Functions (part 2)

- 1. Let $f: A \to B$ and $g: B \to C$. Prove or give counterexamples.
 - (a) If f and g are both injective, then so is $g \circ f$.
 - (b) If f and g are both surjective, then so is $g \circ f$.
 - (c) If $g \circ f$ is injective, then so is f.
 - (d) If $g \circ f$ is injective, then so is g.
 - (e) If $g \circ f$ is surjective, then so is f.
 - (f) If $g \circ f$ is surjective, then so is g.
- 2. Let $f: A \to B$ be a function. Prove that following are logically equivalent.
 - (i) The function f is bijective.
 - (ii) The relation f^{-1} is a function from B to A.
 - (iii) There exists a function $g: B \to A$ such that $g \circ f = i_A$ and $f \circ g = i_B$.
- 3. Prove that if f is a bijective function, then f^{-1} is also a bijective function.
- 4. Let f and g be both functions from a set A to itself such that $g \circ f$ is the identity function i_A on A. Does $f \circ g$ also have to be the identity function?