
• Introduction to classification

• Discriminant analysis: LDA, QDA, and NB

• Logistic regression
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Classification

(In plain English) We have n observations; each of them consists of p

measurements and they are from two classesa. The goal is to find a prediction

rule which takes the p measurements as the input and outputs the class label.

We would like our prediction rule makes small errors not only on the n

samples, but also on future observations.

aLet’s focus on binary classification at this moment.
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(In STAT/CS jargon) We have a training set of sample size n (xi, yi)
n
i=1 where

xi ∈ Rp and yi ∈ {0, 1} (binary classification). The goal is to find a classifier

f : Rp −→ {0, 1}.

At (x, y), the performance of a classifier can be measured some loss function,

e.g., the following 0–1 loss

L(f(x), y) = 0, if y = f(x); 0, otherwise.

The optimal classifier is the one minimizing the riska

R[f ] = EX,Y L(f(X), Y ).

arisk = integrated loss.
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For 0–1 loss, we can show that the optimal classifier takes the following form

f∗(x) = argminfR[f ] =

 1 if η(x) > 1/2

0 otherwise,

where

η(x) = P(Y = 1|X = x).

The optimal classifier f∗ is called the Bayes rule and the corresponding risk

R[f∗] is referred to as the Bayes risk or Bayes error.
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• Some classifiers f(x) output numerical values ∈ R and we need to

threshold f(x) to obtain the classification result, e.g., f(x) > c, predict

y = 1 and otherwise y = 0.

• Some classifiers f(x) output probabilitiesa e.g., f(x) is estimate of

P(Y = 1 | X = x). Then we can threshold f(x) at 0.5.

• The classifiers that output 0/1 divide the X-space into different regions

and each region is assigned to either 1 or 0. Sometimes, we do not

describe f , but the decision boundary.

• Linear classifiers refer to classification methods whose decision boundaries

are linear function of x.

aHard decision classifiers: the ones that return just the label, 0 or 1; soft decision

classifiers: the ones that return probabilities. For classifiers that return just a numerical

value ∈ R, we can transform them to hard or soft decision classifiers.
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Loss Functions for Classification

• 0/1 Loss

L(f(x), y) = 1{y=f(x)},

where f(x) = 0 or 1.

• Log-loss, if f(x) returns a probability p(x) ∈ [0, 1]

L(f(x), y) = log
[
p(x){y=1}(1− p(x)){y=0}

]
.

Note that Log-loss does not work well for hard decision classifiers.

• AUC: area under the Receiver Operating Characteristic (ROC) curve. Will

discuss it later.
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Binary vs Multi-Class

• For simplicity, we’ll focus on binary classifiers. Some binary classifiers can

also handle multi-classes, but for some binary classifiers, the extension is

not trivial.

• There are some default (although may not be optimal) ways to apply a

binary classifier on a classification problem with K > 2 categories.

– Train K one-vs-other classifiers

– Train K(K − 1)/2 pairwise classifiers

Then you combine the results to get a consensus prediction.
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What’s Wrong with Linear Regression?

• For a binary classification problem where Y = 0 or 1, can we perform a

linear regression of Y on X and then classify Y = 1 if Ŷ > 0.5? Actually

that’s what we have done before.

• Problems with linear regression (as a classifier)? The square loss is not

appropriate for classification, see the example on the R page.
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Discriminant Analysis

• “Here the approach is to model the distribution of X in each of the classes

separately, and then use Bayes theorem to flip things around and obtain

P(Y | X = x).”

• Quadratic Discriminant Analysis (QDA)

• Linear Discriminant Analysis (LDA) and its connection with Fisher

Discriminant Analysis (FDA).

• Naive Bayes

• Importance of variable selection

9



Bayes Theorem for Classification

We have learned that the optimal classifier (i.e., the Bayes rule) does

classification based on the conditional probability, which by the Bayes Theorem

takes the following form

P(Y = k | X = x) =
P(X = x | Y = k) · P(Y = k)

P(X = x)

=
P(X = x | Y = k) · P(Y = k)∑K
l=1 P(X = x | Y = l) · P(Y = l)

=
πkfk(x)∑K
l=1 πlfl(x)

• fk(x): conditional density function of X|Y = k (we’ll model it as a normal

distribution).

• πk = P(Y = k): the marginal probability or prior probability for class k.
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We can write the decision function as

f(x) = arg max
k

P(Y = k|X = x) = arg max
k

πkfk(x).

The corresponding decision boundaries are

{x : πjfj(x) = πlfl(x) = arg max
k

πkfk(x), j 6= l.}.
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QDA

• Suppose X|Y = k ∼ N(µk,Σk) with density function

fk(x) = (2π)−p/2|Σk|−1/2 exp
[
− 1

2
(x− µk)tΣ−1k (x− µk)

]
,

where µk and Σk are the mean vector and covariance matrix for class k.

Simple calculations reveal that

P(Y = k | x) =
edk(x)/2∑
l e

dl(x)/2

dk(x) = 2
[
− log fk(x)− log πk

]
− constant

= (x− µk)tΣ−1k (x− µk) + log |Σk| − 2 log πk,

where the first term is the so-called Mahabanobis distance between x and

µk and πk = P (Y = k). We can predict x to class k if dk(x) achieves the

maximum among (d1(x), . . . , dK(x)).
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• The classification rule above is called quadratic discriminant analysis

(QDA), since it leads to quadratic decision boundaries separating different

classes.

• In practice we need to estimate πk, µk,Σk.

Sample frequency and mean for each class:

π̂k =
nk
n
, µ̂k =

1

nk

∑
i:yi=k

xi, k = 1 : K.

Sample covariance matrix for each class:

Σ̂k =
1

nk − 1

∑
i:yi=k

(xi − µ̂k)p×1(xi − µ̂k)t1×p.
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LDA

• If further assume Σk = Σ, we can simplify QDA as linear discriminant

analysis (LDA) with

dk(x) = (x− µk)tΣ−1(x− µk) + log |Σ| − 2 log πk

= −xtΣ−1µk +
(1

2
µT
k Σ−1µk − log πk

)
+ constant.

• Estimate Σ by the pooled sample covariance matrix:

Σ̂ =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)t.
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Reduced Rank LDA

• Suppose Σ̂ is an identity matrix Ip. Then, we can write the discriminant

function for LDA as

dk(x) = ‖x− µk‖2 + log |Σ| − 2 log πk. (1)

• Note the feature vector x only appears in the 1st term which is the

squared distance from x to the center of the kth class. Next we’ll show

that we can replace the squared distance in the original p-dim space by a

square distance in a (K − 1)-dim subspace, a subspace spanned by the K

class centers (after removing the overall mean), (µ1 − µ̄, . . . , µK − µ̄).
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• The K vectors, (µ1 − µ̄, . . . , µK − µ̄), form a (K − 1)-dim subspace in

Rp. Denote this subspace by A and the corresponding projection matrix by

PA, and WLOG, assume µ̄ = 0 (we care about the relative distance

among points so we can always relabel µ̄ as the new origin without

affecting the distance). For any point x in Rp, denote its projection onto

this subspace as x̃ = PAx. It can be shown that

‖x− µk‖2 = ‖PA(x− µk) + (I− PA)(x− µk)‖2

= ‖x̃− µk‖2 + C, k = 1, . . . ,K,

where the constant C = ‖(I− PA)x‖2 is the same for all k.

• For classification, dk(x) or dk(x)−C gives us the same result as long as C

does not depend on k. That is, we can operate LDA on this reduced space

A, which is the same as running LDA in the original p-dimensional space.
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• If Σ̂ is not identity, then we can first “normalize” x to x∗,

x ∈ Rp =⇒ x∗ = Σ̂−1/2x ∈ Rp.

Then the sample covariance matrix of x∗ will be identity.

Here we assume Σ̂−1 exists, otherwise, we cannot run LDA. (Not difficult

to resolve the singularity issue.)
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• When p ≥ K, this means that for LDA, one can project the data onto a

lower-dimensional subspace (dim = K − 1), e.g., just one dimension for

binary classification.

• As we will see that the same subspace A also arises in a dimension

reduction method called Fisher discriminant analysis (FDA), though FDA

is motivated from a slightly different aspect.

• Caution: Each of the (K − 1) directions are linear combinations of the

original p dimensions, and the weights are all learned from the data, so it’s

easy to get a good classification based on “just” the (K − 1) (or even less)

directions on the training data, but the same good result cannot be

reproduced on the test data, i.e., the prediction error could be large; a

simple overfitting problem. See the analysis of the digits data on the R

page.
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Fisher’s Discriminant Analysis

• Find a direction a ∈ Rp such that the projection of data onto this direction

is well separated.

• Denote the projection of an observation xi ∈ Rp by ui = atxi ∈ R.

• What’s being well separated? The group means of ui’s are far apart from

each other, and the within each group, the variation/spread is small, i.e.,

minimize the following ratio

Between group variation

Within group variation
.
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• The within-class and between-class sample covariance matrices

W =
1

n−K
∑
k

∑
j

(xkj − x̄k·)(xkj − x̄k·)t

B =
1

K − 1

∑
k

nk(x̄k· − x̄··)(x̄k· − x̄··)t.

Here we switch the notation and use double subscripts to index

observations with xij ∈ Rp being the jth observation from the ith group.

• Finally we can express the ratio as

atBa

atWa
.
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• Maximizing the ratio is equivalent to solving

max
a

atBa subject to atWa = 1.

• The solution is given by the 1st eigen-vector of matrix W−1B. a

• We can also solve for the 2nd optimal direction, among the ones

orthogonal to the previous one.

• We can extract at most (K − 1) direction, since the rank of B is (K − 1).

aThe sample Cov matrix of the K points, which span A, on p10, is W−1B.
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LDA vs FDA

• LDA: a classifier.

• FDA: a dimension reduction method, i.e., the output of FDA is a set of

directions, but not a classification rule.

• The normal assumption is never mentioned in FDA, but why the space

from FDA is similar to the reduced space from LDA?

FDA implicitly assumes the data from each group follows or approximately

follows a normal distribution with the same covariance matrix.
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Discriminant Analysis in High Dimension

• Singularity of the Covariance Matrix When dimension p is large,

QDA/LDA may not be applicable, because the inverse of Σ̂ for Σ̂k doesn’t

exist. For example, if p > n, Σ̂, the p× p covariance matrix for LDA, is of

rank at most n− 1. So we cannot compute Σ̂−1.

A straightforward solution: using the generalized inverse of a matrix.
3 0 0

0 2 0

0 0 0


−1

=


1
3 0 0

0 1
2 0

0 0 0

 .

Singularity flags a warning: n is small relatively to p, so watch out for

overfitting.
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• When dimension p is large, even LDA could end up overfitting the data:

one can show that when p gets large, LDA could behave like random

guessing (i.e., classification error = 0.5).

A related issue with FDA: classes are well-separated on the training set

could be meaningless for for high-dimensional data. (Look at the FDA

result for the digits data.)

• Regularization: sparse LDA, Naive Bayes, or RDA.
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Sparse LDA

For simplicity, focus on binary LDA with discriminant function

dk(x) = −xtΣ−1µk +
(1

2
µT
k Σ−1µk − log πk

)
, k = 1, 2

We only need to know the difference of d1(x) and d2(x), so eventually the

quantity we need to compute is(
x− µ̄

)t
Σ−1(µ1 − µ2) + (·),

where µ̄ = (µ1 + µ2)/2 and (·) is some quantity doesn’t depend on x nor

µ1 − µ2.
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Below is a brief summary of the types of algorithms under the umbrella “Sparse

LDA”. For details, carry out a literature review on this topic.

• Assume Σ is diagonal and the class difference (µ1 − µ2) is sparse. For the

latter, e.g., we can run a two-sample t-test for each feature: if the jth

feature is not significant, set µ1j − µ2j = 0.

• The sample covariance matrix Σ is sparse: estimate Σ using sparse

matrices.

• Both µ1 − µ2 and Σ are sparse.
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RDA (not covered)

• Regularized QDA with covariance matrix

(1− α)Σ̂k + αΣ̂.

• Regularized LDA with covariance matrix

(1− α)Σ̂ + (1− α)σ̂2I,

where σ̂2 = tr(Σ̂)/p.
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RDA uses the following regularized covariance matrix

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ
1

p
tr
[
Σ̂k(λ)

]
Ip,

Σ̂k(λ) ≡ (1− λ)Σ̂k + λΣ̂,

with λ, γ ∈ [0, 1] a Large values indicate higher degrees of regularization.

• (γ = 0, λ = 0): QDA (individual cov for each class).

• (γ = 0, λ = 1): LDA (shared cov matrix).

• (γ = 1, λ = 0): Variables are conditionally independent with equal

class-specific variance; similar to Naive Bayes.

• (γ = 1, λ = 1): Nearest centroid (objects are assigned to group with

nearest mean with euclidean distance).

aIn practice, the tuning parameters are selected by CV.
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Naive Bayes

• Recall: for multi-class problems the optimal decision rule is

f∗(x) = arg max
k

P(Y = k|X = x) = arg max
k

πkfk(x).

• Approximate fk(x) by

fk(x) ≈
p∏

j=1

fkj(xj),

i.e., each dim of x is approximately independent (independence assumption

may not hurt too much for high-dimensional problems).

• Then each density fkj (j = 1 : p, k = 1 : K) is estimated separately within

each class. E.g., discrete features via histograms; numerical features via

kernel density estimates.
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Logistic Regression

• As we have learned before, the best classifier depends on

η(x) = P(Y = 1|X = x).

One type of approaches for classification is to directly model or estimate

η(x), for example, by a linear model. Since η(x) is constrained to between

0 and 1, it is not realistic to assume η(x) takes a linear form. Instead we

assume its transformation (or referred to as a link function) is a linear

function,

g(η(x)) = xtβ.

Here we merge the intercept into the x-vector.

• For Logistic regression, we use the so-called logit link function

log
η(x)

1− η(x)
= xtβ, η(x) =

exp(xtβ)

1 + exp(xtβ)
.
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How does η(x) relate to the response variable Y ? Well,

Y |X = x ∼ Bern(η(x)), i.e. p(y|x) = η(xi)
yi [1− η(xi)]

1−yi

So given a set of training data (xi, yi)
n
i=1, we can estimate β by

maximizing the log-likelihood

`(β) =

n∑
i=1

log
[
η(xi)

]y1
[
1− η(xi)

]1−yi

=

n∑
i=1

yi log
η(xi)

1− η(xi)
+ log[1− η(xi)]

=

n∑
i=1

yix
t
iβ − log[1 + exp(xtiβ)].
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Another link function: Probit Model

• Probit link function

Φ−1(η) = α+ xtβ, η = Φ(α+ xtβ),

where Φ(·) is the CDF of N(0, 1).

• Its equivalent form: Gaussian latent model

Z = α+ xtβ + ε, ε ∼ N(0, 1),

and Y = 1 if Z > 0.

32



Back to Logistic...

• The MLE β̂ can be obtained by the following Reweighted LS Algorithm:

– Start with some initial values β0

– Calculate the corresponding p0i = η0(xi) for i = 1, . . . , n; define

W = diag(p0i (1− p0i ))ni=1.

– Calculate

z = Xβ0 +W−1(y − p0).

– Update β0 ← β1 with

β1 = (XtWX)−1XtWz.

and iterative the above steps until convergence.
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Variable Selection for Logistic

Penalized likelihood

− log Likelihood(β) + λ
∑
j

Pen(βj),

where Pen(βj) denotes the penalty function on βj .

For example, Pen(βj) = ‖βj‖0 (L0 norm) corresponds to AIC/BIC, and

Pen(βj) = β2
j corresponds to Ridge, and Pen(βj) = |βj | corresponds to Lasso.

• AIC/BIC with step-wise/forward/backward selection, or

• Ridge and Lasso using glmnet.
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More on Logistic Regression

• Convergence issue with logistic regression when data are well-separated

• Multinomial logistic regression

• Move beyond linear decision boundary: add quadratic terms to logistic

regression

• Retrospect sampling (both LDA and Logistic can handle this)
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We usually assume that data (xi, yi)’s are collected as iid samples from a

population of interest. However, in some applications, we may have data

collected retrospectively. For example, in a study on cancer, instead of taking a

random sample of 100 people from the whole population (then the number of

cancer patients will be too small), we may draw 50 samples from the cancer

group and 50 from the control group.

Let Z indicate whether an individual is sampled or not. Using retrospective

samples, we are estimating P (Y = 1|Z = 1, X = x), while what we care is

P (Y = 1|X = x). Assume the logit of the latter follows a linear model, that is,

P (Y = 1|X = x) =
exp(α+ xtβ)

1 + exp(α+ xtβ)
, (2)

where we isolate the intercept α from other coefficients β. Then the question

is whether we can estimate α or β in (2) based on a retrospective sample.
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It turns out that for logistic models, the coefficients estimated from a

retrospective sample is roughly the same as the one from an ordinary random

sample. Again, let Z indicate whether an individual is sampled or not and

denote the sample proportions (in each class) by

r0 = P(Z = 1|Y = 0), r1 = P(Z = 1|Y = 1).

Then

P(Y = 1|Z = 1, X = x) =
P(Z = 1|Y = 1, x)P(Y = 1|x)

P(Z = 1, Y = 1|x) + P(Z = 1, Y = 0|x)

=
r0 exp(α+ xtβ)

r1 + r0 exp(α+ xtβ)

=
exp(α∗ + xtβ)

1 + exp(α∗ + xtβ)
.

Although the data have been sampled retrospectively, the logistic model

continues to apply with the same coefficients β but a different intercept.
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