Bagging (Bootstrap Aggregation)

- Training data: $\mathbf{Z} = \{(x_i, y_i)_{i=1}^n\}$
- Bootstrap samples^a: $\mathbf{Z}^{*b} = \{(x_i^{*b}, y_i^{*b})_{i=1}^n\}$, where b = 1: B
- \hat{f}^{*b} : classification/regression function trained by \mathbf{Z}^{*b}
- The bagging estimate is defined to be

$$\hat{f}_{\mathsf{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}$$

• Advantage: reduce variance. So works well for high-variance,

low-bias procedures, such as trees.

^asample with replacement from \mathbf{Z} .

Random Forest

- 1. For b = 1 : B:
 - (a) Draw a bs sample \mathbf{Z}^{*b} from the training data.
 - (b) Grow a BIG tree T_b (with some restriction).
- 2. Output the forest $\{T_b\}_{b=1}^B$.

To make a prediction at a new point \boldsymbol{x}

Regression: $\frac{1}{B} \sum T_b(x)$.

Classification: majority voting among $T_1(x), \ldots, T_B(x)$.

Restriction when growing a tree in the forest:

- At each split, randomly select *m* variables from the *p* variables, and then pick the best split among them.
- The recommended value for \pmb{m} is \sqrt{p} for classification and p/3 for regression.
- Purpose: reduce the correlation between trees in the forest.

Out-of-Bag (OOB) Samples

- OOB samples: sample points which are not included in \mathbf{Z}^{*b} , i.e., they are not used in building the tree T_b
- The OOB samples can be used to get a test error for T_b .
- The prediction and error rate returned by randomForest are calculated based on OOB. The error is usually close to a CV error.

Variable Importance

- Calculation of the *m*-th variable's importance based on Gini Index: the improvement in the split-criterion (Gini index) is the importance measure attributed to the splitting variable, and is accumulated over all the trees in the forest separately for each variable.
- The calculation can be easily extended to regression trees based on MSE.

- Another measure is computed from permuting OOB samples: For each tree T_b in the forest, calculate the prediction error (error rate for classification, MSE for regression). Then the same is done after permuting the *j*th predictor for the OOB samples. The difference between the two (before and after permutation) is then averaged over all trees, and normalized by the corresponding standard deviation^a.
- R returns both scaled and unscaled variable importance.

^aIf the standard deviation of the differences is equal to 0 for a variable, then the division is not applied.