
Chapter 3

Tensors and Differential
Forms

“In the beginning, God said, the
four-dimensional divergence of an
antisymmetric, second-rank tensor
equals zero, and there was light.”

Michio Kaku

In Multivariable Calculus, we learned about gradient, curl and divergence of a
vector field, and three important theorems associated to them, namely Green’s, Stokes’
and Divergence Theorems. In this and the next chapters, we will generalize these
theorems to higher dimensional manifolds, and unify them into one single theorem
(called the Generalized Stokes’ Theorem). In order to carry out this generalization and
unification, we need to introduce tensors and differential forms. The reasons of doing
so are many-folded. We will explain it in detail. Meanwhile, one obvious reason is that
the curl of a vector field is only defined in R3 since it uses the cross product. In this
chapter, we will develop the language of differential forms which will be used in place
of gradient, curl, divergence and all that in Multivariable Calculus.

3.1. Cotangent Spaces

3.1.1. Review of Linear Algebra: dual spaces. Let V be an n-dimensional real
vector space, and B = {e1, . . . , en} be a basis for V. The set of all linear maps T : V → R

from V to the scalar field R (they are commonly called linear functionals) forms a vector
space with dimension n. This space is called the dual space of V, denoted by V∗.

Associated to the basis B = {ei}n
i=1 for V, there is a basis B∗ = {e∗i }n

i=1 for V∗:

e∗i (ej) =

{
1 if i = j
0 if i 6= j

The basis B∗ for V∗ (do Exericse 3.1 to verify it is indeed a basis) is called the dual basis
of V∗ with respect to B.
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62 3. Tensors and Differential Forms

Exercise 3.1. Given that V is a finite-dimensional real vector space, show that:

(a) V∗ is a vector space
(b) dim V∗ = dim V
(c) If B = {ei}n

i=1 is a basis for V, then B∗ := {e∗i }n
i=1 is a basis for V∗.

Given T ∈ V∗ and that T(ei) = ai, verify that:

T =
n

∑
i=1

aie
∗
i .

3.1.2. Cotangent Spaces of Smooth Manifolds. Let Mn be a smooth manifold.
Around p ∈ M, suppose there is a local parametrization F(u1, . . . , un). Recall that
the tangent space Tp M at p is defined as the span of partial differential operators{

∂

∂ui
(p)
}n

i=1
. The cotangent space denoted by T∗p M is defined as follows:

Definition 3.1 (Cotangent Spaces). Let Mn be a smooth manifold. At every p ∈ M,
the cotangent space of M at p is the dual space of the tangent space Tp M, i.e.:

T∗p M =
(
Tp M

)∗ .

The elements in T∗p M are called cotangent vectors of M at p.

Remark 3.2. Some authors use Tp M∗ to denote the cotangent space. Some authors
(such as [Lee13]) also call cotangent vectors as tangent covectors. �

Associated to the basis Bp =

{
∂

∂ui
(p)
}n

i=1
of Tp M, there is a dual basis B∗p ={

(du1)p, . . . , (dun)p
}

for T∗p M, which is defined as follows:

(dui)p

(
∂

∂uj
(p)

)
= δij =

{
1 if i = j
0 if i 6= j

As (dui)p is a linear map from Tp M to R, from the above definition we have:

(dui)p

(
n

∑
j=1

aj
∂

∂uj
(p)

)
=

n

∑
j=1

ajδij = ai.

Occasionally (just for aesthetic purpose),
(
dui)

p can be denoted as dui
∣∣

p. Moreover,

whenever p is clear from the context (or not significant), we may simply write dui and
∂

∂ui
.

Note that both Bp and B∗p depend on the choice of local coordinates. Suppose
(v1, . . . , vn) is another local coordinates around p, then by chain rule we have:

∂

∂vj
=

n

∑
k=1

∂uk
∂vj

∂

∂uk

∂

∂uj
=

n

∑
k=1

∂vk
∂uj

∂

∂vk
.
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We are going to express dvi in terms of duj’s:

dvi

(
∂

∂uj

)
= dvi

(
n

∑
k=1

∂vk
∂uj

∂

∂vk

)

=
n

∑
k=1

∂vk
∂uj

dvi
(

∂

∂vk

)
=

n

∑
k=1

∂vk
∂uj

δik

=
∂vi
∂uj

.

This proves the transition formula for the cotangent basis:

(3.1) dvi =
n

∑
k=1

∂vi
∂uk

duk.

Example 3.3. Consider M = R2 which can be parametrized by

F1(x, y) = (x, y)

F2(r, θ) = (r cos θ, r sin θ).

From (3.1), the conversion between {dr, dθ} and {dx, dy} is given by:

dx =
∂x
∂r

dr +
∂x
∂θ

dθ

= (cos θ) dr− (r sin θ) dθ

dy =
∂y
∂r

dr +
∂y
∂θ

dθ

= (sin θ) dr + (r cos θ) dθ

�

Exercise 3.2. Consider M = R3 which can be parametrized by:

F1(x, y, z) = (x, y, z)

F2(r, θ, z) = (r cos θ, r sin θ, z)

F3(ρ, φ, θ) = (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ)

Express {dx, dy, dz} in terms of {dr, dθ, dz} and {dρ, dφ, dθ}.

Exercise 3.3. Suppose F(u1, . . . , un) and G(v1, . . . , vn) are two local parametriza-
tions of a smooth manifold M. Let ω : M→ TM be a smooth differential 1-form
such that on the overlap of local coordinates we have:

ω = ∑
j

ajduj = ∑
i

bidvi.

Find a conversion formula between aj’s and bi’s.
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3.2. Tangent and Cotangent Bundles

3.2.1. Definitions. Let M be a smooth manifold. Loosely speaking, the tangent
bundle (resp. cotangent bundle) are defined as the disjoint union of all tangent (resp.
cotangent) spaces over the whole M. Precisely:

Definition 3.4 (Tangent and Cotangent Bundles). Let M be a smooth manifold. The
tangent bundle, denoted by TM, is defined to be:

TM =
⋃

p∈M

(
{p} × Tp M

)
.

Elements in TM can be written as (p, V) where V ∈ Tp M.
Similarly, the cotangent bundle, denoted by T∗M, is defined to be:

T∗M =
⋃

p∈M

(
{p} × T∗p M

)
.

Elements in T∗M can be written as (p, ω) where ω ∈ T∗p M.

Suppose F(u1, . . . , un) : U → M is a local parametrization of M, then a general
element of TM can be written as:(

p,
n

∑
i=1

Vi ∂

∂ui
(p)

)
and a general element of T∗M can be written as:(

p,
n

∑
i=1

ai dui
∣∣∣

p

)
.

We are going to explain why both TM and T∗M are smooth manifolds. The local
parametrization F(u1, . . . , un) of M induces a local parametrization F̃ of TM defined
by:

F̃ : U ×Rn → TM(3.2)

(u1, . . . , un; V1, . . . , Vn) 7→
(

F(u1, . . . , un),
n

∑
i=1

Vi ∂

∂ui

∣∣∣∣
F(u1,...,un)

)
.

Likewise, it also induces a local parametrization F̃∗ of T∗M defined by:

F̃∗ : U ×Rn → T∗M(3.3)

(u1, . . . , un; a1, . . . , an) 7→
(

F(u1, . . . , un),
n

∑
i=1

ai dui
∣∣∣
F(u1,...,un)

)
.

It suggests that TM and T∗M are both smooth manifolds of dimension 2 dim M. To do
so, we need to verify compatible F’s induce compatible F̃ and F̃∗. Let’s state this as a
proposition and we leave the proof as an exercise for readers:

Proposition 3.5. Let Mn be a smooth manifold. Suppose F and G are two overlapping smooth
local parametrizations of M, then their induced local parametrizations F̃ and G̃ defined as in
(3.2) on the tangent bundle TM are compatible, and also that F̃∗ and G̃∗ defined as in (3.3)

on the cotangent bundle T∗M are also compatible.

Corollary 3.6. The tangent bundle TM and the cotangent bundle T∗M of a smooth manifold
M are both smooth manifolds of dimension 2 dim M.
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Exercise 3.4. Prove Proposition 3.5.

Exercise 3.5. Show that the bundle map π : TM → M taking (p, V) ∈ TM to
p ∈ M is a submersion. Show also that the set:

Σ0 := {(p, 0) ∈ TM : p ∈ M}
is a submanifold of TM.

3.2.2. Vector Fields. Intuitively, a vector field V on a manifold M is an assignment
of a vector to each point on M. Therefore, it can be regarded as a map V : M→ TM
such that V(p) ∈ {p} × Tp M. Since we have shown that the tangent bundle TM is also
a smooth manifold, one can also talk about Ck and smooth vector fields.

Definition 3.7 (Vector Fields of Class Ck). Let M be a smooth manifold. A map
V : M → TM is said to be a vector field if for each p ∈ M, we have V(p) = (p, Vp) ∈
{p} × Tp M.

If V is of class Ck as a map between M and TM, then we say V is a Ck vector field.
If V is of class C∞, then we say V is a smooth vector field.

Remark 3.8. In the above definition, we used V(p) to be denote the element (p, Vp) in
TM, and Vp to denote the vector in Tp M. We will distinguish between them for a short
while. After getting used to the notations, we will abuse the notations and use Vp and
V(p) interchangeably. �

Remark 3.9. Note that a vector field can also be defined locally on an open set O ⊂ M.
In such case we say V is a Ck on O if the map V : O → TM is Ck. �

Under a local parametrization F(u1, . . . , un) : U → M of M, a vector field V : M→
TM can be expressed in terms of local coordinates as:

V(p) =

(
p,

n

∑
i=1

Vi(p)
∂

∂ui
(p)

)
.

The functions Vi : F(U ) ⊂ M→ R are all locally defined and are commonly called the
components of V with respect to local coordinates (u1, . . . , un).

Let F̃(u1, . . . , un; V1, . . . , Vn) be the induced local parametrization of TM defined
as in (3.2). Then, one can verify that:

F̃−1 ◦V ◦ F(u1, . . . , un) = F̃−1

(
F(u1, . . . , un),

n

∑
i=1

Vi(F(u1, . . . , un))
∂

∂ui

∣∣∣∣
F(u1,...,un)

)
=
(

u1, . . . , un; V1(F(u1, . . . , un)), . . . , Vn(F(u1, . . . , un))
)

.

Therefore, F̃−1 ◦V ◦ F(u1, . . . , un) is smooth if and only if the components Vi’s are all
smooth. Similarly for class Ck. In short, a vector field V is smooth if and only if the
components Vi in every its local expression:

V(p) =

(
p,

n

∑
i=1

Vi(p)
∂

∂ui
(p)

)
are all smooth.
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3.2.3. Differential 1-Forms. Differential 1-forms are the dual counterpart of vector
fields. It is essentially an assignment of a cotangent vector to each point on M. Precisely:

Definition 3.10 (Differential 1-Forms of Class Ck). Let M be a smooth manifold. A
map ω : M → T∗M is said to be a differential 1-form if for each p ∈ M, we have
ω(p) = (p, ωp) ∈ {p} × T∗p M.

If ω is of class Ck as a map between M and T∗M, then we say ω is a Ck differential
1-form. If ω is of class C∞, then we say ω is a smooth differential 1-form.

Remark 3.11. At this moment we use ω(p) to denote an element in {p} × Tp M,
and ωp to denote an element in T∗p M. We will abuse the notations later on and
use them interchangeably, since such a distinction is unnecessary for many practical
purposes. �

Remark 3.12. If a differential 1-form ω is locally defined on an open set O ⊂ M, we
may say ω is Ck on O to mean the map ω : O → T∗M is of class Ck. �

Under a local parametrization F(u1, . . . , un) : U → M of M, a differential 1-form
ω : M→ T∗M has a local coordinate expression given by:

ω(p) =

(
p,

n

∑
i=1

ωi(p) dui
∣∣∣

p

)
where ωi : F(U ) ⊂ M→ R are locally defined functions and are commonly called the
components of ω with respect to local coordinates (u1, . . . , un). Similarly to vector fields,
one can show that ω is a C∞ differential 1-form if and only if all ωi’s are smooth under
any local coordinates in the atlas of M (see Exercise 3.6).

Exercise 3.6. Show that a differential 1-form ω is Ck on M if and only if all
components ωi’s are Ck under any local coordinates in the atlas of M.

Example 3.13. The differential 1-form:

ω = − y
x2 + y2 dx +

x
x2 + y2 dy

is smooth on R2\{0}, but is not smooth on R2. �

3.2.4. Push-Forward and Pull-Back. Consider a smooth map Φ : M → N be-
tween two smooth manifolds M and N. The tangent map at p denoted by (Φ∗)p is
the induced map between tangent spaces Tp M and TΦ(p)N. Apart from calling it the
tangent map, we often call Φ∗ to be the push-forward by Φ, since Φ and Φ∗ are both
from the space M to the space N.

The push-forward map Φ∗ takes tangent vectors on M to tangent vectors on N.
There is another induced map Φ∗, called the pull-back by Φ, which is loosely defined as
follows:

(Φ∗ω)(V) = ω(Φ∗V)

where ω is a cotangent vector and V is a tangent vector. In order for the above to make
sense, V has to be a tangent vector on M (say at p). Then, Φ∗V is a tangent vector in
TΦ(p)N. Therefore, Φ∗ω needs to act on V and hence is a cotangent vector in T∗p M;
whereas ω acts on Φ∗V and so it should be a cotangent vector in T∗Φ(p)N. It is precisely
defined as follows:
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Definition 3.14 (Pull-Back of Cotangent Vectors). Let Φ : M→ N be a smooth map
between two smooth manifolds M and N. Given any cotangent vector ωΦ(p) ∈ T∗Φ(p)N,
the pull-back of ω by Φ at p denoted by (Φ∗ω)p is an element in T∗p M and is defined
to be the following linear functional on Tp M:

(Φ∗ω)p : Tp M→ R

(Φ∗ω)p (Vp) := ωΦ(p)
(
(Φ∗)p(Vp)

)
Therefore, one can think of Φ∗ is a map which takes a cotangent vector ωΦ(p) ∈

T∗Φ(p)N to a cotangent vector (Φ∗ω)p on T∗p M. As it is in the opposite direction to
Φ : M→ N, we call Φ∗ the pull-back whereas Φ∗ is called the push-forward.

Remark 3.15. In many situations, the points p and Φ(p) are clear from the context.
Therefore, we often omit the subscripts p and Φ(p) when dealing with pull-backs and
push-forwards. �

Example 3.16. Consider the map Φ : R→ R2\{0} defined by:

Φ(θ) = (cos θ, sin θ).

Let ω be the following 1-form on R2\{0}:

ω = − y
x2 + y2 dx +

x
x2 + y2 dy.

First note that

Φ∗

(
∂

∂θ

)
=

∂Φ
∂θ

=
∂

x︷ ︸︸ ︷
(cos θ)

∂θ

∂

∂x
+

∂

y︷ ︸︸ ︷
(sin θ)

∂θ

∂

∂y
= −y

∂

∂x
+ x

∂

∂y
.

Therefore, one can compute:

(Φ∗ω)

(
∂

∂θ

)
= ω

(
Φ∗

(
∂

∂θ

))
= ω

(
−y

∂

∂x
+ x

∂

∂y

)
= −y

(
−y

x2 + y2

)
+ x

(
x

x2 + y2

)
= 1.

Therefore, Φ∗ω = dθ. �

Example 3.17. Let M := R2\{(0, 0)} (equipped with polar (r, θ)-coordinates) and
N = R2 (with (x, y)-coordinates), and define:

Φ : M→ N

Φ(r, θ) := (r cos θ, r sin θ)

One can verify that:

Φ∗

(
∂

∂r

)
=

∂Φ
∂r

= (cos θ)
∂

∂x
+ (sin θ)

∂

∂y

Φ∗

(
∂

∂θ

)
=

∂Φ
∂θ

= (−r sin θ)
∂

∂x
+ (r cos θ)

∂

∂y

= −y
∂

∂x
+ x

∂

∂y
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Hence, we have:

(Φ∗dx)
(

∂

∂r

)
= dx

(
Φ∗

(
∂

∂r

))
= dx

(
(cos θ)

∂

∂x
+ (sin θ)

∂

∂y

)
= cos θ

(Φ∗dx)
(

∂

∂θ

)
= dx

(
Φ∗

(
∂

∂θ

))
= dx

(
−y

∂

∂x
+ x

∂

∂y

)
= −y = −r sin θ

We conclude:
Φ∗dx = cos θ dr− r sin θ dθ.

�

Given a smooth map Φ : Mm → Nn, and local coordinates (u1, . . . , um) of M
around p and local coordinates (v1, . . . , vn) of N around Φ(p). One can compute a
local expression for Φ∗:

(3.4) Φ∗dvi =
n

∑
j=1

∂vi
∂uj

duj

where (v1, . . . , vn) is regarded as a function of (u1, . . . , um) via the map Φ : M→ N.

Exercise 3.7. Prove (3.4).

Exercise 3.8. Express Φ∗dy in terms of dr and dθ in Example 3.17. Try computing
it directly and then verify that (3.4) gives the same result.

Exercise 3.9. Denote (x1, x2) the coordinates for R2 and (y1, y2, y3) the coordinates
for R3. Define the map Φ : R2 → R3 by:

Φ(x1, x2) = (x1x2, x2x3, x3x1).

Compute Φ∗(dy1), Φ∗(dy2) and Φ∗(dy3).

Exercise 3.10. Consider the map Φ : R3\{0} → RP2 defined by:

Φ(x, y, z) = [x : y : z].

Consider the local parametrization F(u1, u2) = [1 : u1 : u2] of RP2. Compute
Φ∗(du1) and Φ∗(du2).
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3.3. Tensor Products

In Differential Geometry, tensor products are often used to produce bilinear, or in
general multilinear, maps between tangent and cotangent spaces. The first and second
fundamental forms of a regular surface, the Riemann curvature, etc. can all be
expressed using tensor notations.

3.3.1. Tensor Products in Vector Spaces. Given two vector spaces V and W,
their dual spaces V∗ and W∗ are vector spaces of all linear functionals T : V → R and
S : W → R respectively. Pick two linear functionals T ∈ V∗ and S ∈ W∗, their tensor
product T ⊗ S is a map from V ×W to R defined by:

T ⊗ S : V ×W → R

(T ⊗ S)(X, Y) := T(X) S(Y)

It is easy to verify that T ⊗ S is bilinear, meaning that it is linear at each slot:

(T ⊗ S) (a1X1 + a2X2, b1Y1 + b2Y2)

= a1b1(T ⊗ S)(X1, Y1) + a2b1(T ⊗ S)(X2, Y1)

+ a1b2(T ⊗ S)(X1, Y2) + a2b2(T ⊗ S)(X1, Y2)

Given three vector spaces U, V, W, and linear functionals TU ∈ U∗, TV ∈ V∗ and
TW ∈W∗, one can define a triple tensor product TU ⊗ (TV ⊗ TW) by:

TU ⊗ (TV ⊗ TW) : U × (V ×W)→ R

(TU ⊗ (TV ⊗ TW))(X, Y, Z) := TU(X) (TV ⊗ TW)(Y, Z)

= TU(X) TV(Y) TW(Z)

One check easily that (TU ⊗ TV)⊗ TW = TU ⊗ (TV ⊗ TW). Since there is no ambiguity,
we may simply write TU ⊗ TV ⊗ TW . Inductively, given finitely many vector spaces
V1, . . . , Vk, and linear functions Ti ∈ V∗i , we can define the tensor product T1 ⊗ · · · ⊗ Tk
as a k-linear map by:

T1 ⊗ · · · ⊗ Tk : V1 × · · · ×Vk → R

(T1 ⊗ · · · ⊗ Tk)(X1, . . . , Xk) := T1(X1) · · · Tk(Xk)

Given two tensor products T1 ⊗ S1 : V ×W → R and T2 ⊗ S2 : V ×W → R, one
can form a linear combination of them:

α1(T1 ⊗ S1) + α2(T2 ⊗ S2) : V ×W → R

(α1(T1 ⊗ S1) + α2(T2 ⊗ S2))(X, Y) := α1(T1 ⊗ S1)(X, Y) + α2(T2 ⊗ S2)(X, Y)

The tensor products T⊗ S with T ∈ V∗ and S ∈W∗ generate a vector space. We denote
this vector space by:

V∗ ⊗W∗ := span{T ⊗ S : T ∈ V∗ and S ∈W∗}.

Exercise 3.11. Verify that α (T ⊗ S) = (αT)⊗ S = T ⊗ (αS). Therefore, we can
simply write αT ⊗ S.

Exercise 3.12. Show that the tensor product is bilinear in a sense that:

T ⊗ (α1S1 + α2S2) = α1T ⊗ S1 + α2T ⊗ S2

and similar for the T slot.
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Let’s take the dual basis as an example to showcase the use of tensor products.
Consider a vector space V with a basis {ei}n

i=1. Let {e∗i }n
i=1 be its dual basis for V∗.

Then, one can check that:

(e∗i ⊗ e∗j )(ek, el) = e∗i (ek) e∗k (el)

= δik δjl

=

{
1 if i = k and j = l
0 otherwise

Generally, the sum
n

∑
i,j=1

Aije
∗
i ⊗ e∗j will act on vectors in V by:

(
n

∑
i,j=1

Aije
∗
i ⊗ e∗j

)(
n

∑
k=1

αkek,
n

∑
l=1

βlel

)

=
n

∑
i,j,k,l=1

Aijαkβl(e
∗
i ⊗ e∗j )(ek, el) =

n

∑
i,j,k,l=1

Aijαkβlδikδjl =
n

∑
k,l=1

Aklαkβl

In other words, the sum of tensor products
n

∑
i,j=1

Aije
∗
i ⊗ e∗j is the inner product on V

represented by the matrix [Akl ] with respect to the basis {ei}n
i=1 of V. For example,

when Akl = δkl , then
n

∑
i,j=1

Aije
∗
i ⊗ e∗j =

n

∑
i=1

e∗i ⊗ e∗i . It is the usual dot product on V.

Exercise 3.13. Show that {e∗i ⊗ e∗j }n
i,j=1 is a basis for V∗ ⊗V∗. What is the dimen-

sion of V∗ ⊗V∗?

Exercise 3.14. Suppose dim V = 2. Let ω ∈ V∗ ⊗V∗ satisfy:

ω(e1, e1) = 0 ω(e1, e2) = 3

ω(e2, e1) = −3 ω(e2, e2) = 0

Express ω in terms of e∗i ’s.

To describe linear or multilinear map between two vector spaces V and W (where
W is not necessarily the one-dimensional space R), one can also use tensor products.
Given a linear functional f ∈ V∗ and a vector w ∈ W, we can form a tensor f ⊗ w,
which is regarded as a linear map f ⊗ w : V →W defined by:

( f ⊗ w)(v) := f (v)w.

Let {ei} be a basis for V, and {fj} be a basis for W. Any linear map T : V → W
can be expressed in terms of these bases. Suppose:

T(ei) = ∑
j

Aj
ifj.

Then, we claim that T can be expressed using the following tensor notations:

T = ∑
i,j

Aj
ie
∗
i ⊗ fj
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Let’s verify this. Note that a linear map is determined by its action on the basis {ei}
for V. It suffices to show: (

∑
i,j

Aj
ie
∗
i ⊗ fj

)
(ek) = T(ek).

Using the fact that:
(e∗i ⊗ fj)(ek) = e∗i (ek)fj = δikfj,

one can compute: (
∑
i,j

Aj
ie
∗
i ⊗ fj

)
(ek) = ∑

i,j
Aj

i(e
∗
i ⊗ fj)(ek)

= ∑
i,j

Aj
iδikfj = ∑

j
Aj

kfj = T(ek)

as desired.
Generally, if T1, . . . , Tk ∈ V∗ and X ∈ V, then

T1 ⊗ · · · ⊗ Tk ⊗ X

is regarded to be a k-linear map from V × . . .×V to V, defined by:

T1 ⊗ · · · ⊗ Tk ⊗ X : V × . . .×V︸ ︷︷ ︸
k

→ V

(T1 ⊗ · · · ⊗ Tk ⊗ X)(Y1, . . . , Yk) := T1(Y1) · · · Tk(Yk) X

Example 3.18. One can write the cross-product in R3 using tensor notations. Think
of the cross product as a bilinear map ω : R3 ×R3 → R3 that takes two input vectors
u and v, and outputs the vector u× v. Let {e1, e2, e3} be the standard basis in R3 (i.e.
{i, j, k}). Then one can write:

ω = e∗1 ⊗ e∗2 ⊗ e3 − e∗2 ⊗ e∗1 ⊗ e3

+ e∗2 ⊗ e∗3 ⊗ e1 − e∗3 ⊗ e∗2 ⊗ e1

+ e∗3 ⊗ e∗1 ⊗ e2 − e∗1 ⊗ e∗3 ⊗ e2

One can check that, for instance, ω(e1, e2) = e3, which is exactly e1 × e2 = e3. �

3.3.2. Tensor Products on Smooth Manifolds. In the previous subsection we take
tensor products on a general abstract vector space V. In this course, we will mostly
deal with the case when V is the tangent or cotangent space of a smooth manifold M.

Recall that if F(u1, . . . , un) is a local parametrization of M, then there is a local

coordinate basis
{

∂

∂ui
(p)
}n

j=1
for the tangent space Tp M at every p ∈ M covered by F.

The cotangent space T∗p M has a dual basis
{

duj
∣∣

p

}n

j=1
defined by duj

(
∂

∂ui

)
= δij at

every p ∈ M.

Then, one can take tensor products of dui’s and ∂
∂ui

’s to express multilinear maps be-

tween tangent and cotangent spaces. For instance, the tensor product g =
n

∑
i,j=1

gijdui ⊗ duj,

where gij’s are scalar functions, means that it is a bilinear map at each point p ∈ M
such that:

g(X, Y) =
n

∑
i,j=1

gij(dui ⊗ duj)(X, Y) =
n

∑
i,j=1

gijdui(X) duj(Y)
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for any vector field X, Y ∈ TM. In particular, we have:

g

(
∂

∂ui
,

∂

∂uj

)
= gij.

We can also express multilinear maps from Tp M × Tp M × Tp M to Tp M. For
instance, we let:

Rm =
n

∑
i,j,k,l=1

Rl
ijkdui ⊗ duj ⊗ duk ⊗ ∂

∂ul
.

Then, Rm is a mutlilinear map at each p ∈ M such that:

Rm(X, Y, Z) =
n

∑
i,j,k,l=1

Rl
ijkdui(X) duj(Y) duk(Z)

∂

∂ul
.

It is a trilinear map such that:

Rm

(
∂

∂ui
,

∂

∂uj
,

∂

∂uk

)
=

n

∑
l=1

Rl
ijk

∂

∂ul
.

We call g a (2, 0)-tensor (meaning that it maps two vectors to a scalar), and Rm a
(3, 1)-tensor (meaning that it maps three vectors to one vector). In general, we can also
define (k, 0)-tensor ω on M which has the general form:

ωp =
n

∑
i1,...,ik=1

ωi1i2···ik (p) dui1
∣∣∣

p
⊗ · · · ⊗ duik

∣∣∣
p

Here ωi1i2···ik ’s are scalar functions. This tensor maps the tangent vectors
(

∂
∂ui1

, . . . , ∂
∂uik

)
to the scalar ωi1i2 ...ik at the corresponding point.

Like the Rm-tensor, we can also generally define (k, 1)-tensor Ω on M which has
the general form:

Ωp =
n

∑
i1,...,ik ,j=1

Ωj
i1i2···ik (p) dui1

∣∣∣
p
⊗ · · · ⊗ duik

∣∣∣
p
⊗ ∂

∂uj
(p)

where Ωj
i1i2 ...ik

’s are scalar functions. This tensor maps the tangent vectors
(

∂
∂ui1

, . . . , ∂
∂uik

)
to the tangent vector ∑j Ωj

i1i2 ...ik
∂

∂uj
at the corresponding point.

Note that these gij, Rl
ijk, ωi1i2···ik and Ωj

i1i2 ...ik
are scalar functions locally defined on

the open set covered by the local parametrization F, so we can talk about whether they
are smooth or not:
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Definition 3.19 (Smooth Tensors on Manifolds). A smooth (k, 0)-tensor ω on M is a
k-linear map ωp : Tp M× . . .× Tp M︸ ︷︷ ︸

k

→ R at each p ∈ M such that under any local

parametrization F(u1, . . . , un) : U → M, it can be written in the form:

ωp =
n

∑
i1,...,ik=1

ωi1i2···ik (p) dui1
∣∣∣

p
⊗ · · · ⊗ duik

∣∣∣
p

where ωi1i2 ...ik ’s are smooth scalar functions locally defined on F(U ).
A smooth (k, 1)-tensor Ω on M is a k-linear map Ωp : Tp M× . . .× Tp M︸ ︷︷ ︸

k

→ Tp M at

each p ∈ M such that under any local parametrization F(u1, . . . , un) : U → M, it can
be written in the form:

Ωp =
n

∑
i1,...,ik ,j=1

Ωj
i1i2···ik (p) dui1

∣∣∣
p
⊗ · · · ⊗ duik

∣∣∣
p
⊗ ∂

∂uj
(p)

where Ωj
i1i2 ...ik

’s are smooth scalar functions locally defined on F(U ).

Remark 3.20. Since Tp M is finite dimensional, from Linear Algebra we know (Tp M)∗∗

is isomorphic to Tp M. Therefore, a tangent vector ∂
∂ui

(p) can be regarded as a linear
functional on cotangent vectors in T∗p M, meaning that:

∂

∂ui

∣∣∣∣
p

(
duj
∣∣∣

p

)
= δij.

Under this interpretation, one can also view a (k, 1)-tensor Ω as a (k + 1)-linear
map Ωp : Tp M× . . .× Tp M︸ ︷︷ ︸

k

×T∗p M → R, which maps
(

dui1 , . . . , duik , ∂
∂uj

)
to Ωj

i1i2 ...ik
.

However, we will not view a (k, 1)-tensor this way in this course.
Generally, we can also talk about (k, s)-tensors, which is a (k + s)-linear map

Ωp : Tp M× . . .× Tp M︸ ︷︷ ︸
k

× T∗p M× . . .× T∗p M︸ ︷︷ ︸
s

→ R taking
(

dui1 , . . . , duik , ∂
∂uj1

, . . . , ∂
∂ujs

)
to a scalar. However, we seldom deal with these tensors in this course. �

Exercise 3.15. Let M be a smooth manifold with local coordinates (u1, u2). Con-
sider the tensor products:

T1 = du1 ⊗ du2 and T2 = du1 ⊗ ∂

∂u2
.

Which of the following is well-defined?

(a) T1

(
∂

∂u1

)
(b) T2

(
∂

∂u1

)
(c) T1

(
∂

∂u1
,

∂

∂u2

)
(d) T2

(
∂

∂u1
,

∂

∂u2

)
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Exercise 3.16. let M be a smooth manifold with local coordinates (u1, u2). The
linear map T : Tp M→ Tp M satisfies:

T
(

∂

∂u1

)
=

∂

∂u1
+

∂

∂u2

T
(

∂

∂u2

)
=

∂

∂u1
− ∂

∂u2
.

Express T using tensor products.

One advantage of using tensor notations, instead of using matrices, to denote a
multilinear map between tangent or cotangent spaces is that one can figure out the
conversion rule between local coordinate systems easily (when compared to using
matrices)

Example 3.21. Consider the extended complex plane M := C∪ {∞} defined in Exam-
ple 2.12. We cover M by two local parametrizations:

F1 : R2 → C ⊂ M F2 : R2 → (C\{0}) ∪ {∞} ⊂ M

(x, y) 7→ x + yi (u, v) 7→ 1
u + vi

The transition maps on the overlap are given by:

(u, v) = F−1
2 ◦ F1(x, y) =

(
x

x2 + y2 ,− y
x2 + y2

)
(x, y) = F−1

1 ◦ F2(u, v) =
(

u
u2 + v2 ,− v

u2 + v2

)
Consider the (2, 0)-tensor ω defined using local coordinates (x, y) by:

ω = e−(x2+y2) dx⊗ dy.

Using the chain rule, we can express dx and dy in terms of du and dv:

dx = d
(

u
u2 + v2

)
=

(u2 + v2) du− u(2u du + 2v dv)
(u2 + v2)2

=
v2 − u2

(u2 + v2)2 du− 2uv
(u2 + v2)2 dv

dy = −d
(

v
u2 + v2

)
= − (u2 + v2)dv− v(2u du + 2v dv)

(u2 + v2)2

= − 2uv
(u2 + v2)2 du +

v2 − u2

(u2 + v2)2 dv

Therefore, we get:

dx⊗ dy =
2uv(u2 − v2)

(u2 + v2)4 du⊗ du +
(u2 − v2)2

(u2 + v2)4 du⊗ dv

+
4u2v2

(u2 + v2)4 dv⊗ du +
2uv(u2 − v2)

(u2 + v2)4 dv⊗ dv

Recall that ω = e−(x2+y2) dx⊗ dy, and in terms of (u, v), we have:

e−(x2+y2) = e−
1

u2+v2 .
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Hence, in terms of (u, v), ω is expressed as:

ω = e−
1

u2+v2

{
2uv(u2 − v2)

(u2 + v2)4 du⊗ du +
(u2 − v2)2

(u2 + v2)4 du⊗ dv

+
4u2v2

(u2 + v2)4 dv⊗ du +
2uv(u2 − v2)

(u2 + v2)4 dv⊗ dv
}

�

Exercise 3.17. Consider the extended complex plane C∪ {∞} as in Example 3.21,
and the (1, 1)-tensor of the form:

Ω = e−(x2+y2) dx⊗ ∂

∂y
.

Express Ω in terms of (u, v).

Generally, if (u1, . . . , un) and (v1, . . . , vn) are two overlapping local coordinates on
a smooth manifold M, then given a (2, 0)-tensor:

g = ∑
i,j

gijdui ⊗ duj

written using the ui’s coordinates, one can convert it to vα’s coordinates by the chain
rule:

g = ∑
i,j

gijdui ⊗ duj = ∑
i,j

gij

(
∑
α

∂ui
∂vα

dvα

)
⊗
(

∑
β

∂uj

∂vβ
dvβ

)

= ∑
α,β

(
∑
i,j

gij
∂ui
∂vα

∂uj

∂vβ

)
dvα ⊗ dvβ

Exercise 3.18. Given that ui’s and vα’s are overlapping local coordinates of a
smooth manifold M. Using these coordinates, one can express the following
(3, 1)-tensor in two ways:

Rm = ∑
i,j,k,l

Rl
ijkdui ⊗ duj ⊗ duk ⊗ ∂

∂ul
= ∑

α,β,γ,η
R̃η

αβγdvα ⊗ dvβ ⊗ dvγ ⊗ ∂

∂vη

Express Rl
ijk in terms of Rη

αβγ’s.

Exercise 3.19. Given that ui’s and vα’s are overlapping local coordinates of a
smooth manifold M. Suppose g and h are two (2, 0)-tensors expressed in terms of
local coordinates as:

g = ∑
i,j

gij dui ⊗ duj = ∑
α,β

g̃αβdvα ⊗ dvβ

h = ∑
i,j

hij dui ⊗ duj = ∑
α,β

h̃αβdvα ⊗ dvβ.

Let G be the matrix with gij as its (i, j)-th entry, and let gij be the (i, j)-th entry of
G−1. Similarly, define g̃αβ to be the inverse of g̃αβ. Show that:

∑
i,j

gikhkj dui ⊗ duj = ∑
α,β

g̃αγ h̃γβ dvα ⊗ dvβ.
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3.4. Wedge Products

Recall that in Multivariable Calculus, the cross product plays a crucial role in many
aspects. It is a bilinear map which takes two vectors to one vectors, and so it is a
(2, 1)-tensor on R3.

Also, there is no doubt that determinant is another important quantity in Multi-
variable Calculus and Linear Algebra. Using tensor languages, an n× n determinant
can be regarded as a n-linear map taking n vectors in Rn to a scalar. For instance, for
the 2× 2 case, one can view:

det
[

a b
c d

]
as a bilinear map taking vectors (a, b) and (c, d) in R2 to a number ad− bc. Therefore,
it is a (2, 0)-tensor on R2; and generally for n× n, the determinant is an (n, 0)-tensor
on Rn.

Both the cross product in R3 and determinant (n× n in general) are alternating, in
a sense that interchanging any pair of inputs will give a negative sign for the output.
For the cross product, we have a× b = −b× a; and for the determinant, switching any
pair of rows will give a negative sign:∣∣∣∣a b

c d

∣∣∣∣ = − ∣∣∣∣b a
d c

∣∣∣∣ .

In the previous section we have seen how to express k-linear maps over tangent
vectors using tensor notations. To deal with the above alternating tensors, it is more
elegant and concise to use alternating tensors, or wedge products that we are going to
learn in this section.

3.4.1. Wedge Product on Vector Spaces. Let’s start from the easiest case. Sup-
pose V is a finite dimensional vector space and V∗ is the dual space of V. Given any
two elements T, S ∈ V∗, the tensor product T ⊗ S is a map given by:

(T ⊗ S)(X, Y) = T(X) S(Y)

for any X, Y ∈ V. The wedge product T ∧ S, where T, S ∈ V∗, is a bilinear map defined
by:

T ∧ S := T ⊗ S− S⊗ T

meaning that for any X, Y ∈ V, we have:

(T ∧ S)(X, Y) = (T ⊗ S)(X, Y)− (S⊗ T)(X, Y)

= T(X) S(Y)− S(X) T(Y)

It is easy to note that T ∧ S = −S ∧ T.

Take the cross product in R3 as an example. Write the cross product as a bilinear
map ω(a, b) := a× b. It is a (2, 1)-tensor on R3 which can be represented as:

ω = e∗1 ⊗ e∗2 ⊗ e3 − e∗2 ⊗ e∗1 ⊗ e3

+ e∗2 ⊗ e∗3 ⊗ e1 − e∗3 ⊗ e∗2 ⊗ e1

+ e∗3 ⊗ e∗1 ⊗ e2 − e∗1 ⊗ e∗3 ⊗ e2

Now using the wedge product notations, we can express ω as:

ω = (e∗1 ∧ e∗2)⊗ e3 + (e∗2 ∧ e∗3)⊗ e1 + (e∗3 ∧ e∗1)⊗ e2

which is a half shorter than using tensor products alone.
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Now given three elements T1, T2, T3 ∈ V∗, one can also form a triple wedge product
T1 ∧ T2 ∧ T3 which is a (3, 0)-tensor so that switching any pair of Ti and Tj (with i 6= j)
will give a negative sign. For instance:

T1 ∧ T2 ∧ T3 = −T2 ∧ T1 ∧ T3 and T1 ∧ T2 ∧ T3 = −T3 ∧ T2 ∧ T1.

It can be defined in a precise way as:

T1 ∧ T2 ∧ T3 := T1 ⊗ T2 ⊗ T3 − T1 ⊗ T3 ⊗ T2

+ T2 ⊗ T3 ⊗ T1 − T2 ⊗ T1 ⊗ T3

+ T3 ⊗ T1 ⊗ T2 − T3 ⊗ T2 ⊗ T1

Exercise 3.20. Verify that the above definition of triple wedge product will result
in T1 ∧ T2 ∧ T3 = −T3 ∧ T2 ∧ T1.

Exercise 3.21. Propose the definition of T1 ∧ T2 ∧ T3 ∧ T4. Do this exercise before
reading ahead.

We can also define T1 ∧ T2 ∧ T3 in a more systematic (yet equivalent) way using
symmetric groups. Let S3 be the permutation group of {1, 2, 3}. An element σ ∈ S3 is a
bijective map σ : {1, 2, 3} → {1, 2, 3}. For instance, a map satisfying σ(1) = 2, σ(2) = 3
and σ(3) = 1 is an example of an element in S3. We can express this σ by:(

1 2 3
2 3 1

)
or simply: (123)

A map τ ∈ S3 given by τ(1) = 2, τ(2) = 1 and τ(3) = 3 can be expressed as:(
1 2 3
2 1 3

)
or simply: (12)

This element, which switches two of the elements in {1, 2, 3} and fixes the other one, is
called a transposition.

Multiplication of two elements σ1, σ2 ∈ S3 is defined by composition. Precisely,
σ1σ2 is the composition σ1 ◦ σ2. Note that this means the elements {1, 2, 3} are input
into σ2 first, and then into σ1. In general, σ1σ2 6= σ2σ1. One can check easily that, for
instance, we have:

(12)(23) = (123)

(23)(12) = (132)

Elements in the permutation group Sn of n elements (usually denoted by {1, 2, . . . , n})
can be represented and mutliplied in a similar way.

Exercise 3.22. Convince yourself that in S5, we have:

(12345)(31) = (32)(145) = (32)(15)(14)

The above exercise shows that we can decompose (12345)(31) into a product of
three transpositions (32), (15) and (14). In fact, any element in Sn can be decomposed
this way. Here we state a standard theorem in elementary group theory:

Theorem 3.22. Every element σ ∈ Sn can be expressed as a product of transpositions:
σ = τ1τ2 . . . τr. Such a decomposition is not unique. However, if σ = τ̃1τ̃2 . . . τ̃k is another
decomposition of σ into transpositions, then we have (−1)k = (−1)r.

Proof. Consult any standard textbook on Abstract Algebra. �
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In view of Theorem 3.22, given an element σ ∈ Sn which can be decomposed into
the product of r transpositions, we define:

sgn(σ) := (−1)r.

For instance, sgn(12345) = (−1)3 = −1, and sgn(123) = (−1)2 = 1. Certainly, if τ is a
transposition, we have sgn(στ) = −sgn(σ).

Now we are ready to state an equivalent way to define triple wedge product using
the above notations:

T1 ∧ T2 ∧ T3 := ∑
σ∈S3

sgn(σ)Tσ(1) ⊗ Tσ(2) ⊗ Tσ(3).

We can verify that it gives the same expression as before:

∑
σ∈S3

sgn(σ)Tσ(1) ⊗ Tσ(2) ⊗ Tσ(3)

= T1 ⊗ T2 ⊗ T3 σ = id

− T2 ⊗ T1 ⊗ T3 σ = (12)

− T3 ⊗ T2 ⊗ T1 σ = (13)

− T1 ⊗ T3 ⊗ T2 σ = (23)

+ T2 ⊗ T3 ⊗ T1 σ = (123) = (13)(12)

+ T3 ⊗ T1 ⊗ T2 σ = (132) = (12)(13)

In general, we define:

Definition 3.23 (Wedge Product). Let V be a finite dimensional vector space, and V∗

be the dual space of V. Then, given any T1, . . . , Tk ∈ V∗, we define their k-th wedge
product by:

T1 ∧ · · · ∧ Tk := ∑
σ∈Sk

sgn(σ) Tσ(1) ⊗ . . .⊗ Tσ(k)

where Sk is the permutation group of {1, . . . , k}. The vector space spanned by
T1 ∧ · · · ∧ Tk’s (where T1, . . . , Tk ∈ V∗) is denoted by ∧kV∗.

Remark 3.24. It is a convention to define ∧0V∗ := R. �

If we switch any pair of the Ti’s, then the wedge product differs by a minus
sign. To show this, let τ ∈ Sk be a transposition, then for any σ ∈ Sk, we have
sgn(σ ◦ τ) = −sgn(σ). Therefore, we get:

Tτ(1) ∧ · · · ∧ Tτ(k) = ∑
σ∈Sk

sgn(σ)Tσ(τ(1)) ⊗ . . .⊗ Tσ(τ(k))

= − ∑
σ∈Sk

sgn(σ ◦ τ)Tσ◦τ(1) ⊗ . . .⊗ Tσ◦τ(k)

= − ∑
σ∈Sk

sgn(σ′)Tσ′(1) ⊗ . . .⊗ Tσ′τ(k) (where σ′ := σ ◦ τ)

= −T1 ∧ · · · ∧ Tk.

The last step follows from the fact that σ 7→ σ ◦ τ is a bijection between Sk and itself.

Exercise 3.23. Write down T1 ∧ T2 ∧ T3 ∧ T4 explicitly in terms of tensor products
(with no wedge and summation sign).
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Exercise 3.24. Show that dim∧kV∗ = Cn
k , when n = dim V and 0 ≤ k ≤ n, by

writing a basis for ∧kV∗. Show also that ∧kV∗ = {0} if k > dim V.

Exercise 3.25. Let {ei}n
i=1 be a basis for a vector space V, and {e∗i }n

i=1 be the
corresponding dual basis for V∗. Show that:(

e∗i1 ∧ · · · ∧ e∗ik

)
(ej1 , . . . , ejk ) = δi1 j1 · · · δik jk .

Remark 3.25. The vector space ∧kV∗ is spanned by T1 ∧ · · · ∧ Tk’s where T1, . . . , Tk ∈ V∗.
Note that not all elements in V∗ can be expressed in the form of T1 ∧ · · · ∧ Tk. For
instance when V = R4 with standard basis {ei}4

i=1, the element σ = e∗1 ∧ e∗2 + e∗3 ∧ e∗4 ∈
∧2V∗ cannot be written in the form of T1 ∧ T2 where T1, T2 ∈ V∗. It is because
(T1 ∧ T2) ∧ (T1 ∧ T2) = 0 for any T1, T2 ∈ V∗, while σ ∧ σ = 2e∗1 ∧ e∗2 ∧ e∗3 ∧ e∗4 6= 0. �

In the above remark, we take the wedge product between elements in ∧2V∗. It is
defined in a natural way that for any T1, . . . Tk, S1, . . . , Sr ∈ V∗, we have:

(T1 ∧ · · · ∧ Tk)︸ ︷︷ ︸
∈∧kV∗

∧ (S1 ∧ · · · ∧ Sr)︸ ︷︷ ︸
∈∧rV∗

= T1 ∧ · · · ∧ Tk ∧ S1 ∧ · · · ∧ Sr︸ ︷︷ ︸
∈∧k+rV∗

and extended linearly to other elements in ∧kV∗ and ∧rV∗. For instance, we have:

(T1 ∧ T2 + S1 ∧ S2)︸ ︷︷ ︸
∈∧2V∗

∧ σ︸︷︷︸
∈∧kV∗

= T1 ∧ T2 ∧ σ + S1 ∧ S2 ∧ σ︸ ︷︷ ︸
∈∧k+2V∗

.

While it is true that T1 ∧ T2 = −T2 ∧ T1 for any T1, T2 ∈ V∗, it is generally not true
that σ ∧ η = −η ∧ σ where σ ∈ ∧kV∗ and η ∈ ∧rV∗. For instance, let T1, . . . , T5 ∈ V∗

and consider σ = T1 ∧ T2 and η = T3 ∧ T4 ∧ T5. Then we can see that:

σ ∧ η = T1 ∧ T2 ∧ T3 ∧ T4 ∧ T5

= −T1 ∧ T3 ∧ T4 ∧ T5 ∧ T2 (switching T2 subsequently with T3, T4, T5)

= T3 ∧ T4 ∧ T5 ∧ T1 ∧ T2 (switching T1 subsequently with T3, T4, T5)
= η ∧ σ.

Proposition 3.26. Let V be a finite dimensional vector space, and V∗ be the dual space of V.
Given any σ ∈ ∧kV∗ and η ∈ ∧rV∗, we have:

(3.5) σ ∧ η = (−1)krη ∧ σ.

Clearly from (3.5), any ω ∈ ∧evenV∗ commutes with any σ ∈ ∧kV∗.

Proof. By linearity, it suffices to prove that case σ = T1 ∧ · · · ∧ Tk and η = S1 ∧ · · · ∧ Sr
where Ti, Sj ∈ V∗, in which we have:

σ ∧ η = T1 ∧ · · · ∧ Tk ∧ S1 ∧ · · · ∧ Sr

In order to switch all the Ti’s with the Sj’s, we can first switch Tk subsequently with
each of S1, . . . , Sr and each switching contributes to a factor of (−1). Precisely, we have:

T1 ∧ · · · ∧ Tk ∧ S1 ∧ · · · ∧ Sr = (−1)rT1 ∧ · · · ∧ Tk−1 ∧ S1 ∧ · · · ∧ Sr ∧ Tk.

By repeating this sequence of switching on each of Tk−1, Tk−2, etc., we get a factor of
(−1)r for each set of switching, and so we finally get the following as desired:

T1 ∧ · · · ∧ Tk ∧ S1 ∧ · · · ∧ Sr = [(−1)r]k S1 ∧ · · · ∧ Sr ∧ T1 ∧ · · · ∧ Tk

�
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From Exercise 3.24, we know that dim∧nV∗ = 1 if n = dim V. In fact, every
element σ ∈ dim∧nV∗ is a constant multiple of e∗1 ∧ · · · ∧ e∗n, and it is interesting (and
important) to note that this constant multiple is related to a determinant! Precisely, for
each i = 1, . . . , n, we consider the elements:

ωi =
n

∑
j=1

aije
∗
j ∈ V∗

where aij are real constants. Then, the wedge product of all ωi’s are given by:

ω1 ∧ · · · ∧ωn =

(
n

∑
j1=1

a1j1 e∗j1

)
∧
(

n

∑
j2=1

a2j2 e∗j2

)
∧ · · · ∧

(
n

∑
jn=1

anjn e∗jn

)
= ∑

j1,...,jn distinct
a1j1 a2j2 . . . anjn e∗j1 ∧ · · · ∧ e∗jn

= ∑
σ∈Sn

a1σ(1)a2σ(2) . . . anσ(n)e
∗
σ(1) ∧ · · · ∧ e∗σ(n)

Next we want to find a relation between e∗
σ(1) ∧ · · · ∧ e∗

σ(n) and e∗1 ∧ · · · ∧ e∗n. σ ∈ Sn, by
decomposing it into transpositions σ = τ1 ◦ · · · ◦ τk, then we have:

e∗σ(1) ∧ · · · ∧ e∗σ(n) = e∗τ1◦···◦τk(1)
∧ · · · ∧ e∗τ1◦···◦τk(n)

= (−1)e∗τ2◦···◦τk(1)
∧ · · · ∧ e∗τ2◦···◦τk(n)

= (−1)2e∗τ3◦···◦τk(1)
∧ · · · ∧ e∗τ3◦···◦τk(n)

= . . .

= (−1)k−1e∗τk(1)
∧ · · · ∧ e∗τk(n)

= (−1)ke∗1 ∧ · · · ∧ e∗n
= sgn(σ)e∗1 ∧ · · · ∧ e∗n.

Therefore, we have:

ω1 ∧ · · · ∧ωn =

(
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

)
e∗1 ∧ · · · ∧ e∗n.

Note that the sum:
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

is exactly the determinant of the matrix A whose (i, j)-th entry is aij. To summarize,
let’s state it as a proposition:

Proposition 3.27. Let V∗ be the dual space of a vector space V of dimension n, and let
{ei}n

i=1 be a basis for V, and {e∗i }n
i=1 be the corresponding dual basis for V∗. Given any n

elements ωi =
n

∑
j=1

aije
∗
j ∈ V∗, we have:

ω1 ∧ · · · ∧ωn = (det A) e∗1 ∧ · · · ∧ e∗n,

where A is the n× n matrix whose (i, j)-th entry is aij.
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Exercise 3.26. Given an n-dimensional vector space V. Show that ω1, . . . , ωn ∈ V∗

are linearly independent if and only if ω1 ∧ · · · ∧ωn 6= 0.

Exercise 3.27. Generalize Proposition 3.27. Precisely, now given

ωi =
n

∑
j=1

aije
∗
j ∈ V∗

where 1 ≤ i ≤ k < dim V, express ω1 ∧ · · · ∧ωk in terms of e∗i ’s.

Exercise 3.28. Regard det : Rn ×Rn → R as a multilinear map:

det(v1, . . . , vn) :=

∣∣∣∣∣∣
| |

v1 · · · vn
| |

∣∣∣∣∣∣ .

Denote {ei} the standard basis for Rn. Show that:

det = e∗1 ∧ · · · ∧ e∗n.

3.4.2. Differential Forms on Smooth Manifolds. In the simplest term, differential
forms on a smooth manifold are wedge products of cotangent vectors in T∗M. At each
point p ∈ M, let (u1, . . . , un) be the local coordinates near p, then the cotangent space

T∗p M is spanned by
{

du1
∣∣

p , . . . , dun|p
}

, and a smooth differential 1-form α is a map
from M to T∗M such that it can be locally expressed as:

α(p) =

(
p,

n

∑
i=1

αi(p) dui
∣∣∣

p

)
where αi are smooth functions locally defined near p. Since the based point p can
usually be understood from the context, we usually denote α by simply:

α =
n

∑
i=1

αi dui.

Since T∗p M is a finite dimensional vector space, we can consider the wedge products
of its elements. A differential k-form ω on a smooth manifold M is a map which assigns
each point p ∈ M to an element in ∧kT∗p M. Precisely:

Definition 3.28 (Smooth Differential k-Forms). Let M be a smooth manifold. A smooth
differential k-form ω on M is a map ωp : Tp M× . . .× Tp M︸ ︷︷ ︸

k times

→ R at each p ∈ M such

that under any local parametrization F(u1, . . . , un) : U → M, it can be written in the
form:

ω =
n

∑
i1,...,ik=1

ωi1i2···ik dui1 ∧ · · · ∧ duik

where ωi1i2 ...ik ’s are smooth scalar functions locally defined in F(U ), and they are
commonly called the local components of ω. The vector space of all smooth differential
k-forms on M is denoted by ∧kT∗M.

Remark 3.29. It is a convention to denote ∧0T∗M := C∞(M, R), the vector space of all
smooth scalar functions defined on M. �
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We will mostly deal with differential k-forms that are smooth. Therefore, we will
very often call a smooth differential k-form simply by a differential k-form, or even simpler,
a k-form. As we will see in the next section, the language of differential forms will unify
and generalize the curl, grad and div in Multivariable Calculus and Physics courses.

From algebraic viewpoint, the manipulations of differential k-forms on a manifold
are similar to those for wedge products of a finite-dimensional vector space. The major
difference is a manifold is usually covered by more than one local parametrizations,
hence there are conversion rules for differential k-forms from one local coordinate
system to another.

Example 3.30. Consider R2 with (x, y) and (r, θ) as its two local coordinates. Given a
2-form ω = dx ∧ dy, for instance, we can express it in terms of the polar coordinates
(r, θ):

dx =
∂x
∂r

dr +
∂x
∂θ

dθ

= (cos θ) dr− (r sin θ) dθ

dy =
∂y
∂r

dr +
∂y
∂θ

dθ

= (sin θ) dr + (r cos θ) dθ

Therefore, using dr ∧ dr = 0 and dθ ∧ dθ = 0, we get:

dx ∧ dy = (r cos2 θ)dr ∧ dθ − (r sin2)dθ ∧ dr

= (r cos2 θ + r sin2 θ) dr ∧ dθ

= r dr ∧ dθ.

�

Exercise 3.29. Define a 2-form on R3 by:

ω = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy.

Express ω in terms of spherical coordinates (ρ, θ, ϕ), defined by:

(x, y, z) = (ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ).

Exercise 3.30. Let ω be the 2-form on R2n given by:

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + . . . + dx2n−1 ∧ dx2n.

Compute ω ∧ · · · ∧ω︸ ︷︷ ︸
n times

.

Exercise 3.31. Let (u1, . . . , un) and (v1, . . . , vn) be two local coordinates of a smooth
manifold M. Show that:

du1 ∧ · · · ∧ dun = det
∂(u1, . . . , un)

∂(v1, . . . , vn)
dv1 ∧ · · · ∧ dvn.

Exercise 3.32. Show that on R3, a (2, 0)-tensor T is in ∧2(R2)∗ if and only if
T(v, v) = 0 for any v ∈ R3.
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3.5. Exterior Derivatives

Exterior differentiation is an important operations on differential forms. It not only
generalizes and unifies the curl, grad, div operators in Multivariable Calculus and
Physics, but also leads to the development of de Rham cohomology to be discussed in
Chapter 5.

3.5.1. Definition of Exterior Derivatives. Exterior differentiation, commonly de-
noted by the symbol d, takes a k-form to a (k + 1)-form. To begin, let’s define it on
scalar functions first. Suppose (u1, . . . , un) are local coordinates of Mn, then given any
smooth scalar function f ∈ C∞(M, R), we define:

(3.6) d f :=
n

∑
i=1

∂ f
∂ui

dui

Although (3.6) involves local coordinates, it can be easily shown that d f is independent
of local coordinates. Suppose (v1, . . . , vn) is another local coordinates of M which
overlap with (u1, . . . , un). By the chain rule, we have:

∂ f
∂ui

=
n

∑
k=1

∂ f
∂vk

∂vk
∂ui

dvk =
n

∑
i=1

∂vk
∂ui

dui

which combine to give:
n

∑
i=1

∂ f
∂ui

dui =
n

∑
i=1

n

∑
k=1

∂ f
∂vk

∂vk
∂ui

dui =
n

∑
k=1

∂ f
∂vk

dvk.

Therefore, if f is smooth on M then d f is a smooth 1-form on M. The components of
d f are ∂ f

∂ui
’s, and so d f is analogous to ∇ f in Multivariable Calculus. Note that as long

as f is C∞ just in an open set U ⊂ M, we can also define d f locally on U since (3.6) is a
local expression.

Exterior derivatives can also be defined on differential forms of higher degrees. Let
α ∈ ∧1T∗M, which can be locally written as:

α =
n

∑
i=1

αi dui

where αi’s are smooth functions locally defined in a local coordinate chart. Then, we
define:

(3.7) dα :=
n

∑
i=1

dαi ∧ dui =
n

∑
i=1

n

∑
j=1

∂αi
∂uj

duj ∧ dui.

Using the fact that duj ∧ dui = −dui ∧ duj and dui ∧ dui = 0, we can also express dα as:

dα = ∑
1≤j<i≤n

(
∂αi
∂uj
−

∂αj

∂ui

)
duj ∧ dui.
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Example 3.31. Take M = R3 as an example, and let (x, y, z) be the (usual) coordinates
of R3, then given any 1-form α = P dx + Q dy + R dz (which is analogous to the vector
field Pi + Qj + Rk), we have:

dα = dP ∧ dx + dQ ∧ dy + dR ∧ dz

=

(
∂P
∂x

dx +
∂P
∂y

dy +
∂P
∂z

dz
)
∧ dx +

(
∂Q
∂x

dx +
∂Q
∂y

dy +
∂Q
∂z

dz
)
∧ dy

+

(
∂R
∂x

dx +
∂R
∂y

dy +
∂R
∂z

dz
)
∧ dz

=
∂P
∂y

dy ∧ dx +
∂P
∂z

dz ∧ dx +
∂Q
∂x

dx ∧ dy +
∂Q
∂z

dz ∧ dy

+
∂R
∂x

dx ∧ dz +
∂R
∂y

dy ∧ dz

=

(
∂Q
∂x
− ∂P

∂y

)
dx ∧ dy−

(
∂R
∂x
− ∂P

∂z

)
dz ∧ dx +

(
∂R
∂y
− ∂Q

∂z

)
dy ∧ dz

which is analogous to ∇× (Pi + Qj + Rk) by declaring the correspondence {i, j, k} with
{dy ∧ dz, dz ∧ dx, dx ∧ dy}. �

One can check that the definition of dα stated in (3.7) is independent of local
coordinates. On general k-forms, the exterior derivatives are defined in a similar way
as:

Definition 3.32 (Exterior Derivatives). Let Mn be a smooth manifold and (u1, . . . , un)
be local coordinates on M. Given any (smooth) k-form

ω =
n

∑
j1,...,jk=1

ωj1···jk duj1 ∧ · · · ∧ dujk ,

we define:

dω :=
n

∑
j1,··· ,jk=1

dωj1···jk ∧ duj1 ∧ · · · ∧ dujk(3.8)

=
n

∑
j1,··· ,jk=1

n

∑
i=1

∂ωj1···jk
∂ui

dui ∧ duj1 ∧ · · · ∧ dujk

In particular, if ω is an n-form (where n = dim V), we have dω = 0.

Exercise 3.33. Show that dω defined as in (3.8) does not depend on the choice of
local coordinates.

Example 3.33. Consider R2 equipped with polar coordinates (r, θ). Consider the
1-form:

ω = (r sin θ) dr.
Then, we have

dω =
∂(r sin θ)

∂r
dr ∧ dr +

∂(r sin θ)

∂θ
dθ ∧ dr

= 0 + (r cos θ) dθ ∧ dr

= −(r cos θ) dr ∧ dθ.

�
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Exercise 3.34. Let ω = F1 dy ∧ dz + F2 dz ∧ dx + F3 dx ∧ dy be a smooth 2-form on
R3. Compute dω. What operator in Multivariable Calculus is the d analogous to
in this case?

Exercise 3.35. Let ω, η, θ be the following differential forms on R3:

ω = x dx− y, dy
η = z dx ∧ dy + x dy ∧ dz
θ = z dy

Compute: ω ∧ η, ω ∧ η ∧ θ, dω, dη and dθ.

3.5.2. Properties of Exterior Derivatives. The exterior differentiation d can hence
be regarded as a chain of maps:

∧0T∗M d−→ ∧1T∗M d−→ ∧2T∗M d−→ · · · d−→ ∧n−1T∗M d−→ ∧nT∗M.

Here we abuse the use of the symbol d a little bit – we use the same symbol d for all

the maps ∧kT∗M d−→ ∧k+1T∗M in the chain. The following properties about exterior
differentiation are not difficult to prove:

Proposition 3.34. For any k-forms ω and η, and any smooth scalar function f , we have the
following:

(1) d(ω + η) = dω + dη

(2) d( f ω) = d f ∧ω + f dω

Proof. (1) is easy to prove (left as an exercise for readers). To prove (2), we consider

local coordinates (u1, . . . , un) and let ω =
n

∑
j1,...,jk=1

ωj1···jk duj1 ∧ · · · ∧ dujk . Then, we

have:

d( f ω) =
n

∑
j1,...,jk=1

n

∑
i=1

∂

∂ui
( f ωj1···jk ) dui ∧ duj1 ∧ · · · ∧ dujk

=
n

∑
j1,...,jk=1

n

∑
i=1

(
∂ f
∂ui

ωj1···jk + f
∂ωj1···jk

∂ui

)
dui ∧ duj1 ∧ · · · ∧ dujk

=

(
n

∑
i=1

∂ f
∂ui

dui

)
∧
(

n

∑
j1,...,jk=1

ωj1···jk duj1 ∧ · · · ∧ dujk

)

+ f
n

∑
j1,··· ,jk=1

n

∑
i=1

∂ωj1···jk
∂ui

dui ∧ duj1 ∧ · · · ∧ dujk

as desired. �

Identity (2) in Proposition 3.34 can be regarded as a kind of product rule. Given a
k-form α and a r-form β, the general product rule for exterior derivative is stated as:

Proposition 3.35. Let α ∈ ∧kT∗M and β ∈ ∧rT∗M be smooth differential forms on M,
then we have:

d(α ∧ β) = dα ∧ β + (−1)k α ∧ dβ.
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Exercise 3.36. Prove Proposition 3.35. Based on your proof, explain briefly why
the product rule does not involve any factor of (−1)r.

Exercise 3.37. Given three differential forms α, β and γ such that dα = 0, dβ = 0
and dγ = 0. Show that:

d(α ∧ β ∧ γ) = 0.

An crucial property of exterior derivatives is that the composition is zero. For
instance, given a smooth scalar function f (x, y, z) defined on R3, we have:

d f =
∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz.

Taking exterior derivative one more time, we get:

d(d f ) =
(

∂

∂x
∂ f
∂x

dx +
∂

∂y
∂ f
∂x

dy +
∂

∂z
∂ f
∂x

dz
)
∧ dx

+

(
∂

∂x
∂ f
∂y

dx +
∂

∂y
∂ f
∂y

dy +
∂

∂z
∂ f
∂y

dz
)
∧ dy

+

(
∂

∂x
∂ f
∂z

dx +
∂

∂y
∂ f
∂z

dy +
∂

∂z
∂ f
∂z

dz
)
∧ dz

=

(
∂

∂x
∂ f
∂y
− ∂

∂y
∂ f
∂x

)
dx ∧ dy +

(
∂

∂z
∂ f
∂x
− ∂

∂x
∂ f
∂z

)
dz ∧ dx

+

(
∂

∂y
∂ f
∂z
− ∂

∂z
∂ f
∂y

)
dy ∧ dz

Since partial derivatives commute, we get d(d f ) = 0, or in short d2 f = 0, for any scalar
function f . The fact that d2 = 0 is generally true on smooth differential forms, not only
for scalar functions. Precisely, we have:

Proposition 3.36. Let ω be a smooth k-form defined on a smooth manifold M, then we have:

d2ω := d(dω) = 0.

Proof. Let ω =
n

∑
j1,...,jk=1

ωj1···jk duj1 ∧ · · · ∧ dujk , then:

dω =
n

∑
j1,··· ,jk=1

n

∑
i=1

∂ωj1···jk
∂ui

dui ∧ duj1 ∧ · · · ∧ dujk .

d2ω = d

(
n

∑
j1,··· ,jk=1

n

∑
i=1

∂ωj1···jk
∂ui

dui ∧ duj1 ∧ · · · ∧ dujk

)

=
n

∑
j1,··· ,jk=1

n

∑
i=1

n

∑
l=1

∂2ωj1 ...jk
∂ul∂ui

dul ∧ dui ∧ duj1 ∧ · · · ∧ dujk

For each fixed k-tuple (j1, . . . , jk), the term
n

∑
i,l=1

∂2ωj1 ...jk
∂ul∂ui

dul ∧ dui can be rewritten as:

∑
1≤i<l≤n

(
∂2ωj1 ...jk
∂ul∂ui

−
∂2ωj1 ...jk
∂ui∂ul

)
dul ∧ dui

which is zero since partial derivatives commute. It concludes that d2ω = 0. �
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Proposition 3.36 is a important fact that leads to the development of de Rham
cohomology in Chapter 5.

In Multivariable Calculus, we learned that given a vector field F = Pi + Qj + Rk
and a scalar function f , we have:

∇×∇ f = 0

∇ · (∇× F) = 0

These two formulae can be unified using the language of differential forms. The
one-form d f corresponds to the vector field ∇ f :

d f =
∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz

∇ f =
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k

Define a one-form ω = P dx + Q dy + R dz on R3, which corresponds to the vector field
F, then we have discussed that dω corresponds to taking curl of F:

dω =

(
∂Q
∂x
− ∂P

∂y

)
dx ∧ dy−

(
∂R
∂x
− ∂P

∂z

)
dz ∧ dx +

(
∂R
∂y
− ∂Q

∂z

)
dy ∧ dz

∇× F =

(
∂Q
∂x
− ∂P

∂y

)
k−

(
∂R
∂x
− ∂P

∂z

)
j +

(
∂R
∂y
− ∂Q

∂z

)
i

If one takes ω = d f , and F = ∇ f , then we have dω = d(d f ) = 0, which corresponds to
the fact that ∇× G = ∇×∇ f = 0 in Multivariable Calculus.

Taking exterior derivative on a two-form β = A dy ∧ dz + B dz ∧ dx + C dx ∧ dy
corresponds to taking the divergence on the vector field G = Ai + Bj + Ck according to
Exercise 3.34:

dβ =

(
∂A
∂x

+
∂B
∂y

+
∂C
∂z

)
dx ∧ dy ∧ dz

∇ · G =

(
∂A
∂x

+
∂B
∂y

+
∂C
∂z

)
By taking β = dω, and G = ∇× F, then we have dβ = d(dω) = 0 corresponding to
∇ · G = ∇ · (∇× F) = 0 in Multivariable Calculus.

Here is a summary of the correspondences:

Differential Form on R3 Multivariable Calculus
f (x, y, z) f (x, y, z)

ω = P dx + Q dy + R dz F = Pi + Qj + Rk
β = A dy ∧ dz + B dz ∧ dx + C dx ∧ dy G = Ai + Bj + Ck

d f ∇ f
dω ∇× F
dβ ∇ · G

d2 f = 0 ∇×∇ f = 0
d2ω = 0 ∇ · (∇× F) = 0

3.5.3. Exact and Closed Forms. In Multivariable Calculus, we discussed various
concepts of vector fields including potential functions, conservative vector fields,
solenoidal vector fields, curl-less and divergence-less vector fields, etc. All these
concepts can be unified using the language of differential forms.

As a reminder, a conservative vector field F is one that can be expressed as F = ∇ f
where f is a scalar function. It is equivalent to saying that the 1-form ω can be
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expressed as ω = d f . Moreover, a solenoidal vector field G is one that can be expressed
as G = ∇× F for some vector field F. It is equivalent to saying that the 2-form β can
be expressed as β = dω for some 1-form ω.

Likewise, a curl-less vector field F (i.e. ∇× F = 0) corresponds to a 1-form ω
satisfying dω = 0; and a divergence-less vector field G (i.e. ∇ · G = 0) corresponds to a
2-form β satisfying dβ = 0.

In view of the above correspondence, we introduce two terminologies for differen-
tial forms, namely exact-ness and closed-ness:

Definition 3.37 (Exact and Closed Forms). Let ω be a smooth k-form defined on a
smooth manifold M, then we say:

• ω is exact if there exists a (k− 1)-form η defined on M such that ω = dη;
• ω is closed if dω = 0.

Remark 3.38. By the fact that d2 = 0 (Proposition 3.36), it is clear that every exact form
is a closed form (but not vice versa). �

The list below showcases the corresponding concepts of exact/closed forms in
Multivariable Calculus.

Differential Form on R3 Multivariable Calculus
exact 1-form conservative vector field

closed 1-form curl-less vector field
exact 2-form solenoidal vector field

closed 2-form divergence-less vector field

Example 3.39. On R3, the 1-form:

α = yz dx + zx dy + xy dz

is exact since α = d f where f (x, y, z) = xyz. By Proposition 3.36, we immediately get
dα = d(d f ) = 0, so α is a closed form. One can also verify this directly:

dα = (z dy + y dz) ∧ dx + (z dx + x dz) ∧ dy + (y dx + x dy) ∧ dz

= (z− z) dx ∧ dy + (y− y) dz ∧ dx + (x− x) dy ∧ dz = 0.

�

Example 3.40. The 1-form:

α := − y
x2 + y2 dx +

x
x2 + y2 dy

defined on R2\{(0, 0)} is closed:

dα =
∂

∂y

(
− y

x2 + y2

)
dy ∧ dx +

∂

∂x

(
x

x2 + y2

)
dx ∧ dy

=
y2 − x2

(x2 + y2)2 dy ∧ dx +
y2 − x2

(x2 + y2)2 dx ∧ dy

= 0

as dx ∧ dy = −dy ∧ dx. However, we will later see that α is not exact.

Note that even though we have α = d f where f (x, y) = tan−1 y
x

, such an f is NOT

smooth on R2\{(0, 0)}. In order to claim α is exact, we require such an f to be smooth
on the domain of α. �
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Exercise 3.38. Consider the forms ω, η and θ on R3 defined in Exercise 3.35.
Determine whether each of them is closed and/or exact on R3.

Exercise 3.39. The purpose of this exercise is to show that any closed 1-form ω on
R3 must be exact. Let

ω = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz

be a closed 1-form on R3. Define f : R3 → R by:

f (x, y, z) =
∫ t=1

t=0
(xP(tx, ty, tz) + yQ(tx, ty, tz) + zR(tx, ty, tz)) dt

Show that ω = d f . Point out exactly where you have used the fact that dω = 0.

3.5.4. Pull-Back of Tensors. Let’s first begin by reviewing the push-forward and
pull-back of tangent and cotangent vectors. Given a smooth map Φ : M→ N between
two smooth manifolds Mm and Nn, its tangent map Φ∗ takes a tangent vector in
Tp M to a tangent vector in TΦ(p)N. If we let F(u1, . . . , um) be local coordinates of M,
G(v1, . . . , vn) be local coordinates of N and express the map Φ locally as:

(v1, . . . , vn) = G−1 ◦Φ ◦ F(u1, . . . , um),

then Φ∗ acts on the basis vectors
{

∂

∂ui

}
by:

Φ∗

(
∂

∂ui

)
=

∂Φ
∂ui

= ∑
j

∂vj

∂ui

∂

∂vj
.

The tangent map Φ∗ is also commonly called the push-forward map. It is important to

note that the vj’s in the partial derivatves
∂vj
∂ui

can sometimes cause confusion if we talk
about the push-forwards of two different smooth maps Φ : M → N and Ψ : M → N.
Even with the same input (u1, . . . , um), the output Φ(u1, . . . , um) and Ψ(u1, . . . , um) are
generally different and have different vj-coordinates. To avoid this confusion, it is best
to write:

Φ∗

(
∂

∂ui

)
= ∑

j

∂(vj ◦Φ)

∂ui

∂

∂vj

Ψ∗

(
∂

∂ui

)
= ∑

j

∂(vj ◦Ψ)

∂ui

∂

∂vj

Here each vj in the partial derivatives
∂vj
∂ui

are considered to be a locally defined function
taking a point p ∈ N to its vj-coordinate.

For cotangent vectors (i.e. 1-forms), we talk about pull-back instead. According to
Definition 3.14, Φ∗ takes a cotangent vector in T∗Φ(p)N to a cotangent vector in T∗p M,
defined as follows:

Φ∗(dvi)(X) = dvi (Φ∗X) for any X ∈ Tp M.

In terms of local coordinates, it is given by:

Φ∗(dvi) = ∑
j

∂(vi ◦Φ)

∂uj
duj.

The pull-back action by a smooth Φ : M→ N between manifolds can be extended
to (k, 0)-tensors (and hence to differential forms):
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Definition 3.41 (Pull-Back on (k, 0)-Tensors). Let Φ : M → N be a smooth map
between two smooth manifolds. Given T a smooth (k, 0)-tensor on N, then we define:

(Φ∗T)p (X1, . . . , Xk) = TΦ(p) (Φ∗(X1), . . . , Φ∗(Xk)) for any X1, . . . , Xk ∈ Tp M

Remark 3.42. An equivalent way to state the definition is as follows: let T1, . . . Tk ∈ TN
be 1-forms on N, then we define:

Φ∗(T1 ⊗ · · · ⊗ Tk) = (Φ∗T1)⊗ · · · ⊗ (Φ∗Tk).

�

Remark 3.43. It is easy to verify that Φ∗ is linear, in a sense that:

Φ∗(aT + bS) = aΦ∗T + bΦ∗S

for any (k, 0)-tensors T and S, and scalars a and b. �

Example 3.44. Let’s start with an example on R2. Let Φ : R2 → R3 be a map defined
by:

Φ(x1, x2) =
(

ex1+x2 , sin(x2
1x2), x1

)
.

To avoid confusion, we use (x1, x2) to label the coordinates of the domain R2, and use
(y1, y2, y3) to denote the coordinates of the codomain R3. Then, we have:

Φ∗(dy1)

(
∂

∂x1

)
= dy1

(
Φ∗

(
∂

∂x1

))
= dy1

(
∂Φ
∂x1

)
= dy1

(
∂(y1 ◦Φ)

∂x1

∂

∂y1
+

∂(y2 ◦Φ)

∂x1

∂

∂y2
+

∂(y3 ◦Φ)

∂x1

∂

∂y3

)
=

∂(y1 ◦Φ)

∂x1
=

∂

∂x1
ex1+x2 = ex1+x2 .

Similarly, we have:

Φ∗(dy1)

(
∂

∂x2

)
=

∂(y1 ◦Φ)

∂x2
=

∂

∂x2
ex1+x2 = ex1+x2 .

Therefore, Φ∗(dy1) = ex1+x2 dx1 + ex1+x2 dx2 = ex1+x2(dx1 + dx2). We leave it as an
exercise for readers to verify that:

Φ∗(dy2) = 2x1x2 cos(x2
1x2) dx1 + x2

1 cos(x2
1x2) dx2

Φ∗(dy3) = dx1

Let f (y1, y2, y3) be a scalar function on R3, and consider the (2, 0)-tensor on R3:

T = f (y1, y2, y3) dy1 ⊗ dy2

The pull-back of T by Φ is given by:

Φ∗T = f (y1, y2, y3)Φ∗(dy1)⊗Φ∗(dy2)

= f (Φ(x1, x2))
(

ex1+x2(dx1 + dx2)
)
⊗
(

2x1x2 cos(x2
1x2) dx1 + x2

1 cos(x2
1x2) dx2

)
The purpose of writing f (y1, y2, y3) as f (Φ(x1, x2)) is to leave the final expression in
terms of functions and tensors in (x1, x2)-coordinates. �

Example 3.45. Let Σ be a regular surface in R3. The standard dot product in R3 is
given by the following (2, 0)-tensor:

ω = dx⊗ dx + dy⊗ dy + dz⊗ dz.
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Consider the inclusion map ι : Σ→ R3. Although the input and output are the same
under the map ι, the cotangents dx and ι∗(dx) are different! The former is a cotangent
vector on R3, while ι∗(dx) is a cotangent vector on the surface Σ. If (x, y, z) = F(u, v)
is a local parametrization of Σ, then ι∗(dx) should be in terms of du and dv, but not dx,
dy and dz. Precisely, we have:

ι∗

(
∂F

∂u

)
=

∂ι

∂u
:=

∂(ι ◦ F)

∂u
=

∂F

∂u

ι∗(dx)
(

∂F

∂u

)
= dx

(
ι∗

(
∂F

∂u

))
= dx

(
∂F

∂u

)
= dx

(
∂x
∂u

∂

∂x
+

∂y
∂u

∂

∂y
+

∂z
∂u

∂

∂z

)
=

∂x
∂u

.

Similarly, we also have ι∗(dx)
(

∂F

∂v

)
=

∂x
∂v

, and hence:

ι∗(dx) =
∂x
∂u

du +
∂x
∂v

dv.

As a result, we have:

ι∗ω = ι∗(dx)⊗ ι∗(dx) + ι∗(dy)⊗ ι∗(dy)ι∗(dz)⊗ ι∗(dz)

=

(
∂x
∂u

du +
∂x
∂v

dv
)
⊗
(

∂x
∂u

du +
∂x
∂v

dv
)

+

(
∂y
∂u

du +
∂y
∂v

dv
)
⊗
(

∂y
∂u

du +
∂y
∂v

dv
)

+

(
∂z
∂u

du +
∂z
∂v

dv
)
⊗
(

∂z
∂u

du +
∂z
∂v

dv
)

.

After expansion and simplification, one will get:

ι∗ω =
∂F

∂u
· ∂F

∂u
du⊗ du +

∂F

∂u
· ∂F

∂v
du⊗ dv +

∂F

∂v
· ∂F

∂u
dv⊗ du +

∂F

∂v
· ∂F

∂v
dv⊗ dv,

which is the first fundamental form in Differential Geometry. �

Exercise 3.40. Let the unit sphere S2 be locally parametrized by spherical coordi-
nates (θ, ϕ). Consider the (2, 0)-tensor on R3:

ω = x dy⊗ dz

Express the pull-back ι∗ω in terms of (θ, ϕ).

One can derive a general formula (which you do not need to remember in practice)
for the local expression of pull-backs. Consider local coordinates {ui} for M and {vi}
for N, and write (v1, . . . , vn) = Φ(u1, . . . , um) and

T =
n

∑
i1,...,ik=1

Ti1···ik (v1, . . . , vn) dvi1 ⊗ · · · ⊗ dvik .
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The pull-back Φ∗T then has the following local expression:

Φ∗T =
n

∑
i1,...,ik=1

Ti1···ik (v1, . . . , vn)Φ∗(dvi1)⊗ · · · ⊗Φ∗(dvik )(3.9)

=
n

∑
i1,...,ik=1

Ti1···ik (Φ(u1, . . . , um))

(
m

∑
j1=1

∂vi1
∂uj1

duj1

)
⊗ · · · ⊗

(
m

∑
jk=1

∂vik
∂ujk

dujk

)

=
n

∑
i1,...,ik=1

m

∑
j1,...,jk=1

Ti1···ik (Φ(u1, . . . , um))
∂vi1
∂uj1

· · ·
∂vik
∂ujk

duj1 ⊗ · · · ⊗ dujk .

In view of Ti1···ik (v1, . . . , vn) = Ti1···ik (Φ(u1, . . . , um)) and the above local expression,
we define

Φ∗ f := f ◦Φ

for any scalar function of f . Using this notation, we then have Φ∗( f T) = (Φ∗ f )Φ∗T
for any scalar function f and (k, 0)-tensor T.

Exercise 3.41. Let Φ : M → N be a smooth map between smooth manifolds M
and N, f be a smooth scalar function defined on N. Show that

Φ∗(d f ) = d(Φ∗ f ).

In particular, if (v1, . . . , vn) are local coordinates of N, we have Φ∗(dvj) = d(Φ∗vj).

Example 3.46. Using the result from Exercise 3.41, one can compute the pull-back
by inclusion map ι : Σ → R3 for regular surfaces Σ in R3. Suppose F(u, v) is a local
parametrization of Σ, then:

ι∗(dx) = d(ι∗x) = d(x ◦ ι).

Although x ◦ ι and x (as a coordinate function) have the same output, their domains
are different! Namely, x ◦ ι : Σ → R while x : R3 → R. Therefore, when computing
d(x ◦ ι), one should express it in terms of local coordinates (u, v) of Σ:

d(x ◦ ι) =
∂(x ◦ ι)

∂u
du +

∂(x ◦ ι)

∂v
dv =

∂x
∂u

du +
∂x
∂v

dv.

�

Recall that the tangent maps (i.e. push-forwards) acting on tangent vectors satisfy
the chain rule: if Φ : M → N and Ψ : N → P are smooth maps between smooth
manifolds, then we have (Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗. It is easy to extend the chain rule to
(k, 0)-tensors:

Theorem 3.47 (Chain Rule for (k, 0)-tensors). Let Φ : M → N and Ψ : N → P be
smooth maps between smooth manifolds M, N and P, then the pull-back maps Φ∗ and Ψ∗

acting on (k, 0)-tensors for any k ≥ 1 satisfy the following chain rule:

(3.10) (Ψ ◦Φ)∗ = Φ∗ ◦Ψ∗.

Exercise 3.42. Prove Theorem 3.47.

Exercise 3.43. Denote idM and idTM to be the identity maps of a smooth manifold
M and its tangent bundle respectively. Show that (idM)∗ = idTM. Hence, show
that if M and N are diffeomorphic, then for k ≥ 1 the vector spaces of (k, 0)-tensors
⊗kT∗M and ⊗kT∗N are isomorphic.
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3.5.5. Pull-Back of Differential Forms. By linearity of the pull-back map, and the
fact that differential forms are linear combinations of tensors, the pull-back map acts
on differential forms by the following way:

Φ∗(T1 ∧ · · · ∧ Tk) = Φ∗T1 ∧ · · · ∧Φ∗Tk

for any 1-forms T1, . . . , Tk.

Example 3.48. Consider the map Φ : R2 → R2 given by:

Φ(x1, x2)︸ ︷︷ ︸
(y1,y2)

= (x2
1 − x2, x3

2).

By straight-forward computations, we have:

Φ∗(dy1) = 2x1 dx1 − dx2

Φ∗(dy2) = 3x2 dx2

Therefore, we have:

Φ∗(dy1 ∧ dy2) = Φ∗(dy1) ∧Φ∗(dy2) = 6x1x2 dx1 ∧ dx2.

Note that 6x1x2 is the Jacobian determinant det[Φ∗]. We will see soon that it is not a
coincident, and it holds true in general. �

Although the computation of pull-back on differential forms is not much different
from that on tensors, there are several distinctive features for pull-back on forms. One
feature is that the pull-back on forms is closely related to Jacobian determinants:

Proposition 3.49. Let Φ : M→ N be a smooth map between two smooth manifolds. Suppose
(u1, . . . , um) are local coordinates of M, and (v1, . . . , vn) are local coordinates of N, then for
any 1 ≤ i1, . . . , ik ≤ n, we have:

(3.11) Φ∗(dvi1 ∧ · · · ∧ dvik ) = ∑
1≤j1<···<jk≤m

det
∂(vi1 , . . . , vik )

∂(uj1 , . . . , ujk )
duj1 ∧ · · · ∧ dujk .

In particular, if dim M = dim N = n, then we have:

(3.12) Φ∗(dv1 ∧ · · · ∧ dvn) = det[Φ∗] du1 ∧ · · · ∧ dun

where [Φ∗] is the Jacobian matrix of Φ with respect to local coordinates {ui} and {vi}, i.e.

[Φ∗] =
∂(v1, . . . , vn)

∂(u1, . . . , un)
.

Proof. Proceed as in the derivation of (3.9) by simply replacing all tensor products by
wedge products, we get:

Φ∗(dvi1 ∧ · · · ∧ dvik ) =
m

∑
j1,...,jk=1

(
∂vi1
∂uj1

· · ·
∂vik
∂ujk

duj1 ∧ · · · ∧ dujk

)

=
m

∑
j1,...,jk=1

j1,...,jk distinct

(
∂vi1
∂uj1

· · ·
∂vik
∂ujk

duj1 ∧ · · · ∧ dujk

)

The second equality follows from the fact that duj1 ∧ · · · ∧ dujk = 0 if {j1, . . . , jk} are
not all distinct. Each k-tuples (j1, . . . , jk) with distinct ji’s can be obtained by permuting
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a strictly increasing sequence of j’s. Precisely, we have:

{(j1, . . . , jk) : 1 ≤ j1, . . . , jk ≤ n and j1, . . . , jk are all distinct}

=
⋃

σ∈Sk

{(jσ(1), . . . , jσ(k)) : 1 ≤ j1 < j2 < . . . < jk ≤ n}

Therefore, we get:

Φ∗(dvi1 ∧ · · · ∧ dvik )

= ∑
1≤j1<...<jk≤m

∑
σ∈Sk

(
∂vi1

∂ujσ(1)
· · ·

∂vik
∂ujσ(k)

dujσ(1) ∧ · · · ∧ dujσ(k)

)

= ∑
1≤j1<...<jk≤m

∑
σ∈Sk

sgn(σ)
∂vi1

∂ujσ(1)
· · ·

∂vik
∂ujσ(k)

duj1 ∧ · · · ∧ dujk

By observing that ∑
σ∈Sk

sgn(σ)
∂vi1

∂ujσ(1)
· · ·

∂vik
∂ujσ(k)

is the determinant of

[
∂vip

∂ujq

]
1≤p,q≤k

,

the desired result (3.11) follows easily.
The second result (3.12) follows directly from (3.11). In case of dim M = dim N = n

and k = n, the only possible strictly increasing sequence 1 ≤ j1 < . . . < jn ≤ n is
(j1, . . . , jn) = (1, 2, . . . , n). �

Proposition 3.50. Let Φ : M → N be a smooth map between two smooth manifolds. For
any ω ∈ ∧kT∗N, we have:

(3.13) Φ∗(dω) = d(Φ∗ω).

To be precise, we say Φ∗(dNω) = dM(Φ∗ω), where dN : ∧kT∗N → ∧k+1T∗N and
dM : ∧kT∗M→ ∧k+1T∗M are the exterior derivatives on N and M respectively.

Proof. Let {uj} and {vi} be local coordinates of M and N respectively. By linearity, it
suffices to prove (3.13) for the case ω = f dvi1 ∧ · · · ∧ dvik where f is a locally defined
scalar function. The proof follows from computing both LHS and RHS of (3.13):

dω = d f ∧ dvi1 ∧ · · · ∧ dvik

Φ∗(dω) = Φ∗(d f ) ∧Φ∗(dvi1) ∧ · · · ∧Φ∗(dvik )

= d(Φ∗ f ) ∧ d(Φ∗vj1) ∧ · · · ∧ d(Φ∗vjk ).

Here we have used Exercise 3.41. On the other hand, we have:

Φ∗ω = (Φ∗ f )Φ∗(dvj1) ∧ · · · ∧Φ∗(dvjk )

= (Φ∗ f ) d(Φ∗vi1) ∧ · · · ∧ d(Φ∗vik )

d(Φ∗ω) = d(Φ∗ f ) ∧ d(Φ∗vi1) ∧ · · · ∧ d(Φ∗vik )

+ Φ∗ f d
(

d(Φ∗vi1) ∧ · · · ∧ d(Φ∗vik )
)

Since d2 = 0, each of d(Φ∗viq) is a closed 1-form. By Proposition 3.35 (product rule)
and induction, we can conclude that:

d
(

d(Φ∗vi1) ∧ · · · ∧ d(Φ∗vik )
)
= 0

and so d(Φ∗ω) = d(Φ∗ f ) ∧ d(Φ∗vi1) ∧ · · · ∧ d(Φ∗vik ) as desired. �
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Exercise 3.44. Show that the pull-back of any closed form is closed, and the
pull-back of any exact form is exact.

Exercise 3.45. Consider the unit sphere S2 locally parametrized by

F(θ, ϕ) = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ).

Define a map Φ : S2 → R3 by Φ(x, y, z) = (xz, yz, z2), and consider a 2-form
ω = z dx ∧ dy. Compute dω, Φ∗(dω), Φ∗ω and d(Φ∗ω), and verify they satisfy
Proposition 3.50.

3.5.6. Unification of Green’s, Stokes’ and Divergence Theorems. Given a sub-
manifold Mm in Rn, a differential form on Rn induces a differential form on Mm. For
example, let C be a smooth regular curve in R3 parametrized by r(t) = (x(t), y(t), z(t)).
The 1-form:

α = αx dx + αy dy + αz dz

is a priori defined on R3, but we can regard the coordinates (x, y, z) as functions on the

curve C parametrized by r(t), then we have dx =
dx
dt

dt and similarly for dy and dz. As

such, dx can now be regarded as a 1-form on C. Therefore, the 1-form α on R3 induces
a 1-form α (abuse in notation) on C:

α = αx(r(t))
dx
dt

dt + αy(r(t))
dy
dt

dt + αz(r(t))
dz
dt

dt

=

(
αx(r(t))

dx
dt

+ αy(r(t))
dy
dt

+ αz(r(t))
dz
dt

)
dt

In practice, there is often no issue of using α to denote both the 1-form on R3

and its induced 1-form on C. To be (overly) rigorous over notations, we can use the
inclusion map ι : C → R3 to distinguish them. The 1-form α on R3 is transformed into
a 1-form ι∗α on C by the pull-back of ι. From the previous subsection, we learned that:

ι∗(dx) = d(ι∗x) = d(x ◦ ι).

Note that dx and d(x ◦ ι) are different in a sense that x ◦ ι : C → R has the curve C as
its domain, while x : R3 → R has R3 as its domain. Therefore, we have:

d(x ◦ ι) =
d(x ◦ ι)

dt
dt =

dx
dt

dt.

In short, we may use ι∗(dx) =
dx
dt

dt to distinguish it from dx if necessary. Similarly,
we may use ι∗α to denote the induced 1-form of α on C:

ι∗α =

(
αx(r(t))

dx
dt

+ αy(r(t))
dy
dt

+ αz(r(t))
dz
dt

)
dt.

An induced 1-form on a curve in R3 is related to line integrals in Multivariable
Calculus. Recall that the 1-form α = αx dx+ αy dy+ αz dz corresponds to the vector field
F = αxi + αyj + αzk on R3. In Multivariable Calculus, we denote dr = dxi + dyj + dzk
and

F · dr =
(
αxi + αyj + αzk

)
· (dxi + dyj + dzk) = α.

The line integral
∫

C
F · dr over the curve C ⊂ R3 can be written using differential form

notations: ∫
C

F · dr =
∫

C
α or more rigorously:

∫
C

ι∗α.
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Now consider a regular surface M ⊂ R3. Suppose F(u, v) = (x(u, v), y(u, v), z(u, v))
is a smooth local parametrization of M. Consider a vector G = βxi + βyj + βzk on R3

and its corresponding 2-form on R3:

β = βx dy ∧ dz + βy dz ∧ dx + βz dx ∧ dy.

Denote ι : M→ R3 the inclusion map. The induced 2-form ι∗β on M is in fact related
to the surface flux of G through M. Let’s explain why:

ι∗(dy ∧ dz) = (ι∗dy) ∧ (ι∗dz) = d(y ◦ ι) ∧ d(z ◦ ι)

=

(
∂y
∂u

du +
∂y
∂v

dv
)
∧
(

∂z
∂u

du +
∂z
∂v

dv
)

=

(
∂y
∂u

∂z
∂v
− ∂z

∂u
∂y
∂v

)
du ∧ dv

= det
∂(y, z)
∂(u, v)

du ∧ dv.

Similarly, we have:

ι∗(dz ∧ dx) = det
∂(z, x)
∂(u, v)

du ∧ dv

ι∗(dx ∧ dy) = det
∂(x, y)
∂(u, v)

du ∧ dv

All these show:

ι∗β =

(
βx det

∂(y, z)
∂(u, v)

+ βy det
∂(z, x)
∂(u, v)

+ βz det
∂(x, y)
∂(u, v)

)
du ∧ dv

Compared with the flux element G ·N dS in Multivariable Calculus:

G ·N dS =
(

βxi + βyj + βzk
)︸ ︷︷ ︸

G

·
∂F
∂u ×

∂F
∂v∣∣∣ ∂F

∂u ×
∂F
∂v

∣∣∣︸ ︷︷ ︸
N

∣∣∣∣ ∂F

∂u
× ∂F

∂v

∣∣∣∣ dudv︸ ︷︷ ︸
dS

=
(

βxi + βyj + βzk
)
·
(

det
∂(y, z)
∂(u, v)

i + det
∂(z, x)
∂(u, v)

j + det
∂(x, y)
∂(u, v)

k

)
=

(
βx det

∂(y, z)
∂(u, v)

+ βy det
∂(z, x)
∂(u, v)

+ βz det
∂(x, y)
∂(u, v)

)
dudv,

the only difference is that ι∗β is in terms of the wedge product du ∧ dv while the flux
element G · N dS is in terms of dudv. Ignoring this minor difference (which will be

addressed in the next chapter), the surface flux
∫∫

M
G ·N dS can be expressed in terms

of differential forms in the following way:∫∫
M

G ·N dS =
∫∫

M
β or more rigorously:

∫∫
M

ι∗β

Recall that the classical Stokes’ Theorem is related to line integrals of a curve
and surface flux of a vector field. Based on the above discussion, we see that Stokes’
Theorem can be restated in terms of differential forms. Consider the 1-form α =
αx dx + αy dy + αz dz and its corresponding vector field F = αxi + αyj + αzk. We have
already discussed that the 2-form dα corresponds to the vector field ∇× F. Therefore,
the surface flux of the vector field ∇× F through M can be expressed in terms of
differential forms as:∫∫

M
(∇× F) ·N dS =

∫∫
M

ι∗(dα) =
∫∫

M
d(ι∗α).
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If C is the boundary curve of M, then from our previous discussion we can write:∫
C

F · dr =
∫

C
ι∗α.

The classical Stokes’ Theorem asserts that:∫
C

F · dr =
∫∫

M
(∇× F) ·N dS

which can be expressed in terms of differential form as:∫
C

ι∗α =
∫∫

M
d(ι∗α) or simply:

∫
C

α =
∫∫

M
dα.

Due to this elegant way (although not very practical for physicists and engineers) of
expressing Stokes’ Theorem, we often denote the boundary of a surface M as ∂M, then
the classical Stokes’ Theorem can be expressed as:∫

∂M
α =

∫∫
M

dα.

Using differential forms, one can also express Divergence Theorem in Multivariable
Calculus in a similar way as above. Let D be a solid region in R3 and ∂D be the
boundary surface of D. Divergence Theorem in MATH 2023 asserts that:∫∫

∂D
G ·N dS =

∫∫∫
D
∇ · G dV,

where G = βxi + βyj + βzk. As discussed before, the LHS is
∫∫

∂D
β where β =

βx dy ∧ dz + βy dz ∧ dx + βz dx ∧ dy. We have seen that:

dβ =

(
∂βx

∂x
+

∂βy

∂y
+

∂βz

∂z

)
dx ∧ dy ∧ dz,

which is (almost) the same as:

∇ · G dV =

(
∂βx

∂x
+

∂βy

∂y
+

∂βz

∂z

)
dxdydz.

Hence, the RHS of Divergence Theorem can be expressed as
∫∫∫

D
dβ; and therefore

we can rewrite Divergence Theorem as:∫∫
∂D

β =
∫∫∫

D
dβ.

Again, the same expression! Stokes’ and Divergence Theorems can therefore be unified.
Green’s Theorem can also be unified with Stokes’ and Divergence Theorems as well.
Try the exercise below:

Exercise 3.46. Let C be a simple closed smooth curve in R2 and R be the region
enclosed by C in R2. Given a smooth vector field F = Pi + Qj on R2, Green’s
Theorem asserts that: ∫

C
F · dr =

∫∫
R

(
∂Q
∂x
− ∂P

∂y

)
dxdy.

Express Green’s Theorem using the language of differential forms.
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3.5.7. Differential Forms and Maxwell’s Equations. In Maxwell’s theory of elec-
tromagnetism, the electric field E = E1i + E2j + E3k and the magnetic field B =
B1i + B2j + B3k satisfy the following partial differential equations:

∇× E = −∂B

∂t
(Faraday’s Law)

∇ · B = 0 (Gauss’ Law for Magnetism)

There are two more equations (namely Gauss’ Law for Electricity and Ampére’s Law)
which we will not discuss here.

These two equations can be rewritten using differential forms in a very elegant
way. First regard the E-field and B-field as differential forms on R4 with (x, y, z, t) as
coordinates:

E = E1 dx + E2 dy + E3 dz
B = B1 dy ∧ dz + B2 dz ∧ dx + B3 dx ∧ dy

Note that Ei’s and Bj’s may depend on t although there is no dt above.

Exercise 3.47. Consider the 2-form F := E ∧ dt + B. Show that the Faraday’s Law
coupled with the Gauss’ Law for Magnetism is equivalent to this single identity:

dF = 0

where d is the exterior derivative on R4.


