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Last time we introduced Bounded Difference Inequality to bound the supremum of
the difference between the empirical risk and expected risk, i.e.,

sup
heH

R,(h) — R(h)| < max { 21617;{) R, (h) — R(h), :1612 R(h) — }?in(h)}

With the fact that

P(igg R,(h) — R(h)| > t) < P(igg Ry (h) — R(h) > t) + P(zgg R(h) — R, (h) > t),

J/

G;(rH) Gé?(H)

we can bound the term supj,cy ‘Rn(h) — R(h)| by bounding G,,(H) and G/,(H) respectively.
Since G, (H) and G/,(H) can basically be bounded by the same term, we only show how to
bound G,,(H).

We restate the Bounded Difference Inequality here.

Theorem 1 (Bounded Difference Inequality) Let f be a function satisfying

|f (21,29, ooy Ziy ooy 20) — (21, 295 0oy 20 s 20) | S

foralli=1,2,....,n and for all zy, 29, ..., 2, 2y ..., 2n. Let Zy, Zs, ..., Zy, be independent random
variables. We have that

—2t*
P(f(Z1, 22, ... Zy) — Blf(Z1, 22, ..., Z)]) 2 t) < 2exp (W) :
i=16i
Roadmap to bound G, (H)

Step 1: Prove G,(H) < EG,(H) + % with probability at least 1 — 4.
Step 2: Bound EG,,(H) by symmetrization.

Step 1: Bounding G,,(H)

Theorem 2 Let G,,(H) = sup,cy Rn(h) — R(h), we have the following holds with probability
at least 1 — 0

log(1/9)
Go(H) —E[G.(H)] < —



Proof: Let Z; = (X;,Y)) A Pxy and f(Zy,Zs,...,Z,) = G,(H). First we verify that

the function f(Z,...,Z,) satisfies the conditions in Theorem 1. For any i, the following
equality holds:

\f(Z1, Zay.c; Ziy ooy Zn) — [ (21, Zay ooy 2L oy Zn)|

~

sup (R, (1) — R(1) = sup (R (1) — R() . )
heH heH

where R/ (h) is the empirical risk when the observation Z; is replaced by Z/, i.e.,

[Z]l{h ) Vi) + 1 {h(X]) £ Y/}

JFi

Thus we can obtain

sup (]-:in(h) — R(h)) — sup (R;I(h) — R(h))‘ < sup
heM heM heM

ORACH )

Using the definition of the empirical risk, the R.H.S. of (2) can be rewritten as:

sup Fea(h) = B, (1)

= sup Zn{h %Y}——[Zn{h ) # Y} + 1 {h(X]) # !} ‘
en | JF#i

= sup LX) £ Y- A £V = 2

where in the third equality we use the fact that indicator functions are either 0 or 1, so the
maximal difference between any two indicator functions is 1. Hence we proved that G,,(H)
satisfies the conditions in 1 with ¢; = 1/n. Applying Theorem 1 gives

P«l&%)—EG%GﬁEEQEHKP(§§%%§)

= exp (—2nt2) .
Let § = exp (—2nt?). Solving for ¢ gives
. [iou(1/5)
N 2n
We then have with probability at least 1 — ¢
log(1/9)

Gn(H) —EG,(H) <

on



equivalently

This completes the proof. ®

Step 2: Bounding EG,,(H)

Before presenting the result we first lay out some definitions and lemmas that are essential
in the proof of the main theorem.

Definition 1 (Symmetric Random Variable) Z is a symmetric random variable if
P(Z>t)=P(—Z >t) =P(—Z < —t). In other words, multiplying by —1 doesn’t change
the distribution.

The following lemma shows how to construct a symmetric random variable from i.i.d.
random variables.

Lemma 1 If X, Y are two independent and identically distributed random variables, then
Z =X =Y is a symmetric random variable.

The following lemma is essential to bound EG,, (), which is called the symmetrization
technique.

Lemma 2 If Zy,Z,,...,7Z, are symmetric random wvariables, and o1,09,...,0, are
Rademacher random variables, i.e.,

o 1, with probability 1/2,
Y =1, with probability 1/2.

In addition, suppose o4, ...,0, are independent of Zy ..., Z,, then > . | Z; has the same
distribution as Y ., 0;Z;.

Based on the definitions and lemmas listed above, the bound of EG,,(#) can be repre-
sented as the following theorem.

Theorem 3 We have

EG,.(H) < 2ExyE, sup {% i%’ﬂ {h(X;) #Y;} .

her [N
Proof: We prove using symmetrization technique with a “ghost” sample (X;, Y;)™, T Pxy
that is independent of the training sample
First, we lay out several claims, which are useful to bound EG,,(H).



Claim 1 Given the “ghost” sample ()?“ 171-)?:1, we have the following hold

s> {nE) £}

=1

R(h) =Exs

By the definition of G, (#), we have

EG,(H) =Exy [sup (Ru(h) — R(M)]

heH

~ By [sup ()~ Ex s [Ra0)] )| ®)

heH
where

1.4.d

R =231 {0R) £ 5} (£5) % Py

S|

In addition we have ()Z'Z,i)?:l are independent from (X;,Y;)" ,, where (X, 371')?:1 is called
the “ghost” sample.
According to (3), we have

Exy {S“P (R”(h) ~ By [R”W]ﬂ

heH

—Eyy {sup E;y (Rn(h) —~ Rn(h))]

heH

< B [Ex poup (R,(0) - Rl

he
=ExyEzy {2‘615 (%gﬂ{h(&) 7 Y%} - %gﬂ {h(f(i) # 2})}7

where the the second inequality comes from Jensen’s Inequality and the fact that the supre-
mum function is convex. This implies that

£ () < Bxae [p (1310 #3) - 151 {u) £ 71)

—ExyEzy [sup (12 [1{nx) # ) -1 {n(X) # ii-}m W

n
heH \N“

Since ]l{h(Xi) # Y;}, and 1 {h()?z) # }71} are two independent and identically dis-
tributed random variables, according to Lemma 1, we have 1 {h(X;) # Y;} —1 {h()?z) # 371}



is symmetric. According to Lemma 2, (4) can be further upper bounded by

EG.(H) <ExyEgy [Sup <1i []l{h(Xi) "] YZ} 1 {h()?i) v ?}D]

heH

EXYIEXYEU[EEE (i y 0%[ { #Y} { ()?i)#ﬁ}])]

=1

<IEXYIEXYIEU[sup ZU’{ )#Y}—l—sup Z —0;) { )%Y}]

heH T heH T

where the last line comes from the inequality that sup, (f(z)+g(z)) < sup, f(z)-+sup, g(z).
By the linearity of expectaion we have

n

EG,(H) < EXYEX vEs {suplzdi]l{h(Xz‘) # Yz}}

n
heH 1

+ExyEs Y]EU [SUP ! i(_%)ﬂ{h(gﬁ #* 2}1 .

n
hen 14—

Since o;’s are symmetric random variables, —o; has the same distribution with ¢;. Then
changing —o; into ¢; in the second term does not change the value of the whole expression.
Hence we have Furthermore, we can get

EG, (H) <EXYEXYEU[sup Zaz {n(x #Y}}

heH T

+ExyEs YE" {sup 1 i<_ai)ﬂ {h()?z) 7 i}}

hen 15—
=E, |:Exy}sllel71-9[ Zal { )%Y}—Hﬁkgsup Zaz { Xi)#iﬁ}}
=2ExyE, fsllelgnZa,]l {h(X;) #Yi}. (5)

This completes the proof. B

Next, we introduce the concept of Rademacher Complexity, which measures the complex-
ity of a class of functions and has a wide range of applications in machine learning theory.
Note that the following definition is tailored to 0-1 loss function.

Definition 2 (Rademacher Complexity) For a given function class F, its Rademacher
complexity is defined as

Rn(F) = EzE, [igg %; Uif(Zi):| :

where 0;’s are i.i.d. Rademacher random variables, and Z;’s are i.1.d. random variables.
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Based on the definition of Rademacher Complexity, we can also define the Empirical
Rademacher Complexity.

Definition 3 (Empirical Rademacher Complexity) For a given hypothesis class F and
a set of observations Z;’s, the empirical Rademacher complexity is

Ro(F) =E, [sup = Xn: 0, f(Z;) ‘Zm} :

n
fer i

where o;’s are i.1.d. Rademacher random wvariables, and Zy., 1s a shorthand notation for
21, Loy ey L.



