Name: Collaborators: Outside resources:

> Math 2106, Foundations of Mathematical Proof HW 2 — Due January 30, 2017 (Mon)

Turn in the following problems from Hammack's book: Chapter 4, problems 4, 20, 26 Chapter 5, problems 6, 8, 12, 18, 20, 24, 28 Chapter 6, problems 4, 6, 8, 10, 16, 18 Chapter 7, problem 28

Additional exercises (to be turned in)

- 1. Let $a \in \mathbb{Z}$. Prove that $3 \mid a^2$ if and only if $3 \mid a$. (You may use the fact that every integer can be written as exactly one of 3k, 3k + 1, or 3k + 2 for some integer k.)
- 2. Let a, b, c, d, x and y be integers with $a \neq 0$ and $b \neq 0$.
 - (a) If $a \mid c$, then $a^2 \mid c^2$.
 - (b) If $a \mid c$ and $b \mid d$, then $ab \mid cd$.
 - (c) If $a \mid c$ and $a \mid d$, then $a \mid cx + dy$.
 - (d) If $a \mid b$ and $b \mid a$, then a = b or a = -b.
 - (e) If $a \nmid cd$, then $a \nmid c$ and $a \nmid d$.
- 3. Prove or disprove.
 - (a) The sum of two rational numbers is rational.
 - (b) The sum of an irrational number and a rational number is irrational.
 - (c) The sum of two irrational numbers is irrational.
 - (d) The product of two rational numbers is rational.
 - (e) The product of an irrational number and a rational number is irrational.
 - (f) The product of two irrational numbers is irrational.
- 4. Let a be an irrational number, s a real number, and r a nonzero rational number. Prove that ar + s or ar - s is irrational.