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Last time we introduced Bounded Difference Inequality to bound the supremum of
the difference between the empirical risk and expected risk, i.e.,

sup
h∈H

∣∣R̂n(h)−R(h)
∣∣ ≤ max

{
sup
h∈H

R̂n(h)−R(h), sup
h∈H

R(h)− R̂n(h)

}
.

With the fact that

P
(

sup
h∈H

∣∣R̂n(h)−R(h)
∣∣ ≥ t

)
≤ P

(
sup
h∈H

R̂n(h)−R(h)︸ ︷︷ ︸
Gn(H)

≥ t

)
+ P

(
sup
h∈H

R(h)− R̂n(h)︸ ︷︷ ︸
G′

n(H)

≥ t

)
,

we can bound the term suph∈H
∣∣R̂n(h)−R(h)

∣∣ by bounding Gn(H) and G′
n(H) respectively.

Since Gn(H) and G′
n(H) can basically be bounded by the same term, we only show how to

bound Gn(H).
We restate the Bounded Difference Inequality here.

Theorem 1 (Bounded Difference Inequality) Let f be a function satisfying

|f (z1, z2, ..., zi, ..., zn)− f (z1, z2, ..., z
′
i, ..., zn)| ≤ ci

for all i = 1, 2, ..., n and for all z1, z2, ..., zi, z
′
i, ..., zn. Let Z1, Z2, ..., Zn be independent random

variables. We have that

P (f (Z1, Z2, ..., Zn)− E[f(Z1, Z2, ..., Zn)]) ≥ t) ≤ 2 exp

(
−2t2∑n
i=1 c

2
i

)
.

Roadmap to bound Gn(H)

Step 1: Prove Gn(H) ≤ EGn(H) +
√

log(1/δ)
2n

with probability at least 1− δ.
Step 2: Bound EGn(H) by symmetrization.

Step 1: Bounding Gn(H)

Theorem 2 Let Gn(H) = suph∈H R̂n(h)−R(h), we have the following holds with probability
at least 1− δ

Gn(H)− E
[
Gn(H)

]
≤
√

log(1/δ)

2n
.
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Proof: Let Zi = (Xi, Yi)
i.i.d.∼ PX,Y and f (Z1, Z2, ..., Zn) = Gn(H). First we verify that

the function f(Z1, . . . , Zn) satisfies the conditions in Theorem 1. For any i, the following
equality holds:

|f (Z1, Z2, ..., Zi, ..., Zn)− f (Z1, Z2, ..., Z
′
i, ..., Zn)|

=

∣∣∣∣sup
h∈H

(
R̂n(h)−R(h)

)
− sup

h∈H

(
R̂′
n(h)−R(h)

)∣∣∣∣ , (1)

where R̂′
n(h) is the empirical risk when the observation Zi is replaced by Z ′

i, i.e.,

R̂′
n(h) =

1

n

[
n∑
j 6=i

1 {h(Xj) 6= Yj}+ 1 {h(X ′
i) 6= Y ′

i }

]
.

Thus we can obtain∣∣∣∣sup
h∈H

(
R̂n(h)−R(h)

)
− sup

h∈H

(
R̂′
n(h)−R(h)

)∣∣∣∣ ≤ sup
h∈H

∣∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣∣. (2)

Using the definition of the empirical risk, the R.H.S. of (2) can be rewritten as:

sup
h∈H

∣∣∣R̂n(h)− R̂′
n(h)

∣∣∣
= sup

h∈H

∣∣∣∣∣ 1n
n∑
i=1

1 {h(Xi) 6= Yi} −
1

n

[
n∑
j 6=i

1 {h(Xj) 6= Yj}+ 1 {h(X ′
i) 6= Y ′

i }

]∣∣∣∣∣
= sup

h∈H

∣∣∣∣ 1n1 {h(Xi) 6= Yi} −
1

n
1 {h(X ′

i) 6= Y ′
i }
∣∣∣∣ =

1

n
, ci,

where in the third equality we use the fact that indicator functions are either 0 or 1, so the
maximal difference between any two indicator functions is 1. Hence we proved that Gn(H)
satisfies the conditions in 1 with ci = 1/n. Applying Theorem 1 gives

P(Gn(H)− EGn(H) ≥ t) ≤ exp

(
−2t2∑n
i=1 c

2
i

)
= exp

(
−2t2∑n

i=1 (1/n)2

)
= exp

(
−2nt2

)
.

Let δ = exp (−2nt2). Solving for t gives

t =

√
log(1/δ)

2n
.

We then have with probability at least 1− δ

Gn(H)− EGn(H) ≤
√

log(1/δ)

2n
,
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equivalently

Gn(H) ≤ EGn(H) +

√
log(1/δ)

2n
.

This completes the proof.

Step 2: Bounding EGn(H)

Before presenting the result we first lay out some definitions and lemmas that are essential
in the proof of the main theorem.

Definition 1 (Symmetric Random Variable) Z is a symmetric random variable if
P(Z ≥ t) = P(−Z ≥ t) = P(−Z ≤ −t). In other words, multiplying by −1 doesn’t change
the distribution.

The following lemma shows how to construct a symmetric random variable from i.i.d.
random variables.

Lemma 1 If X, Y are two independent and identically distributed random variables, then
Z = X − Y is a symmetric random variable.

The following lemma is essential to bound EGn(H), which is called the symmetrization
technique.

Lemma 2 If Z1, Z2, . . . , Zn are symmetric random variables, and σ1, σ2, . . . , σn are
Rademacher random variables, i.e.,

σi =

{
1, with probability 1/2,
−1, with probability 1/2.

In addition, suppose σ1, . . . , σn are independent of Z1 . . . , Zn, then
∑n

i=1 Zi has the same
distribution as

∑n
i=1 σiZi.

Based on the definitions and lemmas listed above, the bound of EGn(H) can be repre-
sented as the following theorem.

Theorem 3 We have

EGn(H) ≤ 2EX,YEσ sup
h∈H

[
1

n

n∑
i=1

σi1 {h(Xi) 6= Yi}
]
.

Proof: We prove using symmetrization technique with a “ghost” sample (X̃i, Ỹi)
n
i=1

i.i.d∼ PX,Y
that is independent of the training sample

First, we lay out several claims, which are useful to bound EGn(H).
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Claim 1 Given the “ghost” sample (X̃i, Ỹi)
n
i=1, we have the following hold

R(h) = EX̃,Ỹ

[
1

n

n∑
i=1

1
{
h(X̃i) 6= Ỹi

}]
.

By the definition of Gn(H), we have

EGn(H) = EX,Y
[
sup
h∈H

(
R̂n(h)−R(h)

)]
= EX,Y

[
sup
h∈H

(
R̂n(h)− EX̃,Ỹ

[
R̃n(h)

])]
, (3)

where

R̃n(h) =
1

n

n∑
i=1

1
{
h(X̃i) 6= Ỹi

}
and (X̃i, Ỹi),

i.i.d∼ PX,Y .

In addition we have (X̃i, Ỹi)
n
i=1 are independent from (Xi, Yi)

n
i=1, where (X̃i, Ỹi)

n
i=1 is called

the “ghost” sample.
According to (3), we have

EX,Y
[
sup
h∈H

(
R̂n(h)− EX̃,Ỹ

[
R̃n(h)

])]
= EX,Y

[
sup
h∈H

EX̃,Ỹ

(
R̂n(h)− R̃n(h)

)]
≤ EX,Y

[
EX̃,Ỹ sup

h∈H

(
R̂n(h)− R̃n(h)

)]
= EX,YEX̃,Ỹ

[
sup
h∈H

(
1

n

n∑
i=1

1
{
h(Xi) 6= Yi

}
− 1

n

n∑
i=1

1
{
h(X̃i) 6= Ỹi

})]
,

where the the second inequality comes from Jensen’s Inequality and the fact that the supre-
mum function is convex. This implies that

EGn(H) ≤ EX,YEX̃,Ỹ

[
sup
h∈H

(
1

n

n∑
i=1

1
{
h(Xi) 6= Yi

}
− 1

n

n∑
i=1

1
{
h(X̃i) 6= Ỹi

})]
= EX,YEX̃,Ỹ

[
sup
h∈H

(
1

n

n∑
i=1

[
1
{
h(Xi) 6= Yi

}
− 1

{
h(X̃i) 6= Ỹi

}])]
. (4)

Since 1
{
h(Xi) 6= Yi

}
, and 1

{
h(X̃i) 6= Ỹi

}
are two independent and identically dis-

tributed random variables, according to Lemma 1, we have 1 {h(Xi) 6= Yi}−1
{
h(X̃i) 6= Ỹi

}
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is symmetric. According to Lemma 2, (4) can be further upper bounded by

EGn(H) ≤ EX,YEX̃,Ỹ

[
sup
h∈H

(
1

n

n∑
i=1

[
1
{
h(Xi) 6= Yi

}
− 1

{
h(X̃i) 6= Ỹi

}])]
.

= EX,YEX̃,ỸEσ
[
sup
h∈H

(
1

n

n∑
i=1

σi

[
1
{
h(Xi) 6= Yi

}
− 1

{
h(X̃i) 6= Ỹi

}])]
≤ EX,YEX̃,ỸEσ

[
sup
h∈H

1

n

n∑
i=1

σi1
{
h(Xi) 6= Yi

}
+ sup

h∈H

1

n

n∑
i=1

(−σi)1
{
h(X̃i) 6= Ỹi

}]
,

where the last line comes from the inequality that supx
(
f(x)+g(x)

)
≤ supx f(x)+supx g(x).

By the linearity of expectaion we have

EGn(H) ≤ EX,YEX̃,ỸEσ
[

sup
h∈H

1

n

n∑
i=1

σi1
{
h(Xi) 6= Yi

}]
+ EX,YEX̃,ỸEσ

[
sup
h∈H

1

n

n∑
i=1

(−σi)1
{
h(X̃i) 6= Ỹi

}]
.

Since σi’s are symmetric random variables, −σi has the same distribution with σi. Then
changing −σi into σi in the second term does not change the value of the whole expression.
Hence we have Furthermore, we can get

EGn(H) ≤ EX,YEX̃,ỸEσ
[

sup
h∈H

1

n

n∑
i=1

σi1
{
h(Xi) 6= Yi

}]
+ EX,YEX̃,ỸEσ

[
sup
h∈H

1

n

n∑
i=1

(−σi)1
{
h(X̃i) 6= Ỹi

}]
= Eσ

[
EX,Y sup

h∈H

1

n

n∑
i=1

σi1
{
h(Xi) 6= Yi

}
+ EX̃,Ỹ sup

h∈H

1

n

n∑
i=1

σi1
{
h(X̃i) 6= Ỹi

}]
= 2EX,YEσ sup

h∈H

1

n

n∑
i=1

σi1 {h(Xi) 6= Yi} . (5)

This completes the proof.

Next, we introduce the concept of Rademacher Complexity, which measures the complex-
ity of a class of functions and has a wide range of applications in machine learning theory.
Note that the following definition is tailored to 0-1 loss function.

Definition 2 (Rademacher Complexity) For a given function class F , its Rademacher
complexity is defined as

Rn(F) = EZEσ
[
sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
,

where σi’s are i.i.d. Rademacher random variables, and Zi’s are i.i.d. random variables.
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Based on the definition of Rademacher Complexity, we can also define the Empirical
Rademacher Complexity.

Definition 3 (Empirical Rademacher Complexity) For a given hypothesis class F and
a set of observations Zi’s, the empirical Rademacher complexity is

R̂n(F) = Eσ
[

sup
f∈F

1

n

n∑
i=1

σif(Zi)

∣∣∣∣Z1:n

]
.

where σi’s are i.i.d. Rademacher random variables, and Z1:n is a shorthand notation for
Z1, Z2, ..., Zn.
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