Name: Collaborators: Outside resources:

> Math 2106, Foundations of Mathematical Proof HW 5 — Due March 15, 2017 (Wednesday)

From the textbook: 12.1, problems 6, 8, 10, 12. 12.2, problems 6, 10. 12.4, problems 8, 10. 12.5, problems 4, 8.

Additional problems

- A1 Prove that the function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by $f(m, n) = 2^{m-1}(2n-1)$ is bijective. (Let $\mathbb{N} = \{1, 2, 3, ...\}$.)
- A2 Determine whether each of the following relations from \mathbb{Z}_6 to \mathbb{Z}_9 is a function. Justify your answers.
 - (a) $\{([x]_6, [x]_9) \in \mathbb{Z}_6 \times \mathbb{Z}_9 : x \in \mathbb{Z}\}$
 - (b) $\{([x]_6, [2x]_9) \in \mathbb{Z}_6 \times \mathbb{Z}_9 : x \in \mathbb{Z}\}$
 - (c) $\{([x]_6, [3x]_9) \in \mathbb{Z}_6 \times \mathbb{Z}_9 : x \in \mathbb{Z}\}$

A3 Let f be a function from A and B. Let $C \subseteq A$ and $D \subseteq B$.

- (a) Prove or disprove: $f^{-1}(f(C)) \subseteq C$.
- (b) Prove or disprove: $f^{-1}(f(C)) \supseteq C$.
- (c) Prove or disprove: $f(f^{-1}(D)) \subseteq D$.
- (d) Prove or disprove: $f(f^{-1}(D)) \supseteq D$.
- (e) Prove that f is injective if and only if $f^{-1}(f(C)) = C$ for all $C \subseteq A$.
- (f) Prove that f is surjective if and only if $f(f^{-1}(D)) = D$ for all $D \subseteq B$.