
Linear Regression Models

• Part I: Review on linear regression models

• Part II: Variable selection and shrinkage

– Forward/backward/stepwise algorithms with AIC/BIC

– Regularization methods: Ridge and Lasso

• Part III: Methods using derived input directions:

– PCA and regression

• Case study: Boston Housing Data.
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Part II: Variable Selection/Shrinkage

In modern statistical applications nowadays, we have many potential

predictors, i.e., p is large and we could even have p >> n.

In some applications, the key question we need to answer is to identify a subset

of the potential predictors that are most relevant to Y .

If our goal is simply to do well on prediction/estimation (i.e., we don’t care

whether the predictors employed by our linear model are really relevant to Y or

not), then should we care about variable selection? To understand this, let’s

examine the training and the test errors.
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Test vs Training Error

• Training data (xi, yi)
n
i=1. Fit a linear model on the training data and define

Train Err = ‖y −Xβ̂‖2,

where β̂ ∈ Rp is the LS estimate of the regression parameter.

• Test data (xi, y
∗
i )
n
i=1 is an independent (imaginary) data set collected at

the same location xi’s. Define

Test Err = ‖y∗ −Xβ̂‖2.

• Note that the two errors are random; In the two equations above, terms

are colored differently representing difference sources of randomness. Next

we decompose the expectation of the two errors into three components.
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We can show that

E[Train Err] = (Unavoidable Err)− pσ2 + Bias

E[Test Err] = (Unavoidable Err) + pσ2 + Bias

where

• Unavoidable Err: we usually model Y = f(X) + err, so even if we know f ,

we still cannot predict Y perfectly.

• Bias: we could encounter this error if the true function f is not linear.

• “Test Err” increases with p while “Training Err” decreases with p. When

adding more variables, we decrease the training error, but since the

estimated coefficients are not the same as the true ones, we will incur error

when using the estimated coefficients for prediction on a test set.
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So even if our goal is purely prediction, it’s not true that the more the

predictors the better the prediction. We should benefit from removing some

irrelevant variables.

• Selection: Which variables to keep and which to drop?

Why it’s a difficult task? Can we just select variables based on their

p-values in the R output, e.g., drop all variables which are not significant

at 5%?

• Shrinkage: For some X variables, keep just a certain proportion (< 100%)

of their LS contribution.
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Variable Selection: Pick the Best Subset

1. score each model (model = subset of variables)

2. design a search algorithm to find the optimal one.

Model selection criteria/scores for linear regression often take the following

form

Goodness-of-fit + Complexity-penalty.

The 1st term is a function of RSS (decreases with RSS), and the 2nd term

increases with the number of predictor variables p.a

aIntercept is always included. You can count the intercept in p or not; It doesn’t make

any difference. From now on, p = number of non-intercept variables.
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Popular choices of scores:

• Mallow’s Cp: RSS + 2σ̂2
full × p a

• AIC: −2loglik + 2p b

• BIC: −2loglik + (log n)p

Note that when n is large, adding an additional predictor costs a lot more in

BIC than AIC. So AIC tends to pick a bigger model than BIC. Cp performs

similar to AIC.
aσ̂2 is estimated from the full model (i.e., the model with all the predictors).
bIn the context of linear regression with normal errors, we can replace −2loglik by

log RSS.
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Mallow’s Cp

• Recall the decomposition of the training and test error.

E[Train Err] = (Unavoidable Err)− pσ2 + Bias

E[Test Err] = (Unavoidable Err) + pσ2 + Bias

• So Test Err ≈ RSS + 2pσ2, which is known as Mallow’s Cp.
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Search Algorithms

• Level-wise search algorithm, which returns the global optimal solution, but

only feasible for less than 50 variables.a

Note that the penalty is the same for models with the same size. So

1. first find the model with the smallest RSS among all models of size m,

where m = 1, 2, . . . , p.

2. Then evaluate the score on the p candidate models and report the

optimal one.

aNot the focus of 542; check the Rcode for 425 where we use the leaps and bounds

algorithm.
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• Greedy algorithms: fast, but only return a local optimal solution (which

might be good enough in practice).

– Backward: start with the full model and sequentially delete predictors

until the score does not improve.

– Forward: start with the null model and sequentially add predictors until

the score does not improve.

– Stepwise: consider both deleting and adding one predictor at each

stage.

What if p > n?
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Variable Screening

• A simple screening procedure: rank the p predictors by the absolute value

of their (marginal) correlation with Y ; keep the top K predictors.

• When p >> n, backward and stepwise (starting with the full model)

cannot be used. Then we can apply the above screening procedure (e.g.,

K =
√
n) and then apply subset selection procedures.

• Although simple and likely to miss some important variables, this marginal

screening procedure and its variants are often used as a pre-processing step

to reduce p, the number of potential predictors.
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Linear Regression with Regularization

• Ridge regression

β̂ = argminβ‖y −Xβ‖2 + λ‖β‖2.

• Lasso

β̂ = argminβ‖y −Xβ‖2 + λ|β|, (1)

where |β| =∑p
i=1 |βi|.

• Variable subset selection

β̂ = argminβ‖y −Xβ‖2 + λ‖β‖0,

which with a proper choice of λ gives rise to AIC, BIC, or Mallow’s Cp

when σ2 is known or estimated by a plug-in.
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• Note that the penalty or regularization terms are not invariant with respect

to any location/scale change of the predictors, so we usually center and

normalize the columns of the design matrix X such that they have mean

zero and unit sample variance.

• We further center y, so we can ignore the intercept (why).

• Some packages in R handles the centering and scaling automatically: they

apply the transformation before running the algorithm, and then transform

the obtained coefficients back to the original scale and add back the

intercept.
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Ridge Regression

• How to derive the solution β̂
ridge

?

• Understand the shrinkage effect of Ridge.

• Why we want to do shrinkage?

• How to quantify the dimension (or df) of a ridge regression model?

• How to select the tuning parameter λ? (see R page)
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• In Ridge regression, the criterion we want to minimize is

(y −Xβ)T (y −Xβ) + λβTβ.

• The solution

β̂
ridge

= (XTX+ λI)−1XTy.

• Compared to the OLS estimate β̂
LS

= (XTX)−1XTy, the ridge regression

solution adds a non-negative constant to the diagonal of XTX, so we can

take the inversion even if XTX is not of full rank and it was the initial

motivation for ridge regression (Hoerl and Kennard, 1970).
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Why is ridge regression a shrinkage method? Suppose the design matrix X has

ON a columns, XTX = Ip. Then the ridge estimate/prediction is a shrinkage

version of the LS estimate/prediction.

β̂
LS

= (XTX)−1XTy = XTy

β̂
ridge

= (XTX+ λI)−1XTy

=
1

1 + λ
XTy =

1

1 + λ
β̂
LS

ŷLS = Xβ̂
LS

ŷridge = Xβ̂
ridge

=
1

1 + λ
yLS

aOrthonormal (ON): orthogonal with norm one.

16



In case the columns of X are not orthogonal, we can reformulate the regression

on an orthogonal version of X, known as the principal components analysis or

SVD. Similarly we can see that the ridge estimate/prediction is a shrinkage

version of the LS estimate/prediction. (You can skip the next 4 slides.)
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Let us take a singular value decomposition (SVD) of X:

X = UDVT ,

where

• Un×p: columns uj ’s form an ON basis for C(X), UTU = Ip.

• Vp×p: orthogonal matrix with VTV = Ip.

• Dp×p: diagonal matrix with diagonal entries d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 being

the singular values of X.

For ease of exposition we assume n > p and rank(X) = p. Therefore

dp > 0.

• Sometimes we can write X = FVT where each columns of Fn×p = UD is

the so-called principal components and each column of V is the principal

component directions of X;

18



Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3

-4 -2 0 2 4

-4
-2

0
2

4

o

o

o

o

o
o

oo

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o o

o

o

o o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o

o
o

o

o
o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o
o o

o

o

o

oo
o

o

o

o o

o

o

o

o

oo

o

o
o

o

o
o o

o

o o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

oo
o

o

o

o

oo

o

o

o

o

o

o

Largest Principal
Component

Smallest Principal
Component

X1

X
2

FIGURE 3.9. Principal components of some input
data points. The largest principal component is the
direction that maximizes the variance of the projected
data, and the smallest principal component minimizes
that variance. Ridge regression projects y onto these
components, and then shrinks the coefficients of the
low-variance components more than the high-variance
components.
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Write

y −Xβ = y −UDVβ = y − Fα.

there is a one-to-one correspondence between βp×1 and αp×1 and

‖β‖2 = ‖α‖2. So

min
β∈Rp

‖y −Xβ‖2 + λ‖β‖2 ⇐⇒ min
α∈Rp

‖y − Fα‖2 + λ‖α‖2.

α̂LS = D−1UTy, α̂LS
j =

1

dj
uTj y

α̂ridge = diag
( dj
d2j + λ

)
Uty, α̂ridge

j =
d2j

d2j + λ
α̂LS
j

So the ridge estimate α̂ridge shrinks the LS estimate α̂LS by the factor

d2i /(d
2
i + λ): directions with smaller eigen values get more shrinkage.
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• The LS prediction

Fα̂LS = (UD)D−1UTy = UUTy =

p∑
i=1

(
uTi y

)
ui.

• The ridge prediction

Fα̂ridge = Udiag
( dj
d2j + λ

)
Uty =

p∑
j=1

d2i
d2i + λ

(uTi y
)
ui

• So the ridge prediction ŷridge shrinks the LS prediction ŷLS by factor

d2i /(d
2
i + λ): directions with smaller eigen values get more shrinkage.
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Why is Shrinkage Appealing?

• Why should we shrink the LS estimate?

• Isn’t unbiasedness a nice property?

• Shrinkage may introduce bias but can also reduce variance, which could

lead to an overall smaller MSE.
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Degree-of-Freedom of Ridge Regression

• Can we say the complexity of the ridge regression model, which returns a

p-dim coefficient vector β̂
ridge

, is p?

• Although β̂
ridge

is p-dim, the ridge regression doesn’t seem to use the full

strength of the p covariates due to the shrinkage.

• For example, if λ is VERY large, the df of the resulting ridge regression

model should be close to 0. If λ is 0, we are back to a linear regression

model with p covariates.

• So the df of a ridge regression should be some number between 0 and p,

decreasing wrt λ.
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Suppose a method returns the n fitted value as ŷ = An×ny where A is an

n-by-n matrix not depending on y (of course, it depends on xi’s).

Then one way to measure the degree of freedom (df) of this method is

df =
n∑
i=1

Cor(yi, ŷi) = tr(A).

What’s the rationale?

For example, for a linear regression model with p coefficients, we all agree that

the degree of freedom is p. If using the formula above we have

df = tr(H) = p, ŷLS = Hy

which also gives us df = p.
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For ridge regression, we have ŷridge = Sλy, where

Sλ = X(XTX+ λI)−1XT =

p∑
i=1

d2i
d2i + λ

uiu
T
i .

We can define the effective df of ridge regression to be

df(λ) = tr(Sλ) =

p∑
i=1

d2i
d2i + λ

.

When the tuning parameter λ = 0 (i.e, no regularization), df(λ) = p; when λ

goes to ∞, df(λ) goes to 0.

Different from other variable selection methods, the df for ridge regression can

vary continuously from 0 to p.
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LASSO

• Start with the simple case in which X is orthogonal.

– How to derive the solution β̂
lasso

?

– Understand its selection/shrinkage effect?

– What’s the difference between Lasso and Ridge?

• For a general X, the solution is displayed as a path plot (leave the

computation to R).

• How to select the tuning parameter λ? (see R page)

• What if p > n?
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The LASSO solution is define to be

β̂lasso = arg min
β∈Rp

(
‖y −Xβ‖2 + λ|β|

)
.

Suppose Xn×p is orthogonal, i.e., XTX = Ip. Then

‖y −Xβ‖2 = ‖y−Xβ̂LS +Xβ̂LS −Xβ‖2

= ‖y −Xβ̂LS‖2 + ‖Xβ̂LS −Xβ‖2 (2)

where the cross-product term,

2(y −Xβ̂LS)
T (Xβ̂LS −Xβ) = 2rT (Xβ̂LS −Xβ) = 0,

since the n-dim vector in red (which is a linear combination of columns of X,

no matter what value β takes) is orthogonal to the residual vector r. Also note

that the 1st term in (2) is not a function of β. Therefore
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β̂lasso = arg min
β∈Rp

(
‖y −Xβ‖2 + λ|β|

)
= arg min

β∈Rp

(
‖Xβ̂ −Xβ‖2 + λ|β|

)
= arg min

β∈Rp

[
(β̂ − β)TXTX(β̂ − β) + λ|β|

]
= arg min

β∈Rp

[
(β̂ − β)T (β̂ − β) + λ|β|

]
= arg min

β1,...,βp

p∑
j=1

[
(βj − β̂j)2 + λ|βj |

]
.

So we can solve the optimal βj for each of j = 1, . . . , p separately by solving

the following generic problem:

argmin
x

(x− a)2 + λ|x|, λ > 0.
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When the design matrix X is orthogonal, the lasso solution is given by

β̂lasso
i =

 sign(β̂LS
i )(|β̂LS

i | − λ/2) if |β̂LS
i | > λ/2

0 if |β̂LS
i | ≤ λ/2.

A large λ will cause some of the coefficients to be exactly zero. So lasso does

both “variable (subset) selection” and (soft) “shrinkage.”
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Lasso vs Ridge

β̂
lasso

= argminβ‖y −Xβ‖2

subject to

p∑
i=1

|βi| ≤ s.

The contour of the optimization function is an ellipsoid, while the constraint is

a diamond.

β̂
ridge

= argminβ‖y −Xβ‖2

subject to

p∑
i=1

β2
i ≤ s.

The contour of the optimization function is an ellipsoid, while the constraint is

a ball.
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2,

respectively, while the red ellipses are the contours of
the least squares error function.
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3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I[rank(|β̂j | ≤ M)

Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β^2
. .β

1

β 2

β1 β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.
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Other Issues

• Computation: LARS and coordinate descent (leave it to R)

• Path plot (see the R output)

• What’s the df of lasso? (see pp 77-79 in Section 3.4.4)

• Use CV or select λ (see R page)

• In practice, we can take a two-stage approach to remove the bias due to

the L1 penalty: use Lasso to select a subset and then re-run an ordinary

LS model (without any penalty) to estimate the non-zero coefficients.
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Lasso with p > n

• When X is of full rank, the Lasso solution, the minimizer of a convex

function over a convex set, is unique since the 1st term is a strictly convex

function.

• When p > n, the 1st term is no longer strictly convex, so β̂
lasso

may not

be unique, however Xβ̂
lasso

is still unique.

• Understand when Lasso solution is unique via the KKT condition. (See

this paper.)
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