
• AdaBoost

What exactly does it do? The resulting classifier will always have a

good prediction accuracy?

• Forward stage-wise optimization for fitting an additive model

AdaBoost is a special case of this framework with Exponential loss

for classification. Similarly we can develop Boosting algorithms for

regression/classification with other loss functions.

1



Weak Classifiers

• Consider a binary classification problem where x ∈ Rp and y is

coded as ±1. A classifier g maps the p-dim feature to {−1, 1},

namely,

g : x −→ {−1, 1}.

• g is a weak classifier, if its performance is just slightly better than

random guessing. E.g., decision stumps (classification tress with

only two leaf nodes).

It’s possible that the mis-classification rate of g is more than 1/2,

i.e., worse than random guessing. Then we just use −g(x) for

prediction.

2



Boost Weak Classifiers

Aim : use a combination of weak classifiers to improve the performance.

• Sequentially modify the weights on the training data {wi}ni=1;

• Sequentially pick classifiers gt(x);
a

• Output the weighted version

G(x) = sign
( T∑
t=1

αtgt(x)
)
.

aThe algorithm still works if gt(x)’s are chosen randomly.

3



AdaBoost

1. Initialize the weights w
(1)
i = 1/n, i = 1, 2, . . . , n.

2. For t = 1 to T :

(a) Fit a classifier gt(x);

(b) Compute the training error wrt weights w
(t)
i ’s

εt =
∑
i

w
(t)
i I
(
yi 6= gt(xi)

)
(c) Compute αt =

1
2 log

1−εt
εt

;

(d) Update weights w
(t+1)
i = w

(t)
i

exp[−αtyigt(xi)]
Zt

, where Zt is the

normalizing constant to ensure that
∑

iw
(t+1)
i = 1.

3. Output GT (x) = sign
(∑T

t=1 αtgt(x)
)
.

4



Next we show that the Training Error (measured by mis-classification

rate) will go to 0 (not necessarily monotonically) when T →∞.

Training-Err(GT ) =
∑
i

1

n
I
(
yi 6= sign

( T∑
t=1

atgt(xi)
))

=
∑
i

1

n
I
( T∑
t=1

yiatgt(xi) < 0
)

≤
∑
i

1

n
exp

(
−

T∑
t=1

αtyigt(xi)
)

(1)

≤
T∏
t=1

Zt ≤ exp
{
− 2

∑
t

(
1

2
− εt)2

}
. (2)

5



We use the following results

• At (1), I(z < 0) < exp(−z) where z is any number in R.

• At (2),

n∑
i=1

1

n
exp

(
−

T∑
t=1

αtyigt(xi)
)

=
∑
i

1

n

T∏
t=1

exp
(
− αtyigt(xi)

)
=
∑
i

w
(1)
i

T∏
t=1

w
(t+1)
i

w
(t)
i

Zt

=
∑
i

w
(1)
i

w
(2)
i

w
(1)
i

· · ·
w

(T )
i

w
(T−1)
i

w
(T+1)
i

w
(T )
i

( T∏
t=1

Zt

)
=
( T∏
t=1

Zt

)∑
i

w
(T+1)
i

=

T∏
t=1

Zt = exp
{
− 2

∑
t

(
1

2
− εt)2

}
which decreases with T if εt < 1/2, where

6



Zt =
∑
i

w
(t)
i exp

(
− αtyigt(xi)

)
=

∑
i:yigt(xi)=1

w
(t)
i exp

(
− αt

)
+

∑
i:yigt(xi)=−1

w
(t)
i exp

(
αt
)

= (1− et) exp
(
αt
)
+ εt exp

(
− αt

)
= (1− εt)

√
εt

1− εt
+ εt

√
1− εt
εt

= 2
√
εt(1− εt) < 1,

if εt < 1/2.

7



• We can use a classifier gt(x) whose error rate εt > 1/2 (i.e., worse

than random-guessing).

Then αt < 0, and Adaboost basically uses −gt(x).

• The training error of the combined classifier GT (from Adaboost) is

not monotonically decreasing with T .

After each iteration, Adaboost decreases a particular upper-bound

of the 0/1 training error. So in a long run, the training error will be

pushed to zero.

• The Adaboost algorithm outputs a classifier GT with small

generalization error. No.

8



What Does AdaBoost Do?

• Combine weak classifiers to reduce the 0/1 training error (or more

specifically, reduce an upper bound of the training error).

• The classifier returned by AdaBoost is not guaranteed to have a

good performance on test sets.

• In fact AdaBoost is prone to overfitting, unless it stops early.

9



Boosting: Forward Stagewise Additive Modeling

• Consider an Additive model:

f(x) =

T∑
t=1

βtb(x; γt),

where b(x; γ) is a classifier or a regression function characterized by

parameter γ. For example, b(x; γ) could be a linear function with

coefficient γ or a small tree with parameter γ.

• It is difficult to optimize over all T pairs of parameters:

min
{βt,γt}T1

n∑
i=1

L(yi, f(xi)).

10



Forward Stagewise Optimization

(1) f0(x) = 0

(2) For t = 1 to T ,

• Given ft−1, choose (βt, γt) to minimize∑
i

L
(
yi, ft−1(xi)

)
+ βb(xi; γ); (3)

• Update ft(x) = ft−1(x) + βtb(x; γt).

Boosting algorithms can take various forms, depending on the choice of

the base model b(·; γ), the choice of the loss function L(y, f(x)), and

how optimization is done at (3).

11



AdaBoost is equivalent to forward stagewise additive modeling using an

exponential loss

L(y, f(x)) = exp(−yf(x)).

argmin
β,γ

∑
i

L(yi, ft−1(xi) + βb(xi; γ))

= argmin
β,γ

∑
i

exp[−yift−1(xi)− yiβb(xi; γ)]

= argmin
β,γ

∑
i

w
(t)
i exp(−βyib(xi; γ)).

12



Instead of optimizing over both β and b(·, γ), AdaBoost just randomly

picks a classifier b(·; γ), and then optimize over β.

For any given b(·; γ), denote the corresponding weighted empirical error

rate by ε, then the optimal β is given by

β =
1

2
log

1− ε
ε

.

13



For regression, we can use L2-Boosting.

• Loss function is the squared error,

(yi − ft−1(xi)− βb(xi; γ))2

= (rit − βb(xi; γ))2.

• At the t-th iteration,

ft(x) = ft−1(x) + β̂tx
(t),

where x(t) denotes the variable (possibly random) chosen at the

t-th iteration, and β̂t is the estimated coefficient based on the

partial residuals rit.

14



When doing the optimization at the t-th iteration,

• for exponential loss, the effect of the previous (t− 1) functions

becomes weights;

• for squared loss, the effect of the previous (t− 1) functions

becomes partial residuals.

For many other loss functions, we don’t have such a simple form for the

effect of the previous (t− 1) functions. Instead we use Gradient

Boosting.

15



Gradient Boosting

• Goal is to minimize L(f) w.r.t f ,

L(f) =
n∑
i=1

L(yi, f(xi))

where f is constrained to be in the space spanned by base

classifers/regressors b(x; γ)’s, e.g., trees or linear functions or even

SVM’s.

• At the (t+ 1)-th iteration, we have already had an estimate of f

based on the previous t iterations ft.

• For some loss functions, it is not easy to solve

argminβ,γ
∑
i

L(yi, ft(xi) + βb(xi; γ)).

16



In Gradient Boosting, at step (t+ 1):

• View the loss function (sum of the training error at each fitted

value ft(xi)) as a function evaluated at an n-dim vector

ft = (ft(x1), ft(x2), . . . , ft(xn))
t.

Calculate the corresponding gradient (that is also an n-dim vector)

gt =

[
∂L(yi, fi)

∂fi

]
i=1:n,f=ft

.

If we move the n fitted values along the direction “−gt”, then we

can reduce the (training) error.

• Choose a base function b(x; γt+1) whose predictions at the n data

points are as close as possible to −gt. In order words, the negative

gradient at the n samples, −gt, becomes our working response

when picking up b(x; γ).
17



• Then choose step length (how far we’ll move along the direction

“−gt”),

ρt+1 = argminρ

n∑
i=1

L(yi, ft(xi) + ρb(xi; γt+1)),

which is just a one-dimensional optimization problem.

• Finally update

ft+1(x) = ft(x) + ρt+1b(x; γt+1).

18



When to Stop?

• Boosting is prone to overfitting.

• Early stopping based on CV or test error.

• Regularized step size, i.e., take a small step along the gradient (for

Gradient Boosting).

• Some packages, e.g., gbm and XGBoost, even add a bootstrap

component: at the t-th iteration, the optimization is done based on

a subset of the training data.

19


