Which of the following proofs is the most valid? Find all the errors.

THEOREM: For any positive integer n, if n^2 is a multiple of 3, then n is a multiple of 3.

A.

PROOF. Assume that n^2 is an odd positive integer that is divisible by 3. That is $n^2 = (3n+1)^2 = 9n^2 + 6n + 1 = 3n(n+2) + 1$. Therefore, n^2 is divisible by 3. Assume that n^2 is even and a multiple of 3. That is, $n^2 = (3n)^2 = 9n^2 = 3n(3n)$. Therefore, n^2 is a multiple of 3. If we factor $n^2 = 9n^2$, we get 3n(3n); which means that n is a multiple of 3. \blacksquare

В.

PROOF. Suppose to the contrary that n is not a multiple of 3. We will let 3k be a positive integer that is a multiple of 3, so that 3k + 1 and 3k + 2 are integers that are not multiples of 3. Now $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. Since $3(3k^2 + 2k)$ is a multiple of 3, $3(3k^2 + 2k) + 1$ is not. Now we will do the other possibility, 3k + 2. So, $n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$ is not a multiple of 3. Because n^2 is not a multiple of 3, we have a contradiction.

C.

PROOF. Let n be an integer such that $n^2 = 3x$ where x is an integer. Then $3 \mid n^2$. Since $n^2 = 3x$, nn = 3x. Thus, $3 \mid n$. Therefore if n^2 is a multiple of 3, then n is a multiple of 3.

D.

PROOF. Let n be a positive integer such that n^2 is a multiple of 3. Then n = 3m where $m \in \mathbb{Z}^+$. So $n^2 = (3m)^2 = 9m^2 = 3(3m^2)$. This breaks down into 3m times 3m which shows that m is a multiple of 3.

Write your own proof:

Reference: Annie Selden and John Seldon. "Validation of Proofs Considered as Texts". Journal for Research in Mathematics Education 2003, Vol 34, No. 1, 4-36.