Induction

- 1. Prove that the sequence $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$, ... is strictly increasing.
- 2. Prove that the sequence $\sqrt{2}$, $\sqrt{2 + \sqrt{2}}$, $\sqrt{2 + \sqrt{2}}$, ... is bounded from above.
- 3. Prove that every natural number greater than 1 is either prime or a product of prime numbers.
- 4. Suppose the plane \mathbb{R}^2 is cut into regions by *n* infinitely long straight lines, where $n \geq 1$.
 - (a) The number of regions is \leq _____. Prove that this is correct.
 - (b) Show that there exists an arrangment of lines that gives exactly this maximum number of regions.
- 5. Prove that you can cut a square into n smaller squares for all integers $n \ge 6$. (This is a homework problem.)
- 6. Describe the number of ways to tile a rectangle of size $2 \times n$ by dominos of size 2×1 . Prove that your answer is correct.