
1 A Deterministic Linear-time Selection Algorithm
We now present a selection algorithm whose worst-case running time is O(n). The strategy is the same as for the
randomized algorithm: select a pivot element that splits the array in an approximately balanced way, throw away the
part that is guaranteed to not contain the sought-out element, and recursively solve a selection problem (perhaps with
a different index) in the kept part.

The difference is that rather than randomly choosing an element to serve as the pivot, we do a bit more work to
isolate an element which is guaranteed to be an approximately balanced separator, i.e., an element which is guaranteed
to be bigger than a constant fraction of all elements and smaller than a constant fraction of all elements. Below we
describe how to find such a good pivot element for an arbitrary set S of size n. Note that in our divide-and-conquer
algorithm we will be executing this “search for a good pivot” in each level of the recursion.

1.1 Finding a Good Pivot
We begin by dividing S into sets of size 2k + 1 arbitrarily (except perhaps for one set which might contain fewer
elements). It is important to note that k is independent of the size, |S|, of the set S, i.e., it is a hard-wired constant in
our code (and, therefore, same in all levels of the recursion).

Next, we compute the median of each set. Since k is fixed, we do this by “brute force”, e.g., by sorting each set.
Let ck be the number of steps needed to find the median of a set by brute force (this is no more than O(k log k)).

Finally, we form a set S′ containing the ⌈
|S|

2k + 1

⌉
medians. We then fire-off another instance of our selection algorithm, i.e., we employ recursion, asking for the median
of this set S′. The answer, call it p, is our pivot for splitting S. Is p an approximately balanced separator? Let’s see.

As a thought experiment, think of each set as a brick labeled by its median, and sort the bricks by decreasing label.
Also, think of each brick as internally sorted. Clearly, the brick labeled by p is “the middle brick”. Moreover, if you
pick a brick B that is to the left of p’s brick, and you pick any element from the left half of B (including B’s median),
that element will be strictly greater than p. Call all such elements “big”. Similarly, if you pick a brick C that is to
the right of p’s brick, and you pick any element from the right half of C (including C’s median), that element will be
strictly smaller than p. Call all such elements “small”. Now, when we use p as a pivot, we are guaranteed that we will
eliminate from consideration either all the small elements or all the big elements. So, overall, the number of elements
we will be eliminating is at least ⌈

|S|
2k + 1

⌉
· 1

2
· (k + 1)−O(k) ,

where the O(k) term reflects the fact that one brick might have fewer than 2k + 1 elements and that the total number
of bricks might be even. So, after pivoting, our recursive call will need to solve a selection problem on no more than

|S| −
(⌈

|S|
2k + 1

⌉
· 1

2
· (k + 1)−O(k)

)
≈ |S| · 3k + 1

4k + 2

elements, where the approximation≈ is valid as long as |S| � k. Therefore, counting all the work we did, we get that
to solve a selection problem on a set of size n, we will need time (ignoring floors/ceilings)

T (n) ≤ ck ·
n

2k + 1
+ T

(
n

2k + 1

)
+ n + T

(
3k + 1

4k + 2
· n

)
(1)

= T

(
n

2k + 1

)
+ T

(
3k + 1

4k + 2
· n

)
+ Ok(n) , (2)

where the notation Ok() serves as a reminder that the constant implicit in our big-O notation depends on k.
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For k = 1, we have,

T (n) = T (2n/3) + T (n/3) + O(n)

= T (4n/9) + T (2n/9) + T (2n/9) + T (n/9) + O(n) + O(n)

= . . .

It is easy to see that if we keep unfolding the recursion, after k unfoldings we will have k terms of O(n) and still
have a T (n/3k) term (and many others). Therefore, the recursion will not bottom out until k = log3 n, implying
T (n) = Ω(n log n).

Can k = 2 do the trick? Plugging k = 2 we get

T (n) = T (7n/10) + T (n/5) + O(n) .

If T (n) = O(n) in this case, this means that there exists an integer n0 and a constant C such that T (n) ≤ Cn for all
n ≥ n0. We can try to prove that this is indeed the case by induction. Here’s how we proceed.

First we work informally, i.e., what is written below is “scratch work”. We only show it here to see what you
need to do to develop the “formal” solution, which we present next. We need to prove that if T (n) ≤ Cn, then
T (n + 1) ≤ C(n + 1). Recall that when we write that T (n) = blah + O(n) this means that there exists D,n0 such
that T (n) ≤ blah + Dn for all n ≥ n0. Applying this we get that for n ≥ n0,

T (n) ≤ T (7n/10) + T (n/5) + Dn by the definition of O(·) applied to the recurrence
≤ C · 7n/10 + C · n/5 + Dn by the inductive hypothesis
= (9C/10 + D)n factorizing n

≤ Cn No reason. That’s what we need.

In particular, in order to have 9C/10 + D ≤ C we need that D ≤ C/10, i.e., C ≥ 10D. We are now ready to write
the formal proof.

The fact that T (n) = T (7n/10) + T (n/5) + O(n) means that there exist n0, D such that T (n) ≤ T (7n/10) +
T (n/5) + Dn for all n ≥ n0. Let Z = T (7n0/10) + T (n0/5). We will prove:

1. T (n0) ≤ (11D + 2Z)n0.

2. For every s ≥ n0: if T (s) ≤ (11D + 2Z)s, then T (s + 1) ≤ (11D + 2Z)(s + 1).

The two assertions above imply that T (n) ≤ (11D + 2Z)n, for every n ≥ n0. The first assertion is trivial by the
definition of Z since, in fact, T (n0) ≤ Dn0 + Z. For the second assertion observe that

T (s) ≤ T (7s/10) + T (s/5) + Ds by the definition of O(·) applied to the recurrence
≤ (11D + 2Z) · (7s/10) + (11D + 2Z) · (s/5) + Ds by the inductive hypothesis
= ((9/10)(11D + 2Z) + D)s

= (109D/10 + 18Z/10)s

≤ (11D + 2Z)s

Naturally, the question arises: what is special about k = 2? While for k = 1 the amount of work in each level
of the recursion tree is the same, for k = 2, the amount of work is shrinking geometrically. We might be tempted to
increase the value of k further so as to reduce the constant factors in the running time. While this works for small k
(2, 3, 4), for higher values of k, the benefit of rapidly shrinking subproblems is offset by the increase in the time (ck)
taken to compute the median of each bucket.
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