Solving polynomial equations by radicals

Question: Can every algebraic number be expressed using algebraic operations $(+, -, *, \div)$ and radicals $\sqrt[n]{}$, starting from rational numbers?

Answer: Yes for algebraic numbers of degree ≤ 4 (See §8.1 of Howie). No in general for algebraic numbers of degree ≥ 5 .

Definition. Let K be a field. An extension $L \supseteq K$ is called a **radical extension** if there exists a chain of subfields

$$K = L_0 \subset L_1 \subset \cdots \subset L_m = L$$

such that for each j = 0, 1, ..., m-1, $L_{j+1} = L_j(\alpha_j)$ where $\alpha_j^{n_j} \in L_j$ for some integer $n_j \ge 2$. We say that an element α is **expressable by radicals** over K if it is contained in a radical extension of K.

We say that a polynomial over K is solvable (or soluble) by radical if every root is experessable by radicals (i.e. its splitting field is contained in a radical extension).

Definition. A finite group G is called **solvable (or soluble)** if there exists a chain of subgroups

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_m = G$$

such that each for each i = 0, 1, ..., m = 1, G_i is a normal subgroup of G_{i+1} (denoted $G_i \triangleleft G_{i+1}$) and G_{i+1}/G_i is cyclic.

We will prove the following in the next few classes.

Theorem 1. (Galois) Let K be a field of characteristic 0. A polynomial $f(x) \in K[x]$ is solvable by radicals if and only if its Galois group is solvable.

Theorem 2. For every integer $n \ge 1$ there exists a field K of characteristic 0 and a polynomial $f(x) \in K[x]$ of degree n such that the Galois group of f over K is isomorphic to S_n . (Note: The symmetric group S_n is unsolvable for $n \ge 5$.)

Theorem 3. For every integer $n \ge 1$ there exists a polynomial $f(x) \in \mathbb{Q}[x]$ of degree n such that the Galois group of f over \mathbb{Q} is isomorphic to the symmetric group S_n . (We will only prove this for prime n.)

Exercises: (more on the back)

- 1. Let K be a field of characteristic 0, let $a \in K \{0\}$, and let L be the splitting field of $x^n a$ over K. Prove that L contains all n^{th} roots of unity.
- 2. Let K be a field of characteristic 0 containing all n^{th} roots of unity and let $L = K(\alpha)$ where $\alpha^n \in K$. Prove that $\operatorname{Gal}(L:K)$ is a cyclic group. (Hint: consider the map φ : $\operatorname{Gal}(L:K) \to K^*$ defined by $\sigma \mapsto \sigma(\alpha) \cdot \alpha^{-1}$. Show that it is an injective homomorphism.)

- 3. Prove that finite abelian groups are solvable.
- 4. Prove that S_3 and S_4 are solvable.
- 5. Prove that the symmetric group S_n is unsolvable for $n \ge 5$.
- 6. Prove that a subgroup of a solvable group is solvable.
- 7. Prove that the quotient of a solvable group by a normal subgroup is solvable.
- 8. Prove that if a group G has a normal subgroup N such that both N and G/N are solvable, then G is also solvable.