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Topics covered in the last class:
1) What is machine learning?
2) The difference and relationship between statistics and machine learning.
3) Three foundations of machine learning: statistics, optimization and information theory.
4) The concepts of expected risk, empirical risk as well as empirical risk minimization.
5) Decomposition of excess risk into estimation error and approximation error terms.

Before continuing with the topic of empirical risk minimization framework, we would
like to discuss some subtle cultural difference between statistics and machine learning.
In statistics, researchers typically start from looking at a dataset from other scientific
disciplines such as biology and neuroscience. With the dataset, statisticians continue
to abstract out the mathematical/statistical problem, and then invent new statistical
models/procedures to analyze/interpret the underlying meaning in the dataset.

Regarding publications, statisticians generally emphasize on journal publications. Top-
tier journals include Annals of Statistics, Journal of the American Statistical Association
and Journal of the Royal Statistical Society (series A and B).

Originally invented by computer scientists who have their publication venues in con-
ference proceedings, Machine Learning follows the same fashion. Top machine learning
conferences include Conference on Learning Theory (COLT), Conference on Neural Informa-
tion Processing Systems (NIPS) and International Conference on Machine Learning (ICML).

Back to the topic of empirical risk minimization, we draw n i.i.d. training examples
which are pairs of feature vector and label (Xi, Yi)’s, and then define expected risk as given
in Lecture 1.

Definition 1 (Expected Risk) For any given classifier h, the expected risk of h is defined
as

R(h) = P(h(X) 6= Y ) = E[1{h(X) 6= Y }].

In practice, since we do not know the joint distribution of X and Y , it is difficult to
evaluate the expected risk. Therefore, in real applications, we use samples of X and Y to
approximate the expected risk, which gives the empirical risk based on the i.i.d. training
data.

Definition 2 (Empirical Risk) For any given classifier h, its empirical risk is defined as

R̂n(h) =
1

n

n∑
i=1

1{h(Xi) 6= Yi}.
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In many occasions, a machine learning problem is translated into the empirical risk
minimization problem, stated as

ĥn = arg min
h∈H

R̂n(h),

where H is a hypothesis class. In optimization, since it is often impossible to search for the
optimal h in the entire function space, we restrain H to be some specific function classes,
such as linear functions, neural networks, etc.

Definition 3 (Bayes Classifier) We define Bayes classifier as

h∗ = arg minR(h).

Note that Bayes classifier minimizes the probability of misclassification, and there is no
constraint in the definition of Bayes Classifier.

Definition 4 (Bayes Risk) We call the expected risk with respect to Bayes classifier as
Bayes Risk, denoted by R(h∗).

Definition 5 (Regression Function) We define the regression function of Y on X as

η(X) = P(Y = 1|X) = E[Y |X].

It is easy to show that the Bayes classifier for binary classification has the following form

h∗(X) =

{
1, if η > 1

2

0, if η ≤ 1
2

Definition 6 (Excess Risk) The excess risk of a classifier h is defined as

E(h) := R(h)−R(h∗).

Note that we are interested in the excess risk of the empirical risk minimizer, i.e., E(ĥn) =
R(ĥn)−R(h∗), which is the difference between the expected risk of empirical risk minimizer
and the expected risk of Bayes classifier.

Excess risk E(ĥn) can be decomposed as follows

R(ĥn)−R(h∗) = R(ĥn)−min
h∈H

R(h)︸ ︷︷ ︸
I1

+ min
h∈H

R(h)−R(h∗)︸ ︷︷ ︸
I2

,

where term I1 is called estimation error and term I2 is approximation error. They were
discussed in Lecture 1 as well.

Note that the approximation error only depends on the choice of H and risk function but
not sample size. However, the estimation error shrinks as sample size increases: as training
sample size n→∞, the empirical risk minimizer will converge to the expected risk minimizer
in H. For the rest of this class, we will concentrate on bounding the estimation error, and
the approximation error will be discussed in the section of kernel method and deep learning.
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Now we could focus on how to bound the estimation error. We decompose it into three
terms:

R(ĥn)−R(h̃) = R(ĥn)− R̂n(ĥn)︸ ︷︷ ︸
(i)

+ R̂n(ĥn)− R̂n(h̃)︸ ︷︷ ︸
(ii)

+ R̂n(h̃)−R(h̃)︸ ︷︷ ︸
(iii)

,

where h̃ = arg min
h∈H

R(h) is referred to as oracle classifier, which is the minimizer of expected

risk in H. The purpose of adding/substracting and grouping here is to bound each of the
three terms individually, and then sum up to get an upper bound for the estimation error.

The easiest term to bound is (ii). Observe that R̂n(ĥn)− R̂n(h̃) ≤ 0 given the optimality
ĥn = arg minh∈H R̂n(h).

For term (iii), we have

R̂n(h̃)−R(h̃) =
1

n

n∑
i=1

1{h̃(Xi) 6= Yi} − E[1{h̃(X) 6= Y }].

Note that 1{h̃(Xi) 6= Yi}’s are independent random variables, therefore the sample mean
R̂n(h̃) asymptotically converge to the population mean R(h̃). However, this asymptotic
argument is not powerful enough in practice, as machine learning researchers usually concern
about how large the sample size is needed in order to precisely construct a model to certain
accuracy, which is usually called the sample complexity of a machine learning algorithm.
Here, with solely a finite sample, imposing a bound on term (iii) is done by using the
technique of concentration inequality, which will be introduced later.

Next, on term (i),

R(ĥn)− R̂n(ĥn) = E[1{ĥn(X 6= Y }]− 1

n

n∑
i=1

1{ĥn(Xi) 6= Yi}.

Observe that in term (iii), we have the oracle minimizer h̃ which is independent of the

training examples. However, note that the second term in (i)
n∑

i=1

1{ĥn(Xi) 6= Yi}/n is not a

summation of independent random variables because ĥn depends on the training examples
(Xi, Yi)’s. As a result, to bound term (i), it requires a technique from the empirical process
theory [1].

In detail, we use a uniform convergence argument to get rid of the dependency in
n∑

i=1

1{ĥn(Xi) 6= Yi}/n. The idea is to use the supremum in the hypothesis class H,

|R(ĥn)− R̂n(ĥn)| ≤ sup
h∈H
|R(h)− R̂n(h)|.

It is worth noting that, in many machine learning papers, a term mentioned often is
Generalization Error Bound. Here we define it as following.
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Definition 7 (Generalization Error Bound) The generalization error bound of an em-
pirical risk minimizer ĥn is

R(ĥn) ≤ R̂n(ĥn) + ∆(n,H, δ)

where ∆(n,H, δ) depends on the sample size n, hypothesis class H and the confidence level
δ. Note that the R(ĥn) is called testing error of the empirical risk minimizer, and the R̂n(ĥn)
is its training error. The idea of using generalization error bound is that we could then
bound the testing error by the training error plus an additional term. The generalization
error bound will be a byproduct when deriving the estimation error in detail later in this
semester.

Now we move on to concentration inequalities which is the second major topic of this
class. First let’s recall some probability inequalities:

Theorem 1 (Markov Inequality) Let X be a nonnegative random variable with finite
E(X), for any t > 0, we have

P(X > t) ≤ E(X)

t
.

Lemma 1 (Hoeffding’s Lemma) Suppose that a random variable X is bounded between
a and b, then the moment generating function satisfies

E{exp[t(X − E(X))]} ≤ exp

(
t2(b− a)2

8

)
.

Next, we are going to present some concentration inequalities. The first one is Hoeffding’s
inequality, which can be derived from Hoeffding’s Lemma.

Theorem 2 (Hoeffding’s Inequality) Let Z1....Zn be independent (but not necessarily
identical) random variables with ai ≤ Zi ≤ bi, then for any ε > 0,

P
(∣∣∣∣ 1n

n∑
i=1

Zi − E
[ 1

n

n∑
i=1

Zi

]
> ε

∣∣∣∣) ≤ 2 exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
,

P
(

1

n

n∑
i=1

Zi − E
[ 1

n

n∑
i=1

Zi

]
> ε

)
≤ exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
,

P
(

1

n

n∑
i=1

Zi − E
[ 1

n

n∑
i=1

Zi

]
< −ε

)
≤ exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
.
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