
STAT542 Appendix for Regression F. Liang

In-sample prediction and Mallow’s Cp

Consider a linear regression model with p predictors (let’s ignore the intercept at this

moment).

• Index all possible variable subsets by a p-dimensional binary vector (totally 2p subsets

or models):

γ = (γ1, . . . , γp)
t ∈ {0, 1}p.

Especially, γ = (1, 1, . . . , 1) denotes the biggest (full) model that includes all the

predictors, and γ = (0, 0, · · · , 0) denotes the smallest (null) model that does not

include any predictors.

• For a variable set γ, define pγ =
∑

j γj to denote the number of variables included in

this set, and use Xγ and β̂γ to denote the corresponding n × pγ design matrix and

pγ-dim LS regression parameter, respectively.

In-sample prediction

The so-called in-sample prediction error measures prediction errors at the n sample points

xi’s. For a model γ, the error is defined to be

R(γ) = E‖y∗ −Xγβ̂γ‖2, (1)

where

β̂γ = (XT
γXγ)−1XT

γy, Xγβ̂γ = Hγy,

and y∗ is a set of imaginary, new data points observed at (x1, . . . ,xn) which are independent

of the training data y.

The expectation in (1) is taken with respect to the true distribution over y and y∗. Here

is our assumption on the true data generating process:

yn×1, y
∗
n×1 i.i.d. ∼ Nn

(
µ, σ2In

)
. (2)

Or equivalently, assume

y = µ + e,

y∗ = µ + e∗

en×1, e
∗
n×1 i.i.d. ∼ Nn

(
0, σ2In

)
.
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Next we decompose the prediction error into three components.

R(γ) = E‖y∗ −Xγβ̂γ‖2

= E‖y∗ −Xγβγ + Xγβ̂γ‖2

= E‖(y∗ − µ + µ−Xγβγ + Xγβγ −Xγβ̂γ‖2

= E‖y∗ − µ‖2 + ‖µ−Xγβγ‖2 + E‖Xγβγ −Xγβ̂γ‖2

= I + II + III.

Note that all the cross-product terms are equal to zero

E(y∗ − µ)t(µ−Xγβγ) = (µ−Xγβγ)t E(y∗ − µ) = (µ−Xγβγ)t0 = 0.

E(µ−Xγβγ)t(Xγβγ −Xγβ̂γ) = (µ−Xγβγ)t E(Xγβγ −Xγβ̂γ) = 0

E
[
(y∗ − µ)t(Xγβγ −Xγβ̂γ)

]
=

[
E(y∗ − µ)

]t[
E(Xγβγ −Xγβ̂γ)

]
= 0

We decompose R(γ) as I + II + III.

• The 1st term: the unavoidable error that you would encounter even if you know the

true parameter β:

I = ‖y∗ − µ‖2 = E‖e∗‖2 = nσ2.

• The 2nd term: Let βγ be the pγ-dim vector that achieves the following minimal

II = min
α∈Rpγ

‖µ−Xγα‖2 = ‖µ−Xγβγ‖2.

That is, Xγβγ = Hγµ is the projection of the true mean vector µ onto the subspace

spanned by columns of Xγ . The bias will be zero, if µ = Xγβγ (this would happen

if γ contains all the true predictors). The bias will not be zero if the model γ misses

any true predictors.

• The 3rd term: the variance of model γ (due to estimating βγ). Note that Xγβγ =

Hγµ and Xγβ̂γ = Hγy. Then

III = E‖Hγµ−Hγy‖2

= E‖Hγ

(
y − µ

)
‖2 = σ2tr(Hγ) = σ2pγ .

Mallow’s Cp

In practice, we do not know the true model, i.e., we cannot calculate the 2nd term (the

bias). We try to get that information from the RSS from model γ. Next let’s look at the
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expected RSSγ , and do a similar decomposition.

E[RSSγ ] = Ey‖y −Xγβ̂γ‖2

= E‖y −Xβ + Xβ −Xγβγ + Xγβγ −Xγβ̂γ‖2

= E‖y − µ‖2 + ‖µ−Xγβγ‖2 + E‖Xγβγ −Xγβ̂γ‖2

−2E(y − µ)T (Xγβ̂γ −Xγβγ)

The first 3 terms are the same as the ones in R(γ). But now we have a cross-product

term which does not appear in our derivation for prediction, since there we evaluate the

error at a set of new test data y∗ that is independent of the training data y, therefore the

cross-product term is zero (they are uncorrelated). But for RSS, the data y is used both for

evaluation and for learning (it’s used twice), so the cross-product term will not disappear.

The cross-product term (the last term) in E[RSSγ ] is equal to

E(y − µ)T (Hγy −HγXβ) = σ2tr(Hγ) = σ2pγ

So

R(γ) ≈ RSS + 2pγσ
2,

which gives rise to Mallow’s Cp: RSSγ + 2pγ σ̂
2, where we replace σ2 by an estimate from

the full model.

Solution of LASSO

The LASSO solution is define to be

β̂
lasso

= arg min
β∈Rp

(
‖y −Xβ‖2 + λ|β|

)
.

The orthogonal case

Suppose Xn×p is ON, i.e., XTX = Ip. Then

‖y −Xβ‖2 = ‖y −Xβ̂ + Xβ̂ −Xβ‖2

= ‖y −Xβ̂‖2 + ‖Xβ̂ −Xβ‖2 (3)

where β̂ denotes the LS estimate and the cross-product term is 0,

2(y −Xβ̂)T (Xβ̂ −Xβ) = 2rT (Xβ̂ −Xβ) = 0,

since the n-dim vector in red (which is a linear combination of columns of X, no matter

what value β takes) is orthogonal to the residual vector r. Also note that the 1st term in

(3) is not a function of β, so we can redefine the objective function to be

Ω(β) = ‖Xβ̂ −Xβ‖2 + λ|β| = ‖X(β̂ − β)‖2 + λ|β|

= (β̂ − β)TXTX(β̂ − β) + λ|β| = (β̂ − β)T (β̂ − β) + λ|β|
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since XTX = Ip. Now the objective function can be expressed as a sum over the p dimen-

sions

Ω(β) =

p∑
j=1

[
βj − β̂j)2 + λ|βj |

]
.

So to optimize Ω(β), we can find the optimal βj for each of j = 1, . . . , p separately.

A one-dimensional generic problem

Now we can work with the following generic problem: minimize f(x) where

f(x) = (x− a)2 + λ|x|, λ > 0. (4)

Without loss of generality, we assume a > 0 (the derivation for a ≤ 0 is similar). The

function f(x) is continuous, but f ′(x) is not defined at x = 0,

f ′(x) =

{
2(x− a) + λ = 2

(
x+ λ/2− a

)
, x > 0

2(x− a)− λ = 2
(
x− λ/2− a

)
, x < 0

• a ∈ [0, λ/2]. When x > 0, f ′(x) > 0, i.e., f(x) is an increasing function and (due

to continuity) reaches its minimum at x = 0; f ′(x) < 0 when x < 0, i.e., f(x) is a

decreasing function and reaches its minimum at x = 0. So

0 = arg min
x∈R

[
(x− a)2 + λ|x|

]
, when a ∈ [0, λ/2].

• a ∈ (λ/2,∞]. When x > 0, f ′(x) is positive when x is large and is negative when

x is small, i.e., when x > 0, f(x) first decreases and then increases, and reaches its

minimum at the point x∗ = a − λ/2 with f ′(x∗) = 0. When x < 0, f ′(x) is always

negative, i.e., the value of f(x) when x < 0 is always bigger than f(0), and we’ve

known that f(0) > f(x∗). So

a− λ/2 = arg min
x∈R

[
(x− a)2 + λ|x|

]
, when a ∈ (λ/2,∞).

• You can carry out the analysis for a ∈ [−λ/2, 0) and a ∈ (−∞,−λ/2). Finally we have

x∗ = arg min
x

[
(x− a)2 + λ|x|

]
= sgn(a)

[
|a| − λ

2

]
+
, (5)

where sgn(z) is the sign function that returns 1 if z > 0, 0 if z = 0, and −1 if z < 0.

For example, suppose λ = 2. If a = 1.5, we have x∗ = 0.5; if a = 0.5, we have x∗ = 0;

if a = −1.5, we have x∗ = −1; if a = −0.5, we have x∗ = 0.
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The KKT condition

If f ′(x) exists, we can characterize the minimizer of f(x) by f ′(x) = 0. Due to the term

|x|, The derivative of the f function defined at (4) is not well-defined at x = 0. However,

since (4) is a convex function, we can characterize the minimizer via the subgradient. The

minimizer of (4) must satisfy{
2(x− a) + λsng(x) = 0, if x 6= 0;

2(x− a) + λs = 0, if x = 0,

where s ∈ [−1, 1]. You can plug in the solution given at (5) to check that the equalities

above hold true.

For the general design matrix X, the Lasso solution β̂
lasso

that minimizes
(
‖y−Xβ‖2 +

λ|β|
)

satisfies the following KKT conditions:

2Xt
j

(
y −Xβ̂

lasso
)

= λ · sj ,

where

sj

{
= sgn(β̂lassoj ), if β̂lassoj 6= 0

∈ [−1, 1], if β̂lassoj = 0.

SCAD and other penalty functions

The penalty function on the p-dim coefficient vector β often takes an additive and symmetric

(i.e., the penalty depends on the absolute value of each coefficient) form,
∑p

j=1 p(|βj |).
Consider a simple setting in which the design matrix X is orthonormal. Then we can

express the penalized least squares as the following

‖y −Xβ‖2 + λ

p∑
j=1

p(|βj |)

= ‖y −Xβ̂‖2 +

p∑
j=1

(β̂j − βj)2 + λ

p∑
j=1

p(|βj |)

where β̂ denotes the LS estimate of β and β̂j denotes the j-th element of β̂. Apparently

minimizing the objective function above (wrt β) is equivalent to minimizing it component

wise (wrt βj for j = 1 : p). This leads us to consider the following generic form of penalized

least squares

(z − θ)2 + λp(|θ|), (6)

where z is a realization of a random variable Z whose distribution depends on the 1-dim

parameter value θ, e.g., Z ∼ N(θ, 1).
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A natural question: what kind of “desirable” properties do we want p(·) to have? Fan

and Li (2001)1 listed the following three properties.

• Unbiaseness: when the observed data |z| is large, the resulting estimator θ̂ should be

nearly unbiased, which corresponds to requiring p′(|θ|) = 0 when |θ| is large.

• Sparsity : when |z| is small, the resulting estimator θ̂ should be shrunk to 0, which

corresponds to requiring

min
|θ|

[
|θ|+ λp′(|θ|)

]
> 0.

• Continuity : the resulting estimator θ̂(z) is continuous in data z, which corresponds

to requiring

arg min|θ|

[
|θ|+ λp′(|θ|)

]
= 0.

It is easy to check that the model selection estimator (i.e., the hard-thresholding rule) isn’t

continuous, the ridge estimator isn’t sparse, and the Lasso estimator (the soft-thresholding

rule) is biased, but the SCAD estimator (see eq 3.82 in the textbook) proposed by Fan and

Li (2001) possesses all three properties.

To know more on SCAD and related research, you can take a look of this review paper by

Fan and Lv, “A selective overview of variable selection in high dimensional feature space,”

Statstica Sinica 20 (2010), 101-148.

1Fan and Li (2001), “Variable selection via nonconcave penalized likelihood and its oracle properties”,

Journal of the American Statistical Association, Vol. 96:1348–1360.
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