# Power Comparison for T-Test and Sign Test- Normal and Exponential Samples

Zhaohui Geng and Kenneth Locke

### What is the Sign Test

• Nonparametric alternative to t-test when normality is not assumed (Cannot use mean for hypothesis test as distribution not symmetric)

i.e.,  $X_1$ ,  $X_2$ ....  $X_n \sim Unknown$  Distribution

• Sign test is used for hypothesis tests for a median ( $\mu = median$ )

| <i>H</i> <sub>0</sub> : | μ | = | $\mu_0$ |
|-------------------------|---|---|---------|
| <i>H</i> <sub>1</sub> : | μ | > | $\mu_0$ |

• For our test

$$H_0: \mu = 0$$
  
 $H_1: \mu > 0$ 

• Create a new variable Y

$$X_i = 0 then Y_i = 1$$
  
 $X_i > 0 then Y_i = 0$ 

• Where  $Y_i \sim Bern(\frac{1}{2})$ , where  $p = \frac{1}{2}$  under the null hypothesis

#### How to Calculate the Sign Test Statistic W

- $W = \sum_{i=0}^{n} Y_i$
- $W \leq c \text{ reject } H_0 \text{ and accept when } W > c$
- c is the critical value of x where the CDF of the Binomial Distribution for  $Y_i \sim Bin\left(n, \frac{1}{2}\right)$  has a probability less than or equal to  $\alpha$
- $\sum_{w=0}^{c} \binom{n}{w} \left(\frac{1}{2}\right)^n \le \alpha_0 < \sum_{w=0}^{c+1} \binom{n}{w} \left(\frac{1}{2}\right)^n$
- $F(c) \le \alpha_0 < F(c+1)$ , where F is the CDF of Binomial distribution

#### Example of Sign Test

n = 50 oberservations where  $X_1, X_2 \dots X_n \sim Unknown$  Distribution

| i  | X <sub>i</sub> | Y <sub>i</sub> |
|----|----------------|----------------|
| 1  | 0              | 1              |
| 2  | 3              | 0              |
| 3  | 4              | 0              |
| 4  | 2              | 0              |
| 5  | 1              | 0              |
|    |                |                |
| 50 | 0              | 1              |



W = 13 and c = 18 (Calculated using R) W < c therefore reject the null hypothesis

## Calculating Power for T Test

Power = Probability of rejecting the null hypothesis while the alternative is true

$$\pi(\theta \in \Omega_1 | \delta = 1) = Power$$

1. We need to calculate the rejection region for the underlying distribution

$$Z_{1-\alpha} = \frac{\widehat{\mu} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 so that  $\widehat{\mu} = Z_{1-\alpha} * \frac{\sigma}{\sqrt{n}} + \mu$ 

2. For the null 
$$H_0$$
:  $\mu = 0$ , the t distribution is as follows  
 $t = \frac{\hat{\mu} - 0}{\frac{s}{\sqrt{n}}}$ 

3. Calculate the probability of rejecting null hypothesis for t $P(t > t_{n-1,1-\alpha} | \mu = \mu_0 > 0)$ 

## Calculating Power for Sign Test

Power = Probability of rejecting the null hypothesis while the alternative is true

$$Power = p(w \le c)$$

- 1. Find the probability that  $X_i$  is less than or equal to  $\mu_0$  for its respective underlying distribution. For  $H_0: \mu = \mu_0$  $p = P(X_i \le 0)$
- 2. Plug in p into the Sign Power Function to calculate Power

Power = 
$$p(w \le c) = \sum_{w=0}^{c} {n \choose w} p^{w} (1-p)^{n-w}$$

Power Comparisons for 
$$X_1, X_2...X_n \sim N(\mu, \sigma^2)$$

- Goal: To find the test with the highest power for various values of  $\mu$  and n using R simulation
- $\mu < 0$  values were not used as power would be zero
- Conclusion- T test has higher power for all n

|    | $\mu = .5$ |            |    | $\mu = 1$ |            |    | $\mu = 3$ |            |
|----|------------|------------|----|-----------|------------|----|-----------|------------|
| n  | Power t    | Power Sign | n  | Power t   | Power Sign | n  | Power t   | Power Sign |
| 10 | .1123249   | .02932231  | 10 | .2569638  | .06815736  | 10 | .9570575  | .5128569   |
| 20 | .1951637   | .07339428  | 20 | .3334795  | .19240541  | 20 | .9984613  | .9158307   |
| 30 | .2304711   | .17757490  | 30 | .4241432  | .41916884  | 30 | .9989558  | .9954012   |
| 40 | .2710237   | .18181277  | 40 | .6417767  | .46953730  | 40 | .9996289  | .9992399   |
| 50 | .3793789   | .18164215  | 50 | .7941511  | .50839380  | 50 | .9999996  | .9998710   |

## Power Comparisons for $X_1, X_2...X_n \sim Exp(\mu)$

- Goal: To find the test with the highest power for various values of  $\mu$  and n using R simulation
- Sign Test has the higher power of 1 for all n and  $\mu$  as  $p = P(X_i \leq$

| $\mu = .5$ |          |            |  |  |  |
|------------|----------|------------|--|--|--|
| n          | Power t  | Power Sign |  |  |  |
| 10         | .5437356 | 1          |  |  |  |
| 20         | .9774222 | 1          |  |  |  |
| 30         | .8706834 | 1          |  |  |  |
| 40         | .9891579 | 1          |  |  |  |
| 50         | .9992951 | 1          |  |  |  |

*II* –

| $\mu = 1$ |          |            |  |  |  |
|-----------|----------|------------|--|--|--|
| n         | Power t  | Power Sign |  |  |  |
| 10        | .9502959 | 1          |  |  |  |
| 20        | .9993981 | 1          |  |  |  |
| 30        | .9986037 | 1          |  |  |  |
| 40        | .9954691 | 1          |  |  |  |
| 50        | .9985689 | 1          |  |  |  |
|           |          |            |  |  |  |

 $\mu = 1$