
Linear Regression Models

• Part I: Review on linear regression models

• Part II: Variable selection and shrinkage

– Forward/backward/stepwise algorithms with AIC/BIC

– Regularization methods: Ridge and Lasso

• Part III: Methods using derived input directions:

– PCA and regression

• Case study: Boston Housing Data.
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Part I: Review

• Setup

• LS principle and its geometric interpretation

• Understand R output

• Hypothesis testing in linear models

• Handle categorical features

• Collinearity

• Assumptions
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Linear Regression Model

The linear regression model describes the dependence between a set of p

explanatory (predictor) variables X1, . . . , Xp and a response variable Y by

Y = β1X1 + · · ·+ βpXp + ε,

where X1 = 1 denotes the intercept and ε represents the random error, the

stochastic discrepancy between the linear model and Y .

Given a set of training data (xi1, . . . , xip, yi)
n
i=1, we can express the regression

model in the following matrix form

yn×1 = Xn×pβp×1 + en×1.

We often call X the “design matrix” (in statistical jargon). Here we assume

n > p and rank(X) = p.
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Matrix Representation



y1

y2

· · ·

yn


=



x11β1 + x12β2 + · · ·+ x1pβp + e1

x21β1 + x22β2 + · · ·+ x2pβp + e2

· · ·

xn1β1 + xn2β2 + · · ·+ xnpβp + en



=



x11 x12 · · · x1p

x21 x22 · · · x2p

· · · · · · · · · · · ·

xn1 xn2 · · · xnp





β1

β2

· · ·

βp


+



e1

e2

· · ·

en


yn×1 = Xn×pβp×1 + en×1
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Estimation via Least Squares

The least squares method estimates β by minimizing

RSS =
n∑

i=1

(
yi − xi1β1 − · · · − xipβp

)2
= ‖y −Xβ‖2 = (y −Xβ)t(y −Xβ)

∂RSS

∂β
= −2XT

p×n(y −Xβ)n×1 = 0p×1

XTy = XTXβ a

β̂ = (XTX)−1XTy

Note that the inverse of the p× p matrix (XtX
)

exists since we assume the

rank of X is p.
aKnown as the normal equations.

5



• The Fitted Values (i.e., prediction at the n observed data points xi’s):

ŷn×1 = X(XTX)−1XTy = Hn×ny.

• H: Projection (or hat) matrix. It is symmetric and idempotent

(HH = H).

• The Residuals: rn×1 = y − ŷ = (I−H)y. The residuals can be used to

estimate the error variance

σ̂2 =
1

n− p

n∑
i=1

r2i =
RSS

n− p
.
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Recall that the LS estimate β̂ satisfies the normal equations

Xt(y −Xβ̂) = 0.

So r = y −Xβ̂ satisifies:

• Xtr = 0, the cross-products between the residual vector r and each

column of X are zero; especially, if the intercept is included in the model,

we have
∑n

i=1 ri = 0;

• ŷtr = β̂
t
Xtr = 0, the cross-product between the fitted value ŷ and the

residual vector r is zero.

That is, the residual vector r is orthogonal to each column of X and ŷ.
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The Geometric Interpretation

• The essence of LS: decompose the n-dim data y into two orthogonal

vectors:

y = ŷ + r,

where ŷ is a linear combination of the columns of X, and r is the

remaining part.

• The p column vectors of X spanned a p-dim linear subspace in Rn,

denoted by C(X); every element in C(X) can be uniquely written as a

linear combination of the columns of X, i.e., Xn×pap×1 where a ∈ Rp.

• Finding β̂ that minimizes ‖y−Xβ‖2 is equivalent to finding a vector ŷ in

C(X), which minimizes ‖y − ŷ‖2. Intuitively we know how to find such a

vector: ŷ is the projection of y onto the subspace C(X).
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• The remaining vector r = y − ŷ = (I−H)y is the projection of y onto

C(X)⊥, the space orthogonal to C(X).

• C(X) is the estimation space: the LS coefficient β is retrieved from the

projection of y onto C(X)

β̂ = (XTX)−1Xty = (XTX)−1XT (ŷ + r) = (XTX)−1XT ŷ,

where the last equality is due to XT r = 0p×1.

• C(X)⊥ is the error space: we estimate the error variance σ2 from the

projection of y onto C(X)⊥:

σ̂2 = ‖r‖2/(n− p).
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Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3

x1

x2

y

ŷ

FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection
ŷ represents the vector of the least squares predictions
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Goodness of Fit: R-square

We measure how well the model fits the data via R2 (fraction of variance

explained)

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

,

which is also equal to

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

= 1− RSS

TSS
.
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Affine Transformation on X

• If we scale or shift a predictor, say, x̃i2 = 2× xi2 or (1 + xi2), how would

this affect the LS fit?

• The estimated coefficients would be different since we change the

predictors, but the fitted value ŷ stays the same, since any linear

combination of the original predictors can be written as a linear

combination of the new ones (and vice verse). Here we assume the

intercept is always included.

• In general, if we apply any linear transformation on the p predictors (the

new design matrix can be written as X̃ = Xn×pAp×p), then the fitted

value ŷ and R2 stay the same as long as the transformation does not

change the rank of the design matrix.
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Use R to Analyze the Boston Housing Data

• Basic command: lm

• How to interpret the LS coefficients? β̂j measures the average change of

Y per unit change of Xj , with all other predictors held fixed.

• Note that the result from SLR might be different from the one from MLR:

SLR suggests that age has a significant negative effect on housing price,

while MLR suggests the opposite. Such seemingly contradictory

statements are caused by correlations among predictors.

• How to handle rank deficiency?

13



Two-Stage LS

Partition the p predictors into two groups, and then partition the design matrix

X = [X1n×p1
;X2n×p1

] and β̂ = (β̂1; β̂2) accordingly.

We cannot obtain β̂2 by regressing y onto X2. Instead we should run the

following two-stage approach:

1. Regress y onto X1, and denote the residual vector as un×1;

2. Regress each column of X2 onto X1, and concatenating the residual

vectors as a new design matrix X̃2;

3. Finally regress the new response vector u onto X̃2.

The p2 × 1 coefficient vector returned at the last regression is β̂2 and the

residual is the same as the residual from regressing y onto [X1,X2].
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Partial Regression Coefficients

Consider a multiple linear regression model

Y = β0 + β1X1 + · · ·+ βpXp + err.

The LS estimate β̂k describes the partial correlation between Y and Xk

adjusted for the other predictors.

The LS estimate β̂k is what we could get if we (see Algorithm 3.1)

• first regress Y onto all other predictors except Xk, denote the the

corresponding residuals as a new variable Y ∗;

• regress Xk onto all other predictors except Xk, denote the corresponding

residuals as a new variable X∗k ;

• then fit a simple linear regression model with Y ∗ as the response and X∗k

as the predictor.
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Hypothesis Testing in Linear Regression Models

The key test is the F -test for comparing two nested models:

• H0: reduced model with p0 coefficients;

• Ha: full model with pa coefficients.

Two models are nested if the reduced model is a special case of the full model,

e.g.,

H0 : Y ∼ X1 +X2, Ha : Y ∼ X1 +X2 +X3.
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The test statistic takes the following form

F =
(RSS0 − RSSa)/(pa − p0)

RSSa/(n− pa)
,

which follows an F distribution. (Note that RSSa < RSS0 and pa > p0.)

• Numerator: variation (per dim) in the data not explained by the reduced

model, but explained by the full model, i.e., evidence supporting Ha.

• Denominator: variation (per dim) in the data not explained by either

model, which is used to estimate the error variance.

• Reject H0, if F -stat is large, that is, the variation missed by the reduced

model, when being compared with the error variance, is significantly large.
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• The so-called t-test for each regression parameter (see the R output) is a

special case of F -test. For example, the test for the j-th coef βj compares

– H0 : Y ∼ 1 +X1 + · · ·+Xj−1 + Xj+1 + · · ·+Xp

– Ha : Y ∼ 1 +X1 + · · ·+Xj+1 +Xj +Xj+1 + · · ·+Xp

• The overall F -test (at the bottom of the R output) compares

– H0 : Y ∼ 1

– Ha : Y ∼ 1 +X1 + · · ·+Xj+1 +Xj +Xj+1 + · · ·+Xp

18



Handle Categorical Variables

• Consider a categorical predictor, Size, taking values from {S,M,L}.

• To include this categorical variable in a regression model, we need to

generate two numerical variables. For example, for n = 6 obs with two

taking each of the three values, we have

S

S

M

M

L

L


=⇒



0 0

0 0

1 0

1 0

0 1

0 1


6×2
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• 1st column: indicator for value ”M”.

• 2nd column: indicator for value ”L”.

• We do not need an indicator column for ”S”, which is chosen as the

reference level and its effect is absorbed into the intercept. (You can

choose any value as the reference group.)

• In general for any categorical values with K different values, we need to

generate K − 1 binary vectors.

• We can also generate products of those indicator variables with other

numerical variables to create the interaction terms between categorical

and numerical features.
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Suppose there is another numerical predictor, Price, denoted by {xi}6i=1, and

we fit a linear regression model including Size, Price, and their interaction.

The design matrix looks like follows

S

S

M

M

L

L





x1

x2

x3

x4

x5

x6


=⇒



1 0 0 x1 0 0

1 0 0 x2 0 0

1 1 0 x3 x3 0

1 1 0 x4 x4 0

1 0 1 x5 0 x5

1 0 1 x6 0 x6


How to interpret the LS coefficients?
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Collinearity

• We often encounter problems in which many of the predictors are highly

correlated. In this case, the contribution of a particular predictor could be

masked by other predictors, which create difficulties for statistical

inference.

• Typical symptoms of collinearity: high pair-wise (sample) correlation

between predictors; R2 is relatively large, overall F test is significant, but

none of the predictor is significant.

• What to do with collinearity? Remove some predictors or combine collinear

predictions (e.g., PCA).

• Check the seatpos data.
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Assumptions for Linear Regression Models

• We “assume” E(Y | X = x) is a linear function of x. This is not really an

assumption, but a restriction. If the truth f∗ is not a linear function, then

regression just returns us the best linear approximation of f∗.

• We assume the error terms at all xi’s are uncorrelated with mean zero and

constant variancea. This assumption is related to the objective function,

an unweighted sum of the squared errors at all xi’s. If the errors have

unequal variances (heteroscedasticity) or correlated, then we should use a

different objective function.

• We do not need to impose any assumptions on x’s. But to achieve a good

performance, we would like xi’s to be uniformly sampled.

aA stronger version is error terms iid ∼ N(0, σ2), but the Normal assumption can be

relaxed.
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Abnormal Points

• What’s outlier? What’s high-influential point?

• Datasets from real applications are usually large (in terms of both n and

p), so do not recommend to test outliers or check high-influential points.

• But do recommend to do some of the following:

– Run the summary command in R to know the range of each variable;

– Apply log, square-root or other transformations on right-skewed

predictors and Y .

– Apply winsorization to remove the effect of extreme values.
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