω
is connected and that every closed loop in Ω can continuously contract to a point
without leaving Ω.

The concept of simply-connectedness will come up frequently when we talk contour
integrals and Cauchy’s Integral Formula.

A ball and a rectangle (either open or closed) are simply-connected, while an
annulus 1 < |z| < 2 is not, because the red circle in the figure below cannot shrink to a
point unless it steps into the “hole” which is not a part of the annulus.

On C, simply-connected sets have one nice property concerning simple closed
curves (“simple closed” means closed without self-intersections). If γ is a simple closed
curve contained inside a simply-connected set Ω, then the region enclosed by γ will be
a subset of Ω. Some textbooks put this as the definition of simply-connected sets in C.

Exercise 1.30. For each set described below, sketch the region on C, and determine
whether it is (i) open, (ii) closed, (iii) bounded, (iv) compact, (v) connected and (vi)
simply-connected or not.

(a) Ω1 = {z ∈ C : |z + 1| ≥ 4 |z− 1|}
(b) Ω2 = {z ∈ C : |z + 1| < 4 |z− 1|}
(c) Ω3 = {z ∈ C : |z| ≤ Re(z) + 1}
(d) Ω4 = {ez ∈ C : 1 ≤ Re(z) ≤ 2}
(e) Ω5 = {z ∈ C :

∣∣z2 − 1
∣∣ ≤ 1}


