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Last time we introduced the definitions of Rademacher Complexity and Empirical
Rademacher Complexity, which are restated here.

Definition 1 (Rademacher Complexity) For a given function class F , its Rademacher
complexity is defined as

Rn(F) = EZEσ
[

sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
,

where σi’s are i.i.d. Rademacher random variables, and Zi’s are i.i.d. random variables.

Definition 2 (Empirical Rademacher Complexity) For a given function class F and
a set of observations Z1, Z2, . . . , Zn, the Empirical Rademacher Complexity is defined as

R̂n(F) = Eσ
[

sup
f∈F

1

n

n∑
i=1

σif(Zi)

∣∣∣∣Z1:n

]
,

where σi’s are i.i.d. Rademacher random variables, and Z1:n is a shorthand notation for
Z1, Z2, ..., Zn.

Recall that we want to bound supremum of the difference between the empirial risk and
expected risk,

sup
h∈H

∣∣R̂n(h)−R(h)
∣∣ ≤ max

{
sup
h∈H

R̂n(h)−R(h), sup
h∈H

R(h)− R̂n(h)

}
.

With the fact that

P
(

sup
h∈H

∣∣R̂n(h)−R(h)
∣∣ ≥ t

)
≤ P

(
sup
h∈H

R̂n(h)−R(h)︸ ︷︷ ︸
Gn(H)

≥ t

)
+ P

(
sup
h∈H

R(h)− R̂n(h)︸ ︷︷ ︸
G′

n(H)

≥ t

)
,

we can bound the term suph∈H
∣∣R̂n(h)−R(h)

∣∣ by bounding Gn(H) and G′n(H) respectively.
Since Gn(H) and G′n(H) are similiar, let’s consider Gn(H) first. From the last lecture, we
introduced the roadmap to bound Gn(H).
Step1: Bound Gn(H) by Bounded Difference Inequality,i.e.

Gn(H) ≤ E[Gn(H)] +
√

log(1/σ)/2n.

Step2: Bound E[Gn(H)]

E[Gn(H)] ≤ 2EX,YEσ
[

sup
h∈H

1/n
n∑
i=1

σi1{h(Xi) 6= Yi}
]

= 2Rn(` ◦ H),

where ` is the 0-1 loss function. We can see that the above bound applies to G′n(H) as well.
Before bounding the Rademacher Complexity, we first introduce some properties of

Rademacher Complexity.
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Property 1 If there is only one function in the function class, namely F = {f}, then given
Z1:n, Rn(F) = 0.

Proof:

Rn(F) = EZEσ
[

sup
f∈F

1

n

n∑
i=1

σif(Zi)

∣∣∣∣Z1:n

]
= EZEσ

[
1

n

n∑
i=1

σif(Zi)

∣∣∣∣Z1:n

]
= EZ

[
1

n

n∑
i=1

Eσ[σif(Zi)]

∣∣∣∣Z1:n

]
= 0.

The last equation holds due to the symmetry of Rademacher variables.

Property 2 (Singleton) If there is only one function in the funcion class F , then the
Rademacher complexity of F is 0.

Property 3 (Boundedness) The Rademacher Complexity has the following trivial bound:

Rn(F) ≤ sup
f∈F

sup
z∈Z

f(z).

Property 4 (Monotonicity) If F1 ⊆ F2, then

Rn(F1) ≤ Rn(F2).

Remark 1 This must be true because if plugging in F1 to the definition of Rademacher
complexity, the supremum is over F1. If considering the Rademacher Complexity of F2 by
changing F1 to F2, the supremum will increase because it takes supremum over a larger
domain.

Property 5 (Scaling) For any function class F and a real number c, define function class
c · F := {c · f : f ∈ F}. Then we have

Rn(c · F) = |c|Rn(F).

Property 6 (Lipschitz Composition) If φ is a Lipschitz continuous function over R with
parameter L, i.e.,

∀ t, s ∈ dom(φ), |φ(t)− φ(s)| ≤ L · |t− s|,
then

Rn(φ ◦ F) ≤ LRn(F).

It can be seen that the Rademacher Complexity is the expectation of the Empirical
Rademacher Complexity. According to the concentration inequality we introduced before,
we can show that the Empirical Rademacher complexity concentrate around the Rademacher
Complexity. If we can bound some term by Rademacher Complexity, then we can bound it
by Empirical Rademacher Complexity plus some additional deviation term. That is why we
introduce the Empirical Rademacher Complexity. And also for many machine learning prob-
lems, the Empirical Rademacher Complexity is very easy to calculate. Therefore we intend
to calculate the Empirical Rademacher Complexity instead of the Rademacher Complexity
in quite a few application scenarios.

The next lemma gives a bound of the Empirical Rademacher Complexity R̂n(F) in the
case that F is finite.
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Lemma 1 (Massart’s Finite Class Lemma) Let F be a finite set of functions. More-
over, suppose that all functions in F are bounded, i.e., for any f ∈ F , |f(Zi)| ≤M for any
observation Zi. Then its Empirical Rademacher Complexity is bounded by

R̂n(F) ≤
√

2M2log|F|
n

.

Proof: Recall that

R̂n(F) = Eσ
[

sup
f∈F

1

n

n∑
i=1

σif(Zi)

∣∣∣∣Z1:n

]
Define Wf = 1/n

∑n
i=1 σif(Zi) then we have

R̂n(F) = Eσ
[

sup
f∈F

Wf

∣∣∣∣Z1:n

]
.

For any t ≥ 0, we have

exp(tR̂n(F)) = exp

(
tEσ
[

sup
f∈F

Wf

∣∣∣∣Z1:n

])
≤ Eσ

[
exp

(
t sup
f∈F

Wf

)∣∣∣∣Z1:n

]
≤ Eσ

[∑
f∈F

exp(tWf )

∣∣∣∣Z1:n

]
,

where first inequality holds due to Jensen’s inequality and the convexity of exponential
function, and the last inequality follows the fact that maximum is always smaller than the
summation provided that each exp(tWf ) is positive. With the property of expectation, we
obtain

exp(tR̂n(F)) ≤
∑
f∈F

Eσ
[

exp(tWf )

∣∣∣∣Z1:n

]
=
∑
f∈F

Eσ
[

exp

(
t
1

n

n∑
i=1

σif(Zi)

)∣∣∣∣Z1:n

]

=
∑
f∈F

Eσ
[ n∏
i=1

exp

(
t
1

n
σif(Zi)

)∣∣∣∣Z1:n

]

=
∑
f∈F

n∏
i=1

Eσ
[

exp

(
t
1

n
σif(Zi)

)∣∣∣∣Z1:n

]
, (1)

where first two equalities follow from the definition of Wf and the property of exponential
function. The last equality holds since σi’s are independent and identically distributed.
According to the Hoeffding’s Lemma and the fact that Eσ[1/nσif(Zi)] = 0,−M/n ≤
|1/nσif(Zi)| ≤M/n, we achieve

Eσ
[

exp

(
t
1

n
σif(Zi)

)∣∣∣∣Z1:n

]
≤ exp

(
t2(2M/n)2

8

)
= exp

(
t2M2

2n2

)
. (2)

3



Submitting (2) into (1), we have

exp
(
tR̂n(F)

)
≤
∑
f∈F

n∏
i=1

exp

(
t2M2

2n2

)
=
∑
f∈F

exp

(
t2M2

2n

)
= |F| exp

(
t2M2

2n

)
.

Taking logarithm and dividing by t on both sides, we have

R̃n(F) ≤ 1

t
log

[
|F| exp

(
t2M2

2n

)]
=

1

t

[
log|F|+ t2M2

2n

]
=

log|F|
t

+
tM2

2n
. (3)

Note that (3) holds for any t > 0. Therefore we can minimize the right hand side of (3) for
t to get the tightest upper bound. To minimize the right hand side, we solve the following
equation:

log|F|
t

=
tM2

2n
.

The solution is t∗ =
√

(2nlog|F|)/(M2). Submitting this solution into (3), we obtain

R̂n(F) ≤
√

2M2log|F|
n

.
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