The Fundamental Theorem of Galois Theory (part 2)

Definitions:

For $L \supseteq E \supseteq K$, define $\Gamma(E) = \operatorname{Gal}(L:E) = \{\sigma \in \operatorname{Gal}(L:K) \mid \sigma(y) = y \text{ for all } y \in E\}$. For $H \leq \operatorname{Gal}(L:K)$, define $\Phi(H) = \{y \in L \mid \sigma(y) = y \text{ for all } \sigma \in H\}$.

The Fundamental Theorem of Galois Theory

Let L be a finite Galois extension of K.

- (i) The maps Φ and Γ are inverses of each other.
- (ii) Suppose $L \supseteq E \supseteq K$. The extension E: K is Galois if and only if Gal(L:E) is a normal subgroup of Gal(L:K). In this case,

 $\operatorname{Gal}(E:K) \cong \operatorname{Gal}(L:K) / \operatorname{Gal}(L:E).$

Proof of \Rightarrow direction in (ii). Suppose E: K is Galois. We will find a group homomorphism

from ______to _____whose kernel is ______.

Let $\sigma \in \text{Gal}(L:K)$. Claim: $\sigma(E) = E$.

Proof of Claim: Since *E* is Galois over *K*, there exists an element $\alpha \in E$ such that $E = K(\alpha)$, whose minimal polynomial $p(x) \in K[x]$ is separable and splits over *E*. Consider the action of σ on the roots of p(x) and complete the proof:

Then $\sigma|_E \in \operatorname{Gal}(E:K)$ because

Let $\varphi : ____$ be a map defined by $\sigma \mapsto ___$.

Check that φ is a group homomorphism with the desired kernel:

And φ is surjective because

Proof of \Leftarrow direction in (ii). Now suppose that $\operatorname{Gal}(L : E)$ is a normal subgroup of $\operatorname{Gal}(L : K)$. We will show that E : K is Galois by showing that E is the splitting field of a separable polynomial over K.

Proof of Claim: Let $\sigma \in \text{Gal}(L:K)$. Since ______ is a normal subgroup of ______, σ^{-1} ______ $\sigma =$ ______. Then for any $a \in E$ and for any $\tau \in \text{Gal}(L:E)$, $\sigma^{-1}\tau\sigma(a) =$ ______ because so $\tau\sigma(a) =$ ______, which implies that $\sigma(a) \in$ _______ because

There exists a finite set $A \subset E$ such that E = K(A), because

Claim: For every $\sigma \in \text{Gal}(L:K)$, we have $\sigma(E) \subseteq E$.

Let $B = \{\sigma(a) \mid a \in A \text{ and } \sigma \in \text{Gal}(L:K)\}$. Let $f(x) = \prod_{b \in B} (x-b)$. Then $f(x) \in \underline{\qquad}$ because

But $B \subseteq E$ because

Complete the proof: