Name: _____

Math 2106 – Exam 2 October 14, 2016

Write clearly in complete sentences using correct terminology. Solutions must be readable from left to right and from top to bottom.

page	1	2	3	4	writing	total
points						
maximum	10	10	10	10	2	42

1. Prove each of the following using only the definitions. Let A, B and C be sets.

- (a) $A \subseteq B \iff \mathcal{P}(A) \subseteq \mathcal{P}(B)$
- (b) $(A B) \cap (A C) = A (B \cup C)$

2. Let d be a positive integer and a and b be integers such that $d \mid (a - b)$. Prove that $d \mid (a^n - b^n)$ for all integers $n \ge 0$. Do not use the fact that multiplication is well defined on \mathbb{Z}_d unless you prove it first. Hint (if you need help with algebra): ac - bd = (ac - bc) + (bc - bd).

- 3. Determine whether each of the following relations on $\mathbb R$ is an equivalence relation. Justify your answers.
 - (a) x R y if $x y = 2\pi n$ for some integer n
 - (b) x R y if $x + y = 2\pi n$ for some integer n

4. Let a and b be positive integers. Prove that $a \mid b$ if and only if $[x]_b \subseteq [x]_a$ for all $x \in \mathbb{Z}$. Recall that $[x]_n = \{y \in \mathbb{Z} : y \equiv x \pmod{n}\}.$