e AdaBoost

What exactly does it do? The resulting classifier will always have a

good prediction accuracy?

e Forward stage-wise optimization for fitting an additive model

AdaBoost is a special case of this framework with Exponential loss
for classification. Similarly we can develop Boosting algorithms for

regression /classification with other loss functions.

Weak Classifiers

e Consider a binary classification problem where x € RP and y is
coded as +1. A classifier g maps the p-dim feature to {—1, 1},

namely,

g:r—{—1,1}.

e g is a weak classifier, if its performance is just slightly better than
random guessing. E.g., decision stumps (classification tress with

only two leaf nodes).

It's possible that the mis-classification rate of g is more than 1/2,
i.e., worse than random guessing. Then we just use —g(x) for

prediction.

Boost Weak Classifiers

Aim : use a combination of weak classifiers to improve the performance.
e Sequentially modify the weights on the training data {w;} {;
e Sequentially pick classifiers g; ()

e Output the weighted version

G(z) = sign (Z Oétgt(x))°

*The algorithm still works if g¢(x)’s are chosen randomly.

AdaBoost

1. Initialize the weights w'") = 1/n, i =1,2,...,n

2. Fort=1toT":

(a) Fit a classifier g:(x);

()

(b) Compute the training error wrt weights w,’'s

€t —Zw (yi # g1(2:))

1—et .
€t !

(c) Compute a; = 3 log

(d) Update weights wgtﬂ) = M eawig @] \here 7, is the

1 Zt
. (t+1)
normalizing constant to ensure that > . w, = 1.

3. Output Gr(x) = sign(zctr:1 argr(z)).

4

Next we show that the Training Error (measured by mis-classification

rate) will go to 0 (not necessarily monotonically) when T" — oc.

T

Training-Err(Gp) = Z %[(yi #* Sign(z Cbtgt(l'i)))

() t=1

= Z il(iyiatgt(xi) < 0>

(t=1

IA
S|

@

s

o
/‘\

E

S

$

5
\/

We use the following results

e At (1), 1I(z2<0) < exp(—z) where z is any number in R.

o At (2),

T NI (D)
— Z R Hexp (_ Oétyigt(aji)> — wa) H (t) Zt

P i t=1 W;

m ”%2) wZ(T) w§T+1) T T o

= 25 @) " () tl:[th) - (Ez’f) 2

T
— HZt = exp{ — 22(% —Et)Q}

t=1 t

which decreases with T' if ¢, < 1/2, where
6

7y = Z wfgt) exp (— Oltyigt(xi))

1

— Z wz(t) eXp (— ozt) + Z wZ@ exp (ozt)

i:yige(Ti)=1 i:yi gt (x;)=—1
= (1—e)exp (ozt) + € €xXp (— ozt)

1 —
— (1 — Et) t t

1—675 €¢

2vVe(l —e) < 1,

If ¢; < 1/2

e We can use a classifier g;(x) whose error rate ¢, > 1/2 (i.e., worse

than random-guessing).

Then a; < 0, and Adaboost basically uses —g:(x).

e The training error of the combined classifier G1 (from Adaboost) is

not monotonically decreasing with T

After each iteration, Adaboost decreases a particular upper-bound
of the 0/1 training error. So in a long run, the training error will be

pushed to zero.

e The Adaboost algorithm outputs a classifier G with small

generalization error. No.

What Does AdaBoost Do?

e Combine weak classifiers to reduce the 0/1 training error (or more

specifically, reduce an upper bound of the training error).

e The classifier returned by AdaBoost is not guaranteed to have a

good performance on test sets.

e In fact AdaBoost is prone to overfitting, unless it stops early.

Boosting: Forward Stagewise Additive Modeling

e Consider an Additive model:

T
fla) =Y Bib(w;),

where b(x;~y) is a classifier or a regression function characterized by

parameter . For example, b(x;7) could be a linear function with

coefficient v or a small tree with parameter ~.

e It is difficult to optimize over all T' pairs of parameters:

n

min L(yi, f(x;)).
{Be,e}{ Z:Zl

10

Forward Stagewise Optimization
(1) fo(z) =0
(2) Fort=1to T,

e Given f;_1, choose (¢, ;) to minimize

ZL(yz',ft—l(l‘z')> + Bb(wi;7); (3)

e Update fi(z) = fi—1(x) + Bib(x;).

Boosting algorithms can take various forms, depending on the choice of
the base model b(-;), the choice of the loss function L(y, f(z)), and

how optimization is done at (3).

11

AdaBoost is equivalent to forward stagewise additive modeling using an

exponential loss

L(y, f(z)) = exp(—yf(z)).
arg min L(yi, fe—1(xs) + Bb(x457))
By =
= argmin exp|—yifi—1(x:) — yiBb(xi;)]
By =

= argmin Y wi” exp(—PBy;b(zi;7)).

12

Instead of optimizing over both 3 and b(-,~), AdaBoost just randomly

picks a classifier b(-;~), and then optimize over (5.

For any given b(-;~), denote the corresponding weighted empirical error

rate by €, then the optimal (3 is given by

1 1 —¢€

= —1]
g 20g €

13

For regression, we can use Lo-Boosting.
e Loss function is the squared error,

(yi — fro1(xi) — Bb(xi57))?
= (ri — Bb(mi;7))°.

e At the t-th iteration,

fo(x) = fioi(z) + Bz,

where () denotes the variable (possibly random) chosen at the
t-th iteration, and Bt Is the estimated coefficient based on the

partial residuals 7;;.

14

When doing the optimization at the ¢-th iteration,

e for exponential loss, the effect of the previous (¢ — 1) functions

becomes weights;

e for squared loss, the effect of the previous (t — 1) functions

becomes partial residuals.

For many other loss functions, we don’t have such a simple form for the
effect of the previous (¢ — 1) functions. Instead we use Gradient

Boosting.

15

Gradient Boosting

e Goal is to minimize L(f) w.r.t f,

L(f) = ZL(%, f(x;))

where f is constrained to be in the space spanned by base

classifers/regressors b(x;7)'s, e.g., trees or linear functions or even

SVM’s.

e At the (¢t + 1)-th iteration, we have already had an estimate of f

based on the previous t iterations f;.

e For some loss functions, it is not easy to solve
argming . > L(yi, fr(ws) + Bb(xs57)).
i

16

In Gradient Boosting, at step (¢t + 1):

e View the loss function (sum of the training error at each fitted

value f;(x;)) as a function evaluated at an n-dim vector

f; = (fe(z1), fi(za), ..., fe(zn))".
Calculate the corresponding gradient (that is also an n-dim vector)

0fi i=1ln,f=f

If we move the n fitted values along the direction “—g;"”, then we

can reduce the (training) error.

e Choose a base function b(x;;.1) whose predictions at the n data
points are as close as possible to —g;. In order words, the negative
gradient at the n samples, —g;, becomes our working response

when picking up b(x; 7).
17

e Then choose step length (how far we'll move along the direction

—g"),

prv1 = argmin, > L(yi, fr(w:) + pb(i5ve41)),
1=1

which is just a one-dimensional optimization problem.

e Finally update

fer1(x) = fe(@) + prg1b(@; ves1).

18

When to Stop?

Boosting is prone to overfitting.
Early stopping based on CV or test error.

Regularized step size, i.e., take a small step along the gradient (for

Gradient Boosting).

Some packages, e.g., gbm and XGBoost, even add a bootstrap
component: at the t-th iteration, the optimization is done based on

a subset of the training data.

19

