
1 Graph Coloring
Definition 1. Given a graph G, a valid coloring of G is a set of labels (or colors) for each of the vertices such that no
vertex has the same label as any vertex it shares an edge with.

In general, the graph coloring problem is to find a the smallest set of colors such that a valid coloring exists for a
given G. We call this minimum number of colors the chromatic number of G, or χ(G).

The naı̈ve approach to solving this would be to use a greedy approach — for each vertex, give color with a new
color if and only if there are no free colors. In the worst case, this would use a number of colors equal to one more
than the highest degree of the vertices in the graph (where degree is defined as the number of edges that connect to a
given vertex).

A clique in a graph is a group of vertices such that all of the vertices are connected to each other. While it is
clear that the chromatic number of a graph cannot be less that the size of the largest clique, clique size is not the only
important factor. For instance, the 5-cycle (ie, the graph of 5 vertices connected in a ring) has a maximum clique size
of 2, but a chromatic number of 3.

Moreover, there exist triangle free graphs (ie, graphs such that there are no cliques of size 3 or greater) with
arbitrarily large chromatic number. Several constructions for building these graphs exist; for further reading, consult
the paper Triangle Free Graphs and Their Chromatic Numbers by Tengren Zhang.

1.1 Coloring by Postponement
Let’s start by making a simple algorithm for coloring the graph with k colors for some fixed k. First, pick a vertex
and check its degree. If that vertex has degree less than k, we know that no matter how we color the graph, we will be
able to find a color use for that vertex. So, with that in mind, we can ignore this node until all of the other nodes are
colored; in fact, we can remove that vertex from the graph, color the remaining graph, and then add the node back in
and find the color for it.

So, we can repeat this process, removing each vertex with degree less than k from the graph, looking at the degrees
of all the new nodes, and then repeating the process. Eventually, we will run into a fixed-point: either the graph is
empty, or there is a remaining core of vertices of degree at least k. We call this leftover section (empty or otherwise)
the k-core of the graph.

Lemma 1. The k-core of a graph is unique; ie, the order in which we remove the vertices does not matter.

Proof. Assume that a graph has two separate k-cores, G1 and G2, constructed via two different orders of vertex
removal. Let them agree for the first i vertices, and let g1 and g2 be the vertices removed the first time that the orders
differ. Notice that, at this point in the process, both g1 and g2 have degree less that k, since they are candidates for
removal. Since our process cannot increase the degree of vertices, at some point both processes will remove both of
these vertices from the graph. We will show that we can transform the order of vertex removal for G1 to that of G2

without changing G1.
Since both remove g1 and g2, we can switch the g2 from it’s place in G1’s sequence, and then shift g1 and all

subsequent vertices down. Notice that removing g2 earlier in the sequence does not affect the removal of any vertices
that depend on it, and that moving it earlier that other vertices does not affect their dependencies either, so this new
sequences of g2 then g1 still produces G1. We can repeat this process until the two sequences are identical, and since
the original sequence lead to G1, and all subsequent changes still led to G1, but the target sequence lead to G2, we
have shown that G1 = G2

Now, of course, even if we have a k-core of several vertices left, it’s possible to color it. This might require a lot
effort and mental work, but if we can color the k-core, we can color the entire graph.

1.2 The 4-color Problem
The 4-color Problem says that any planar region that has been divided up into parts can be colored using only 4 colors.
(The obvious example of this being maps) This particular theorem was proven by Kenneth Appel and Wolfgang Haken
in 1976, and it was the first proof that had a computer-verification aspect to it.
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While this document does not have the space to reproduce that proof, it is possible to show a weaker version—
specifically, the 6-color Problem.

First, we transform the map into a graph with each vertex representing a region, and edges between each two
bordering regions on the map.

If the graph is not triangulated - ie, each of the regions constructed by the graph do not have exactly 3 edges, we
can add edges until we have a triangulated graph. (This does not change our solution, as any coloring that solves the
triangulated graph will be a solution for the un-triangulated one)

Now, we know that by Euler’s formula, v − e + f = 2, where v, e, and f are the number of vertices, edges and
faces of the graph. Since in our triangular graph, each region is triangular and each edge is shared by two regions, we
know that 2e = 3f , which implies that 3v − 3e+ 2e = 3v − e = 6⇒ 6v − 2e = 12.

Let vn be the number of vertices of degree n, and let D be the maximum degree of all vertices of the graph. It
follows that

6v − 2e = 6

D∑
i=1

vi −
D∑
i=1

ivi = 12

since the degrees of each vertex is equal to twice the number of edges. It follows that

D∑
i=1

(6− i)vi = 12

and so, since (6− i) ≤ 0 if i ≥ 6, there has to be at least one vertex of degree 5 or less.
This implies that any planar graph’s 6-core is empty, which means that we can use the technique from the previous

section to color the graph using 6 colors.
We can show that any graph can be colored using 6 colors by induction. First, notice that if there’s 6 or less vertices,

then we can trivially color the graph using 6 colors or less. Next we form our inductive hypothesis: specifically, that
any planar graph with n nodes can be colored using six colors. We then take a graph with n+ 1 nodes and show that
we can color it as well. First, notice that by our previous result, there exists a node of degree 5 or less. If we remove
it from the graph, we get a graph with n nodes, which we can color by our induction hypothesis. Since the node we
removed has degree 5 or less, we know that there will be at least one leftover color for us to color that vertex with.
Therefore, any planar graph can be colored using 6 colors.

From this, there is a clear algorithm that we can use to color this graph— first, remove any nodes with degree 5
or less from the graph. Then, repeat this process on the resulting graph until we have a graph with 6 or less vertices.
From there, we color that graph, then add the nodes back in in the reverse order that we removed them, coloring them
as we go.
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