CS 131 -Spring 2017 -Lab 1

Question 1 How would you write each of these propositions using combinations of e, meaning "Sue is an English major," and j, meaning "Sue is a junior" with the operations \land, \lor, \neg , and \rightarrow ?

- (a) Sue is a junior English major.
- (b) Sue is either an English major or she is a junior.
- (c) Sue is a junior, but she is not an English major.
- (d) Sue is neither an English major nor a junior.
- (e) Sue is exactly one of the following: an English major or a junior.
- (f) Sue is a junior only if Sue is not an English major.

Solution

- (a) $j \wedge e$
- (b) $j \lor e$
- (c) $j \wedge \neg e$
- (d) $\neg j \land \neg e$

(e)
$$(\neg e \land j) \lor (e \land \neg j)$$

(f) $j \to \neg e$

Question 2 Determine whether each of these conditional statements is true or false.

- (a) If 1 + 1 = 2, then 2 + 2 = 5.
- (b) If 1 + 1 = 3, then 2 + 2 = 4.
- (c) If 1 + 1 = 3, then 2 + 2 = 5.
- (d) If monkeys can fly, then 1 + 1 = 3.

Solution

- (a) This is false since 1+1 does equal 2 but 2+2 does not equal 5.
- (b) This is true since 1 + 1 does not equal 3 so the implication is vacuously true.
- (c) This is true for the same reason as (b).
- (d) This is true since monkeys cannot fly.

Question 3 Use a truth table to establish the following logical equivalences.

(a)
$$\neg(\neg p \lor q) \equiv p \land \neg q$$

(b) $p \land (p \lor q) \equiv p$

(c)
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Solution

(a)							
	p	q	$\neg p$	$\neg q$	$\neg p \lor q$	$\neg(\neg p \lor q)$	$p \wedge \neg q$
	T	T	F	F	T	F	F
	T	F	F	T	F	T	T
	F	T	T	F	T	F	F
	F	F	T	T	T	F	F

 $\neg(\neg p \lor q)$ and $p \land \neg q$ are equivalent since columns 6 and 7 are the same.

p	q	$p \vee q$	$\ p \wedge (p \vee q)$
Т	Т	T	T
T	F	T	T
F	T	T	F
F	F	F	F

 $p \wedge (p \vee q)$ and p are equivalent since columns 4 and 1 are the same.

(c)								
	p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
	T	T	T	Т	T	Т	Т	T
	T	T	F	F	T	T	T	T
	T	F	T	F	T	T	Т	T
	T	F	F	F	T	T	T	T
	F	T	T	T	T	T	T	T
	F	T	F	F	F	T	F	F
	F	F	T	F	F	F	T	F
	F	F	F	F	F	F	F	F

 $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are equivalent since columns 5 and 8 are the same.

Question 4 You meet two inhabitants of Smullylan's Island. A says, "Exactly one of us is lying," and B says, "At least one of us is telling the truth." Who (if anyone) is telling the truth?

Solution First we translate the statements into propositional logic. Let p be the statement "A is telling the truth" and q be the statement "B is telling the truth." "Exactly one of us is lying" is $(p \land \neg q) \lor (\neg p \land q)$ and "at least one of us is telling the truth" is $p \lor q$. Now we can consider all of the possibilities for each person's status as truth teller or liar, which is all of the possibilities for statements p and q.

					"Exactly one of us is lying"	"At least one of us is telling the truth"
q	$\neg p$	$\neg q$	$p \wedge \neg q$	$\neg p \wedge q$	$(p \wedge \neg q) \vee (\neg p \wedge q)$	$p \lor q$
Т	F	F	F	F	F	T
F	F	T	T	F	T	T
T	Т	F	F	Т	T	T
F	Т	T	F	F	F	F
	$\begin{array}{c} q \\ T \\ F \\ T \\ F \\ F \end{array}$	$\begin{array}{c c} q & \neg p \\ \hline T & F \\ F & F \\ T & T \\ F & T \\ F & T \end{array}$	$\begin{array}{c c} q & \neg p & \neg q \\ \hline T & F & F \\ F & F & T \\ T & T & F \\ F & T & T \end{array}$	$\begin{array}{c cccc} q & \neg p & \neg q & p \land \neg q \\ \hline T & F & F & F \\ F & F & T & T \\ T & T & F & F \\ F & T & T & F \\ F & T & T & F \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Now consider the meaning of each row.

Row 1: Both A and B are telling the truth, but what A said is false. This cannot be the case. Row 2: A is telling the truth and B is lying, but what B said is true. This cannot be the case. Row 3: A is lying and B is telling the truth, but what A said is true. This cannot be the case. Row 4: A and B are both lying, and both of their statements are false. This can be the case. The only consistent option is in row 4, that both A and B are lying.

Question 5 State the converse, contrapositive, and inverse of each of these conditional statements.

- (a) If it snows today, I will ski tomorrow.
- (b) I come to class whenever there is going to be a quiz.
- (c) A positive integer is a prime only if it has no divisors other than 1 and itself

Solution

- (a) Converse: If I ski tomorrow, it will snow today. Contrapositive: If I don't ski tomorrow, it won't snow today. Inverse: If it doesn't snow today, I won't ski tomorrow.
- (b) Converse: If I come to class, there is going to be a quiz. Contrapositive: If I don't come to class, there isn't going to be a quiz. Inverse: If there isn't going to be a quiz, I don't come to class.
- (c) Converse: If a positive integer has no divisors other than 1 and itself, it is prime.
 Contrapositive: If a positive integer has divisors other than 1 and itself, it is not prime.
 Inverse: If a positive integer is not prime, it has divisors other than 1 and itself.