Seperable polynomials and extensions

Definitions

- A polynomial is *separable* if it has no multiple roots in the splitting filed.
- An extension L: K is *seperable* if the minimal polynomial over K of any element in L is separable.
- A field K is called *perfect* if every irreducible polynomial over K is separable.

(We didn't have time to go over the following exercises. They will be on the homework.)

- 1. Prove that an irreducible polynomial whose derivative is not zero is separable.
- 2. Let K be a field of characteristic p (prime). Let $f(x) \in K[x]$ be a polynomial whose derivative is the zero polynomial.
 - (a) Prove that f(x) can be written as $f(x) = a_0 + a_1 x^p + \dots + a_n x^{np}$ for $a_0, \dots, a_n \in K$.
 - (b) Prove that if K is finite, then $f(x) = (g(x))^p$ for some $g(x) \in K[x]$.
- 3. Prove that finite fields are perfect.
- 4. Give an example of a field that is not perfect.
- 5. (Primitive elements) Let $K = \mathbb{Z}_p(x, y)$ and $L = K[a, b]/\langle a^p x, b^p y \rangle$.
 - (a) Show that L is a field and that $[L:K] = p^2$.
 - (b) Show that for any element $\alpha \in L$, $\alpha^p \in K$. It follows that $L \neq K(\alpha)$ for any $\alpha \in L$.

We've proven the following last week:

Lemma Let $\sigma : K \to K'$ be an isomorphism of fields that sends a separable polynomial $f(x) \in K[x]$ to $f'(x) \in K'[x]$. Let L and L' be splitting fields of f(x) and f'(x) over K and K' respectively. Then there are exactly [L:K] ways to extend σ to an isomorphism $L \to L'$.

Theorem 1 Let L be the splitting field of a polynomial f(x) over K. Then for every $\alpha \in L$, its minimal polynomial p(x) splits over L.

Proof. Suppose not. Let α' be another root of p(x) in some field extension. Then there is an isomorphism $\varphi: K(\alpha) \to K(\alpha')$ fixing K because

The field $L(\alpha')$ is the splitting field of ______over _____. By the Lemma bove, φ can be extended to an isomorphism $L \to L(\alpha')$. Complete the proof:

Theorem 2 Let L be the splitting field of a **separable** polynomial f(x) over K (i.e. L : K is Galois). Then for every $\alpha \in L$, its minimal polynomial p(x) is separable.

Proof. Let $B = \{\sigma(\alpha) \mid \sigma \in \text{Gal}(L:K)\}$ and consider $q(x) = \prod_{\beta \in B} (x - \beta)$. Compelete the

proof: