Natural Numbers

We define $0 = \emptyset$. For any set x, its **successor** is defined as $x^+ = x \cup \{x\}$.

A set A is called a **successor set** (or an inductive set) if $0 \in A$ and $x^+ \in A$ for every $x \in A$.

Axiom of Infinity: There exists a successor set.

Exercises

- 1. Describe a successor set. Write down a few elements in it. Describe a different successor set.
- 2. Let A be a successor set. Prove that the intersection of all successor subsets of A is a successor set itself.
- 3. Prove that there exists a unique successor set that is a subset of every successor set. (Note: If B is any successor set, then $B \cap A$ is a successor set.)

Definition of natural numbers

The unique minimal successor set (from Question 3 above) is called the *set of natural numbers* and is denoted \mathbb{N} or ω . A *natural number* is defined to be an element of \mathbb{N} .

Properties of \mathbb{N} (The Peano Axioms)

- (I) $0 \in \mathbb{N}$
- (II) $\forall n \in \mathbb{N}, n^+ \in \mathbb{N}$
- (III) $\forall S \subset \mathbb{N}, [0 \in S \land (\forall n \in S, n^+ \in S)] \Rightarrow S = \mathbb{N}.$
- (IV) $\forall n \in \mathbb{N}, n^+ \neq 0.$
- (V) $\forall n, m \in \mathbb{N}, (n^+ = m^+ \Rightarrow n = m).$

Properties (I)-(IV) follow easily from the definition of \mathbb{N} , and (V) can also be proven from the definition. (See Halmos.) Property (III) is called the *Principle of Mathematical Induction*.

Addition Define $x + 1 = x^+$, $x + 2 = (x + 1)^+$, $x + 3 = (x + 2)^+$, ..., $x + (n + 1) = (x + n)^+$, and so on inductively. (See the "Recursion Theorem" in Section 12 of Halmos for details.)

Multiplication Define 2x = x + x, 3x = 2x + x, ..., (n + 1)x = nx + x, and so on.

Ordering For natural number m and n, we say m < n if _____.

Exercises

- 4. For natural numbers m and n, what does $m \cap n$ and $m \cup n$ mean in terms of the usual operations on natural numbers?
- 5. The Well-ordering Principle (WOP) says that every non-empty subset of natural numbers has a smallest element.
 - (a) Write WOP in symbolic logic.
 - (b) Prove WOP using the Peano Axioms.