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Preface

In writing this book I have been motivated by the desire to create a
high-quality textbook that costs almost nothing.
The book is available on my web page for free, and the paperback

version (produced through an on-demand press) costs considerably less
than comparable traditional textbooks. Any revisions or new editions
will be issued solely for the purpose of correcting mistakes and clarifying
exposition. New exercises may be added, but the existing ones will not be
unnecessarily changed or renumbered.

This text is an expansion and refinement of lecture notes I developed
while teaching proofs courses over the past fourteen years at Virginia
Commonwealth University (a large state university) and Randolph-Macon
College (a small liberal arts college). I found the needs of these two
audiences to be nearly identical, and I wrote this book for them. But I am
mindful of a larger audience. I believe this book is suitable for almost any
undergraduate mathematics program.

This second edition incorporates many minor corrections and additions
that were suggested by readers around the world. In addition, several
new examples and exercises have been added, and a section on the Cantor-
Bernstein-Schröeder theorem has been added to Chapter 13.

Richard Hammack Richmond, Virginia
May 25, 2013



Introduction

This is a book about how to prove theorems.

Until this point in your education, mathematics has probably been
presented as a primarily computational discipline. You have learned to
solve equations, compute derivatives and integrals, multiply matrices
and find determinants; and you have seen how these things can answer
practical questions about the real world. In this setting, your primary goal
in using mathematics has been to compute answers.

But there is another side of mathematics that is more theoretical than
computational. Here the primary goal is to understand mathematical
structures, to prove mathematical statements, and even to invent or
discover new mathematical theorems and theories. The mathematical
techniques and procedures that you have learned and used up until now
are founded on this theoretical side of mathematics. For example, in
computing the area under a curve, you use the fundamental theorem of
calculus. It is because this theorem is true that your answer is correct.
However, in learning calculus you were probably far more concerned with
how that theorem could be applied than in understanding why it is true.
But how do we know it is true? How can we convince ourselves or others
of its validity? Questions of this nature belong to the theoretical realm of
mathematics. This book is an introduction to that realm.

This book will initiate you into an esoteric world. You will learn and
apply the methods of thought that mathematicians use to verify theorems,
explore mathematical truth and create new mathematical theories. This
will prepare you for advanced mathematics courses, for you will be better
able to understand proofs, write your own proofs and think critically and
inquisitively about mathematics.



ix

The book is organized into four parts, as outlined below.

PART I Fundamentals
• Chapter 1: Sets
• Chapter 2: Logic
• Chapter 3: Counting
Chapters 1 and 2 lay out the language and conventions used in all advanced
mathematics. Sets are fundamental because every mathematical structure,
object or entity can be described as a set. Logic is fundamental because it
allows us to understand the meanings of statements, to deduce information
about mathematical structures and to uncover further structures. All
subsequent chapters will build on these first two chapters. Chapter 3
is included partly because its topics are central to many branches of
mathematics, but also because it is a source of many examples and exercises
that occur throughout the book. (However, the course instructor may choose
to omit Chapter 3.)

PART II Proving Conditional Statements
• Chapter 4: Direct Proof
• Chapter 5: Contrapositive Proof
• Chapter 6: Proof by Contradiction
Chapters 4 through 6 are concerned with three main techniques used for
proving theorems that have the “conditional” form “If P, then Q.”

PART III More on Proof
• Chapter 7: Proving Non-Conditional Statements
• Chapter 8: Proofs Involving Sets
• Chapter 9: Disproof
• Chapter 10: Mathematical Induction
These chapters deal with useful variations, embellishments and conse-
quences of the proof techniques introduced in Chapters 4 through 6.

PART IV Relations, Functions and Cardinality
• Chapter 11: Relations
• Chapter 12: Functions
• Chapter 13: Cardinality of Sets
These final chapters are mainly concerned with the idea of functions, which
are central to all of mathematics. Upon mastering this material you will be
ready for advanced mathematics courses such as combinatorics, abstract
algebra, theory of computation, analysis and topology.



x Introduction

To the instructor. The book is designed for a three credit course. Here
is a possible timetable for a fourteen-week semester.

Week Monday Wednesday Friday

1 Section 1.1 Section 1.2 Sections 1.3, 1.4
2 Sections 1.5, 1.6, 1.7 Section 1.8 Sections 1.9∗, 2.1
3 Section 2.2 Sections 2.3, 2.4 Sections 2.5, 2.6
4 Section 2.7 Sections 2.8∗, 2.9 Sections 2.10, 2.11∗, 2.12∗

5 Sections 3.1, 3.2 Section 3.3 Sections 3.4, 3.5∗

6 EXAM Sections 4.1, 4.2, 4.3 Sections 4.3, 4.4, 4.5∗

7 Sections 5.1, 5.2, 5.3∗ Section 6.1 Sections 6.2 6.3∗

8 Sections 7.1, 7.2∗, 7.3 Sections 8.1, 8.2 Section 8.3
9 Section 8.4 Sections 9.1, 9.2, 9.3∗ Section 10.0
10 Sections 10.0, 10.3∗ Sections 10.1, 10.2 EXAM
11 Sections 11.0, 11.1 Sections 11.2, 11.3 Sections 11.4, 11.5
12 Section 12.1 Section 12.2 Section 12.2
13 Sections 12.3, 12.4∗ Section 12.5 Sections 12.5, 12.6∗

14 Section 13.1 Section 13.2 Sections 13.3, 13.4∗

Sections marked with ∗ may require only the briefest mention in class, or
may be best left for the students to digest on their own. Some instructors
may prefer to omit Chapter 3.

Acknowledgments. I thank my students in VCU’s MATH 300 courses
for offering feedback as they read the first edition of this book. Thanks
especially to Cory Colbert and Lauren Pace for rooting out typographical
mistakes and inconsistencies. I am especially indebted to Cory for reading
early drafts of each chapter and catching numerous mistakes before I
posted the final draft on my web page. Cory also created the index,
suggested some interesting exercises, and wrote some solutions. Thanks
to Andy Lewis and Sean Cox for suggesting many improvements while
teaching from the book. I am indebted to Lon Mitchell, whose expertise
with typesetting and on-demand publishing made the print version of this
book a reality.

And thanks to countless readers all over the world who contacted me
concerning errors and omissions. Because of you, this is a better book.
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Fundamentals





CHAPTER 1

Sets

All of mathematics can be described with sets. This becomes more and
more apparent the deeper into mathematics you go. It will be apparent

in most of your upper level courses, and certainly in this course. The
theory of sets is a language that is perfectly suited to describing and
explaining all types of mathematical structures.

1.1 Introduction to Sets
A set is a collection of things. The things in the collection are called
elements of the set. We are mainly concerned with sets whose elements
are mathematical entities, such as numbers, points, functions, etc.

A set is often expressed by listing its elements between commas, en-
closed by braces. For example, the collection

{
2,4,6,8

}
is a set which has

four elements, the numbers 2,4,6 and 8. Some sets have infinitely many
elements. For example, consider the collection of all integers,{

. . . ,−4,−3,−2,−1,0,1,2,3,4, . . .
}
.

Here the dots indicate a pattern of numbers that continues forever in both
the positive and negative directions. A set is called an infinite set if it
has infinitely many elements; otherwise it is called a finite set.

Two sets are equal if they contain exactly the same elements. Thus{
2,4,6,8

} = {
4,2,8,6

}
because even though they are listed in a different

order, the elements are identical; but
{
2,4,6,8

} 6= {
2,4,6,7

}
. Also{

. . .−4,−3,−2,−1,0,1,2,3,4 . . .
}= {

0,−1,1,−2,2,−3,3,−4,4, . . .
}
.

We often let uppercase letters stand for sets. In discussing the set{
2,4,6,8

}
we might declare A = {

2,4,6,8
}
and then use A to stand for{

2,4,6,8
}
. To express that 2 is an element of the set A, we write 2 ∈ A, and

read this as “2 is an element of A,” or “2 is in A,” or just “2 in A.” We also
have 4 ∈ A, 6 ∈ A and 8 ∈ A, but 5 ∉ A. We read this last expression as “5 is
not an element of A,” or “5 not in A.” Expressions like 6,2 ∈ A or 2,4,8 ∈ A
are used to indicate that several things are in a set.
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Some sets are so significant and prevalent that we reserve special
symbols for them. The set of natural numbers (i.e., the positive whole
numbers) is denoted by N, that is,

N= {
1,2,3,4,5,6,7, . . .

}
.

The set of integers

Z= {
. . . ,−3,−2,−1,0,1,2,3,4, . . .

}
is another fundamental set. The symbol R stands for the set of all real
numbers, a set that is undoubtedly familiar to you from calculus. Other
special sets will be listed later in this section.

Sets need not have just numbers as elements. The set B = {
T,F

}
consists

of two letters, perhaps representing the values “true” and “false.” The set
C = {

a, e, i, o,u
}
consists of the lowercase vowels in the English alphabet.

The set D = {
(0,0), (1,0), (0,1), (1,1)

}
has as elements the four corner points

of a square on the x-y coordinate plane. Thus (0,0) ∈ D, (1,0) ∈ D, etc., but
(1,2) ∉ D (for instance). It is even possible for a set to have other sets
as elements. Consider E = {

1,
{
2,3

}
,
{
2,4

}}
, which has three elements: the

number 1, the set
{
2,3

}
and the set

{
2,4

}
. Thus 1 ∈ E and

{
2,3

} ∈ E and{
2,4

} ∈ E. But note that 2 ∉ E, 3 ∉ E and 4 ∉ E.
Consider the set M = {[0 0

0 0
]
,
[1 0

0 1
]
,
[1 0

1 1
]}

of three two-by-two matrices.
We have

[0 0
0 0

] ∈ M, but
[1 1

0 1
] ∉ M. Letters can serve as symbols denoting a

set’s elements: If a = [0 0
0 0

]
, b = [1 0

0 1
]
and c = [1 0

1 1
]
, then M = {

a,b, c
}
.

If X is a finite set, its cardinality or size is the number of elements
it has, and this number is denoted as |X |. Thus for the sets above, |A| = 4,
|B| = 2, |C| = 5, |D| = 4, |E| = 3 and |M| = 3.

There is a special set that, although small, plays a big role. The
empty set is the set

{}
that has no elements. We denote it as ;, so ;= {}

.
Whenever you see the symbol ;, it stands for

{}
. Observe that |;| = 0. The

empty set is the only set whose cardinality is zero.
Be careful in writing the empty set. Don’t write

{;}
when you mean ;.

These sets can’t be equal because ; contains nothing while
{;}

contains
one thing, namely the empty set. If this is confusing, think of a set as a
box with things in it, so, for example,

{
2,4,6,8

}
is a “box” containing four

numbers. The empty set ;= {}
is an empty box. By contrast,

{;}
is a box

with an empty box inside it. Obviously, there’s a difference: An empty box
is not the same as a box with an empty box inside it. Thus ; 6= {;}

. (You
might also note |;| = 0 and

∣∣{;}∣∣= 1 as additional evidence that ; 6= {;}
.)
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This box analogy can help us think about sets. The set F = {;,
{;}

,
{{;}}}

may look strange but it is really very simple. Think of it as a box containing
three things: an empty box, a box containing an empty box, and a box
containing a box containing an empty box. Thus |F| = 3. The set G = {

N,Z
}

is a box containing two boxes, the box of natural numbers and the box of
integers. Thus |G| = 2.

A special notation called set-builder notation is used to describe sets
that are too big or complex to list between braces. Consider the infinite
set of even integers E = {

. . . ,−6,−4,−2,0,2,4,6, . . .
}
. In set-builder notation

this set is written as
E = {

2n : n ∈Z}
.

We read the first brace as “the set of all things of form,” and the colon as
“such that.” So the expression E = {

2n : n ∈Z}
is read as “E equals the set of

all things of form 2n, such that n is an element of Z.” The idea is that E
consists of all possible values of 2n, where n takes on all values in Z.

In general, a set X written with set-builder notation has the syntax

X = {
expression : rule

}
,

where the elements of X are understood to be all values of “expression”
that are specified by “rule.” For example, the set E above is the set
of all values the expression 2n that satisfy the rule n ∈ Z. There can
be many ways to express the same set. For example, E = {

2n : n ∈ Z} ={
n : n is an even integer

} = {
n : n = 2k,k ∈ Z}

. Another common way of
writing it is

E = {
n ∈Z : n is even

}
,

read “E is the set of all n in Z such that n is even.” Some writers use a bar
instead of a colon; for example, E = {

n ∈Z | n is even
}
. We use the colon.

Example 1.1 Here are some further illustrations of set-builder notation.
1.

{
n : n is a prime number

}= {
2,3,5,7,11,13,17, . . .

}
2.

{
n ∈N : n is prime

}= {
2,3,5,7,11,13,17, . . .

}
3.

{
n2 : n ∈Z}= {

0,1,4,9,16,25, . . .
}

4.
{
x ∈R : x2 −2= 0

}= {p
2,−p2

}
5.

{
x ∈Z : x2 −2= 0

}=;
6.

{
x ∈Z : |x| < 4

}= {−3,−2,−1,0,1,2,3
}

7.
{
2x : x ∈Z, |x| < 4

}= {−6,−4,−2,0,2,4,6
}

8.
{
x ∈Z : |2x| < 4

}= {−1,0,1
}
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These last three examples highlight a conflict of notation that we must
always be alert to. The expression |X |means absolute value if X is a number
and cardinality if X is a set. The distinction should always be clear from
context. Consider

{
x ∈Z : |x| < 4

}
in Example 1.1 (6) above. Here x ∈Z, so x

is a number (not a set), and thus the bars in |x| must mean absolute value,
not cardinality. On the other hand, suppose A = {{

1,2
}
,
{
3,4,5,6

}
,
{
7
}}

and
B = {

X ∈ A : |X | < 3
}
. The elements of A are sets (not numbers), so the |X |

in the expression for B must mean cardinality. Therefore B = {{
1,2

}
,
{
7
}}
.

We close this section with a summary of special sets. These are sets or
types of sets that come up so often that they are given special names and
symbols.
• The empty set: ;= {}
• The natural numbers: N= {

1,2,3,4,5, . . .
}

• The integers: Z= {
. . . ,−3,−2,−1,0,1,2,3,4,5, . . .

}
• The rational numbers: Q= {

x : x = m
n

, where m,n ∈Z and n 6= 0
}

• The real numbers: R (the set of all real numbers on the number line)
Notice that Q is the set of all numbers that can be expressed as a fraction
of two integers. You are surely aware that Q 6=R, as p

2 ∉Q but
p

2 ∈R.
Following are some other special sets that you will recall from your

study of calculus. Given two numbers a,b ∈ R with a < b, we can form
various intervals on the number line.
• Closed interval: [a,b]= {

x ∈R : a ≤ x ≤ b
}

• Half open interval: (a,b]= {
x ∈R : a < x ≤ b

}
• Half open interval: [a,b)= {

x ∈R : a ≤ x < b
}

• Open interval: (a,b)= {
x ∈R : a < x < b

}
• Infinite interval: (a,∞)= {

x ∈R : a < x
}

• Infinite interval: [a,∞)= {
x ∈R : a ≤ x

}
• Infinite interval: (−∞,b)= {

x ∈R : x < b
}

• Infinite interval: (−∞,b]= {
x ∈R : x ≤ b

}
Remember that these are intervals on the number line, so they have in-
finitely many elements. The set (0.1,0.2) contains infinitely many numbers,
even though the end points may be close together. It is an unfortunate
notational accident that (a,b) can denote both an interval on the line and
a point on the plane. The difference is usually clear from context. In the
next section we will see still another meaning of (a,b).
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Exercises for Section 1.1
A. Write each of the following sets by listing their elements between braces.

1.
{
5x−1 : x ∈Z}

2.
{
3x+2 : x ∈Z}

3.
{
x ∈Z :−2≤ x < 7

}
4.

{
x ∈N :−2< x ≤ 7

}
5.

{
x ∈R : x2 = 3

}
6.

{
x ∈R : x2 = 9

}
7.

{
x ∈R : x2 +5x =−6

}
8.

{
x ∈R : x3 +5x2 =−6x

}

9.
{
x ∈R : sinπx = 0

}
10.

{
x ∈R : cos x = 1

}
11.

{
x ∈Z : |x| < 5

}
12.

{
x ∈Z : |2x| < 5

}
13.

{
x ∈Z : |6x| < 5

}
14.

{
5x : x ∈Z, |2x| ≤ 8

}
15.

{
5a+2b : a,b ∈Z}

16.
{
6a+2b : a,b ∈Z}

B. Write each of the following sets in set-builder notation.
17.

{
2,4,8,16,32,64 . . .

}
18.

{
0,4,16,36,64,100, . . .

}
19.

{
. . . ,−6,−3,0,3,6,9,12,15, . . .

}
20.

{
. . . ,−8,−3,2,7,12,17, . . .

}
21.

{
0,1,4,9,16,25,36, . . .

}
22.

{
3,6,11,18,27,38, . . .

}

23.
{
3,4,5,6,7,8

}
24.

{−4,−3,−2,−1,0,1,2
}

25.
{
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8, . . .
}

26.
{
. . . , 1

27 , 1
9 , 1

3 ,1,3,9,27, . . .
}

27.
{
. . . ,−π,−π

2 ,0, π2 ,π, 3π
2 ,2π, 5π

2 , . . .
}

28.
{
. . . ,− 3

2 ,− 3
4 ,0, 3

4 , 3
2 , 9

4 ,3, 15
4 , 9

2 , . . .
}

C. Find the following cardinalities.
29.

∣∣{{1
}
,
{
2,

{
3,4

}}
,;}∣∣

30.
∣∣{{1,4

}
,a,b,

{{
3,4

}}
,
{;}}∣∣

31.
∣∣{{{1

}
,
{
2,

{
3,4

}}
,;}}∣∣

32.
∣∣{{{1,4

}
,a,b,

{{
3,4

}}
,
{;}}}∣∣

33.
∣∣{x ∈Z : |x| < 10

}∣∣

34.
∣∣{x ∈N : |x| < 10

}∣∣
35.

∣∣{x ∈Z : x2 < 10
}∣∣

36.
∣∣{x ∈N : x2 < 10

}∣∣
37.

∣∣{x ∈N : x2 < 0
}∣∣

38.
∣∣{x ∈N : 5x ≤ 20

}∣∣
D. Sketch the following sets of points in the x-y plane.

39.
{
(x, y) : x ∈ [1,2], y ∈ [1,2]

}
40.

{
(x, y) : x ∈ [0,1], y ∈ [1,2]

}
41.

{
(x, y) : x ∈ [−1,1], y= 1

}
42.

{
(x, y) : x = 2, y ∈ [0,1]

}
43.

{
(x, y) : |x| = 2, y ∈ [0,1]

}
44.

{
(x, x2) : x ∈R}

45.
{
(x, y) : x, y ∈R, x2 + y2 = 1

}

46.
{
(x, y) : x, y ∈R, x2 + y2 ≤ 1

}
47.

{
(x, y) : x, y ∈R, y≥ x2 −1

}
48.

{
(x, y) : x, y ∈R, x > 1

}
49.

{
(x, x+ y) : x ∈R, y ∈Z}

50.
{
(x, x2

y ) : x ∈R, y ∈N}
51.

{
(x, y) ∈R2 : (y− x)(y+ x)= 0

}
52.

{
(x, y) ∈R2 : (y− x2)(y+ x2)= 0

}
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1.2 The Cartesian Product
Given two sets A and B, it is possible to “multiply” them to produce a new
set denoted as A×B. This operation is called the Cartesian product. To
understand it, we must first understand the idea of an ordered pair.

Definition 1.1 An ordered pair is a list (x, y) of two things x and y,
enclosed in parentheses and separated by a comma.

For example, (2,4) is an ordered pair, as is (4,2). These ordered pairs
are different because even though they have the same things in them,
the order is different. We write (2,4) 6= (4,2). Right away you can see that
ordered pairs can be used to describe points on the plane, as was done in
calculus, but they are not limited to just that. The things in an ordered
pair don’t have to be numbers. You can have ordered pairs of letters, such
as (m,`), ordered pairs of sets such as (

{
2,5

}
,
{
3,2

}
), even ordered pairs

of ordered pairs like ((2,4), (4,2)). The following are also ordered pairs:
(2,

{
1,2,3

}
), (R, (0,0)). Any list of two things enclosed by parentheses is an

ordered pair. Now we are ready to define the Cartesian product.

Definition 1.2 The Cartesian product of two sets A and B is another
set, denoted as A×B and defined as A×B = {

(a,b) : a ∈ A,b ∈ B
}
.

Thus A×B is a set of ordered pairs of elements from A and B. For
example, if A = {

k,`,m
}
and B = {

q, r
}
, then

A×B = {
(k, q), (k, r), (`, q), (`, r), (m, q), (m, r)

}
.

Figure 1.1 shows how to make a schematic diagram of A×B. Line up the
elements of A horizontally and line up the elements of B vertically, as if A
and B form an x- and y-axis. Then fill in the ordered pairs so that each
element (x, y) is in the column headed by x and the row headed by y.

B

A

q
r (k, r) (`, r) (m, r)

(k, q) (`, q) (m, q)

k ` m

A×B

Figure 1.1. A diagram of a Cartesian product



The Cartesian Product 9

For another example,
{
0,1

}×{
2,1

} = {
(0,2), (0,1), (1,2), (1,1)

}
. If you are

a visual thinker, you may wish to draw a diagram similar to Figure 1.1.
The rectangular array of such diagrams give us the following general fact.

Fact 1.1 If A and B are finite sets, then |A×B| = |A| · |B|.
The set R×R= {

(x, y) : x, y ∈R}
should be very familiar. It can be viewed

as the set of points on the Cartesian plane, and is drawn in Figure 1.2(a).
The set R×N= {

(x, y) : x ∈R, y ∈N}
can be regarded as all of the points on

the Cartesian plane whose second coordinate is a natural number. This
is illustrated in Figure 1.2(b), which shows that R×N looks like infinitely
many horizontal lines at integer heights above the x axis. The set N×N
can be visualized as the set of all points on the Cartesian plane whose
coordinates are both natural numbers. It looks like a grid of dots in the
first quadrant, as illustrated in Figure 1.2(c).

x x x

y y y

(a) (b) (c)

R×R R×N N×N

Figure 1.2. Drawings of some Cartesian products

It is even possible for one factor of a Cartesian product to be a Cartesian
product itself, as in R× (N×Z) = {

(x, (y, z)) : x ∈R, (y, z) ∈N×Z}
.

We can also define Cartesian products of three or more sets by moving
beyond ordered pairs. An ordered triple is a list (x, y, z). The Cartesian
product of the three sets R, N and Z is R×N×Z= {

(x, y, z) : x ∈R, y ∈N, z ∈Z}
.

Of course there is no reason to stop with ordered triples. In general,

A1 × A2 ×·· ·× An = {
(x1, x2, . . . , xn) : xi ∈ A i for each i = 1,2, . . . ,n

}
.

Be mindful of parentheses. There is a slight difference between R×(N×Z)
and R×N×Z. The first is a Cartesian product of two sets; its elements are
ordered pairs (x, (y, z)). The second is a Cartesian product of three sets; its
elements look like (x, y, z). To be sure, in many situations there is no harm
in blurring the distinction between expressions like (x, (y, z)) and (x, y, z),
but for now we consider them as different.
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We can also take Cartesian powers of sets. For any set A and positive
integer n, the power An is the Cartesian product of A with itself n times:

An = A× A×·· ·× A = {
(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ A

}
.

In this way, R2 is the familiar Cartesian plane and R3 is three-dimensional
space. You can visualize how, if R2 is the plane, then Z2 = {

(m,n) : m,n ∈Z}
is a grid of points on the plane. Likewise, as R3 is 3-dimensional space,
Z3 = {

(m,n, p) : m,n, p ∈Z}
is a grid of points in space.

In other courses you may encounter sets that are very similar to Rn,
but yet have slightly different shades of meaning. Consider, for example,
the set of all two-by-three matrices with entries from R:

M = {[u v w
x y z

]
: u,v,w, x, y, z ∈R}

.

This is not really all that different from the set

R6 = {
(u,v,w, x, y, z) : u,v,w, x, y, z ∈R}

.

The elements of these sets are merely certain arrangements of six real
numbers. Despite their similarity, we maintain that M 6= R6, for two-by-
three matrices are not the same things as sequences of six numbers.

Exercises for Section 1.2
A. Write out the indicated sets by listing their elements between braces.

1. Suppose A = {
1,2,3,4

}
and B = {

a, c
}
.

(a) A×B
(b) B× A

(c) A× A
(d) B×B

(e) ;×B
(f) (A×B)×B

(g) A× (B×B)
(h) B3

2. Suppose A = {
π, e,0

}
and B = {

0,1
}
.

(a) A×B
(b) B× A

(c) A× A
(d) B×B

(e) A×;
(f) (A×B)×B

(g) A× (B×B)
(h) A×B×B

3.
{
x ∈R : x2 = 2

}×{
a, c, e

}
4.

{
n ∈Z : 2< n < 5

}×{
n ∈Z : |n| = 5

}
5.

{
x ∈R : x2 = 2

}×{
x ∈R : |x| = 2

}
6.

{
x ∈R : x2 = x

}×{
x ∈N : x2 = x

}
7.

{;}×{
0,;}×{

0,1
}

8.
{
0,1

}4

B. Sketch these Cartesian products on the x-y plane R2 (or R3 for the last two).
9.

{
1,2,3

}×{−1,0,1
}

10.
{−1,0,1

}×{
1,2,3

}
11. [0,1]× [0,1]
12. [−1,1]× [1,2]
13.

{
1,1.5,2

}× [1,2]
14. [1,2]×{

1,1.5,2
}

15.
{
1
}× [0,1]

16. [0,1]×{
1
}

17. N×Z
18. Z×Z
19. [0,1]× [0,1]× [0,1]
20.

{
(x, y) ∈R2 : x2 + y2 ≤ 1

}× [0,1]
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1.3 Subsets
It can happen that every element of some set A is also an element of
another set B. For example, each element of A = {

0,2,4
}
is also an element

of B = {
0,1,2,3,4

}
. When A and B are related this way we say that A is a

subset of B.

Definition 1.3 Suppose A and B are sets. If every element of A is also
an element of B, then we say A is a subset of B, and we denote this as
A ⊆ B. We write A 6⊆ B if A is not a subset of B, that is, if it is not true
that every element of A is also an element of B. Thus A 6⊆ B means that
there is at least one element of A that is not an element of B.

Example 1.2 Be sure you understand why each of the following is true.
1.

{
2,3,7

}⊆ {
2,3,4,5,6,7

}
2.

{
2,3,7

} 6⊆ {
2,4,5,6,7

}
3.

{
2,3,7

}⊆ {
2,3,7

}
4.

{
2n : n ∈Z}⊆Z

5.
{
(x,sin(x)) : x ∈R}⊆R2

6.
{
2,3,5,7,11,13,17, . . .

}⊆N
7. N⊆Z⊆Q⊆R
8. R×N⊆R×R

This brings us to a significant fact: If B is any set whatsoever, then
;⊆ B. To see why this is true, look at the last sentence of Definition 1.3.
It says that ; 6⊆ B would mean that there is at least one element of ;
that is not an element of B. But this cannot be so because ; contains no
elements! Thus it is not the case that ; 6⊆ B, so it must be that ;⊆ B.

Fact 1.2 The empty set is a subset of every set, that is, ;⊆ B for any set B.

Here is another way to look at it. Imagine a subset of B as a thing you
make by starting with braces

{}
, then filling them with selections from B.

For example, to make one particular subset of B = {
a,b, c

}
, start with

{}
,

select b and c from B and insert them into
{}

to form the subset
{
b, c

}
.

Alternatively, you could have chosen just a to make
{
a
}
, and so on. But

one option is to simply select nothing from B. This leaves you with the
subset

{}
. Thus

{}⊆ B. More often we write it as ;⊆ B.
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This idea of “making” a subset can help us list out all the subsets of
a given set B. As an example, let B = {

a,b, c
}
. Let’s list all of its subsets.

One way of approaching this is to make a tree-like structure. Begin with
the subset

{}
, which is shown on the left of Figure 1.3. Considering the

element a of B, we have a choice: insert it or not. The lines from
{}

point
to what we get depending whether or not we insert a, either

{}
or

{
a
}
. Now

move on to the element b of B. For each of the sets just formed we can
either insert or not insert b, and the lines on the diagram point to the
resulting sets

{}
,

{
b
}
,
{
a
}
, or

{
a,b

}
. Finally, to each of these sets, we can

either insert c or not insert it, and this gives us, on the far right-hand
column, the sets

{}
,
{
c
}
,
{
b
}
,
{
b, c

}
,
{
a
}
,
{
a, c

}
,
{
a,b

}
and

{
a,b, c

}
. These are

the eight subsets of B = {
a,b, c

}
.

Insert a? Insert b? Insert c?

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

{}

{}
{} {}

{
c
}

{
b
}

{
b, c

}
{
a
}

{
a, c

}
{
a,b

}
{
a,b, c

}

{
b
}

{
a
}

{
a,b

}
{
a
}

Figure 1.3. A “tree” for listing subsets

We can see from the way this tree branches out that if it happened that
B = {

a
}
, then B would have just two subsets, those in the second column

of the diagram. If it happened that B = {
a,b

}
, then B would have four

subsets, those listed in the third column, and so on. At each branching of
the tree, the number of subsets doubles. Thus in general, if |B| = n, then
B must have 2n subsets.

Fact 1.3 If a finite set has n elements, then it has 2n subsets.
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For a slightly more complex example, consider listing the subsets of
B = {

1,2,
{
1,3

}}
. This B has just three elements: 1, 2 and

{
1,3

}
. At this

point you probably don’t even have to draw a tree to list out B’s subsets.
You just make all the possible selections from B and put them between
braces to get{}

,
{
1
}
,

{
2
}
,

{{
1,3

}}
,

{
1,2

}
,

{
1,

{
1,3

}}
,

{
2,

{
1,3

}}
,

{
1,2,

{
1,3

}}
.

These are the eight subsets of B. Exercises like this help you identify what
is and isn’t a subset. You know immediately that a set such as

{
1,3

}
is not

a subset of B because it can’t be made by selecting elements from B, as
the 3 is not an element of B and thus is not a valid selection. Notice that
although

{
1,3

} 6⊆ B, it is true that
{
1,3

} ∈ B. Also,
{{

1,3
}}⊆ B.

Example 1.3 Be sure you understand why the following statements are
true. Each illustrates an aspect of set theory that you’ve learned so far.
1. 1 ∈ {

1,
{
1
}}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 is the first element listed in

{
1,

{
1
}}

2. 1 6⊆ {
1,

{
1
}}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 1 is not a set
3.

{
1
} ∈ {

1,
{
1
}}

. . . . . . . . . . . . . . . . . . . . . . . . .
{
1
}
is the second element listed in

{
1,

{
1
}}

4.
{
1
}⊆ {

1,
{
1
}}

. . . . . . . . . . . . . . . . . . . . . . . make subset
{
1
}
by selecting 1 from

{
1,

{
1
}}

5.
{{

1
}} ∉ {

1,
{
1
}}
. . . . . . . . . . . because

{
1,

{
1
}}

contains only 1 and
{
1
}
, and not

{{
1
}}

6.
{{

1
}}⊆ {

1,
{
1
}}
. . . . . . . . . . . . . . . . . .make subset

{{
1
}}

by selecting
{
1
}
from

{
1,

{
1
}}

7. N ∉N . . . . . . . . .because N is a set (not a number) and N contains only numbers
8. N⊆N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because X ⊆ X for every set X

9. ;∉N . . . . . . . . . . . . . . . . . . . .because the set N contains only numbers and no sets
10. ;⊆N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because ; is a subset of every set
11. N ∈ {

N
}
. . . . . . . . . . . . . . . . . . . . . . . . . . .because

{
N

}
has just one element, the set N

12. N 6⊆ {
N

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .because, for instance, 1 ∈N but 1 ∉ {

N
}

13. ;∉ {
N

}
. . . . . . . . . . . . . . . . . . . . . note that the only element of

{
N

}
is N, and N 6= ;

14. ;⊆ {
N

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because ; is a subset of every set

15. ;∈ {;,N
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .; is the first element listed in

{;,N
}

16. ;⊆ {;,N
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .because ; is a subset of every set

17.
{
N

}⊆ {;,N
}
. . . . . . . . . . . . . . . . . . . . . . . make subset

{
N

}
by selecting N from

{;,N
}

18.
{
N

} 6⊆ {;,
{
N

}}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because N ∉ {;,

{
N

}}
19.

{
N

} ∈ {;,
{
N

}}
. . . . . . . . . . . . . . . . . . . . . .

{
N

}
is the second element listed in

{;,
{
N

}}
20.

{
(1,2), (2,2), (7,1)

}⊆N×N . . . . . . . . . . . . . . . . . . . each of (1,2), (2,2), (7,1) is in N×N

Though they should help you understand the concept of subset, the
above examples are somewhat artificial. But in general, subsets arise very
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naturally. For instance, consider the unit circle C = {
(x, y) ∈R2 : x2 + y2 = 1

}
.

This is a subset C ⊆R2. Likewise the graph of a function y= f (x) is a set
of points G = {

(x, f (x)) : x ∈ R}
, and G ⊆ R2. Surely sets such as C and G

are more easily understood or visualized when regarded as subsets of R2.
Mathematics is filled with such instances where it is important to regard
one set as a subset of another.

Exercises for Section 1.3
A. List all the subsets of the following sets.

1.
{
1,2,3,4

}
2.

{
1,2,;}

3.
{{
R
}}

4. ;

5.
{;}

6.
{
R,Q,N

}
7.

{
R,

{
Q,N

}}
8.

{{
0,1

}
,
{
0,1,

{
2
}}

,
{
0
}}

B. Write out the following sets by listing their elements between braces.
9.

{
X : X ⊆ {

3,2,a
}
and |X | = 2

}
10.

{
X ⊆N : |X | ≤ 1

} 11.
{
X : X ⊆ {

3,2,a
}
and |X | = 4

}
12.

{
X : X ⊆ {

3,2,a
}
and |X | = 1

}
C. Decide if the following statements are true or false. Explain.

13. R3 ⊆R3

14. R2 ⊆R3

15.
{
(x, y) : x−1= 0

}⊆ {
(x, y) : x2 − x = 0

}
16.

{
(x, y) : x2 − x = 0

}⊆ {
(x, y) : x−1= 0

}

1.4 Power Sets
Given a set, you can form a new set with the power set operation, defined
as follows.

Definition 1.4 If A is a set, the power set of A is another set, denoted
as P(A) and defined to be the set of all subsets of A. In symbols, P(A)={
X : X ⊆ A

}
.

For example, suppose A = {
1,2,3

}
. The power set of A is the set of all

subsets of A. We learned how to find these subsets in the previous section,
and they are

{}
,
{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
1,3

}
,
{
2,3

}
and

{
1,2,3

}
. Therefore the

power set of A is

P(A)= { ;,
{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
1,3

}
,
{
2,3

}
,
{
1,2,3

} }
.

As we saw in the previous section, if a finite set A has n elements, then
it has 2n subsets, and thus its power set has 2n elements.
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Fact 1.4 If A is a finite set, then |P(A)| = 2|A|.

Example 1.4 You should examine the following statements and make
sure you understand how the answers were obtained. In particular, notice
that in each instance the equation |P(A)| = 2|A| is true.
1. P

({
0,1,3

})= {;,
{
0
}
,
{
1
}
,
{
3
}
,
{
0,1

}
,
{
0,3

}
,
{
1,3

}
,
{
0,1,3

} }
2. P

({
1,2

})= {;,
{
1
}
,
{
2
}
,
{
1,2

} }
3. P

({
1
})= {;,

{
1
} }

4. P (;)= {; }
5. P

({
a
})= {;,

{
a
} }

6. P
({;})= {;,

{;} }
7. P

({
a
})×P

({;})= {
(;,;),

(;,
{;})

,
({

a
}
,;)

,
({

a
}
,
{;}) }

8. P
(
P

({;}))= {;,
{;}

,
{{;}}

,
{;,

{;}} }
9. P

({
1,

{
1,2

}})= {;,
{
1
}
,

{{
1,2

}}
,

{
1,

{
1,2

}} }
10. P

({
Z,N

})= {;,
{
Z

}
,

{
N

}
,

{
Z,N

} }
Next are some that are wrong. See if you can determine why they are wrong
and make sure you understand the explanation on the right.
11. P(1)= {;,

{
1
} }

. . . . . . . . . . . . . . . . . . . . . . . . . . . meaningless because 1 is not a set
12. P

({
1,

{
1,2

}})= {;,
{
1
}
,
{
1,2

}
,
{
1,

{
1,2

}}}
. . . . . . . . wrong because

{
1,2

} 6⊆ {
1,

{
1,2

}}
13. P

({
1,

{
1,2

}})= {;,
{{

1
}}

,
{{

1,2
}}

,
{;,

{
1,2

}}}
. . . . .wrong because

{{
1
}} 6⊆ {

1,
{
1,2

}}
If A is finite, it is possible (though maybe not practical) to list out P(A)

between braces as was done in the above example. That is not possible if
A is infinite. For example, consider P(N). If you start listing its elements
you quickly discover that N has infinitely many subsets, and it’s not clear
how (or if) they could be arranged as a list with a definite pattern:

P(N)= {;,
{
1
}
,
{
2
}
, . . . ,

{
1,2

}
,
{
1,3

}
, . . . ,

{
39,47

}
,

. . . ,
{
3,87,131

}
, . . . ,

{
2,4,6,8, . . .

}
, . . . ? . . .

}
.

The set P(R2) is mind boggling. Think of R2 = {
(x, y) : x, y ∈R}

as the set
of all points on the Cartesian plane. A subset of R2 (that is, an element
of P(R2)) is a set of points in the plane. Let’s look at some of these sets.
Since

{
(0,0), (1,1)

} ⊆ R2, we know that
{
(0,0), (1,1)

} ∈ P(R2). We can even
draw a picture of this subset, as in Figure 1.4(a). For another example, the
graph of the equation y= x2 is the set of points G = {

(x, x2) : x ∈R}
and this

is a subset of R2, so G ∈P(R2). Figure 1.4(b) is a picture of G. Because
this can be done for any function, the graph of any imaginable function
f :R→R is an element of P(R2).
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x x x

y y y

(a) (b) (c)

Figure 1.4. Three of the many, many sets in P(R2)

In fact, any black-and-white image on the plane can be thought of as a
subset of R2, where the black points belong to the subset and the white
points do not. So the text “INFINITE” in Figure 1.4(c) is a subset of R2

and therefore an element of P(R2). By that token, P(R2) contains a copy
of the page you are reading now.

Thus in addition to containing every imaginable function and every
imaginable black-and-white image, P(R2) also contains the full text of
every book that was ever written, those that are yet to be written and
those that will never be written. Inside of P(R2) is a detailed biography of
your life, from beginning to end, as well as the biographies of all of your
unborn descendants. It is startling that the five symbols used to write
P(R2) can express such an incomprehensibly large set.

Homework: Think about P(P(R2)).

Exercises for Section 1.4
A. Find the indicated sets.

1. P
({{

a,b
}
,
{
c
}})

2. P
({

1,2,3,4
})

3. P
({{;}

,5
})

4. P
({
R,Q

})
5. P

(
P

({
2
}))

6. P
({

1,2
})×P

({
3
})

7. P
({

a,b
})×P

({
0,1

})
8. P

({
1,2

}×{
3
})

9. P
({

a,b
}×{

0
})

10.
{
X ∈P

({
1,2,3

})
: |X | ≤ 1

}
11.

{
X ⊆P

({
1,2,3

})
: |X | ≤ 1

}
12.

{
X ∈P

({
1,2,3

})
: 2 ∈ X

}
B. Suppose that |A| = m and |B| = n. Find the following cardinalities.

13. |P(P(P(A)))|
14. |P(P(A))|
15. |P(A×B)|
16. |P(A)×P(B)|

17.
∣∣{X ∈P(A) : |X | ≤ 1

}∣∣
18. |P(A×P(B))|
19. |P(P(P(A×;)))|
20.

∣∣{X ⊆P(A) : |X | ≤ 1
}∣∣
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1.5 Union, Intersection, Difference
Just as numbers are combined with operations such as addition, subtrac-
tion and multiplication, there are various operations that can be applied to
sets. The Cartesian product (defined in Section 1.2) is one such operation;
given sets A and B, we can combine them with × to get a new set A×B.
Here are three new operations called union, intersection and difference.

Definition 1.5 Suppose A and B are sets.
The union of A and B is the set A∪B = {

x : x ∈ A or x ∈ B
}
.

The intersection of A and B is the set A∩B = {
x : x ∈ A and x ∈ B

}
.

The difference of A and B is the set A−B = {
x : x ∈ A and x ∉ B

}
.

In words, the union A∪B is the set of all things that are in A or in B
(or in both). The intersection A∩B is the set of all things in both A and B.
The difference A−B is the set of all things that are in A but not in B.

Example 1.5 Suppose A = {
a,b, c,d, e

}
, B = {

d, e, f
}
and C = {

1,2,3
}
.

1. A∪B = {
a,b, c,d, e, f

}
2. A∩B = {

d, e
}

3. A−B = {
a,b, c

}
4. B− A = {

f
}

5. (A−B)∪ (B− A)= {
a,b, c, f

}
6. A∪C = {

a,b, c,d, e,1,2,3
}

7. A∩C =;
8. A−C = {

a,b, c,d, e
}

9. (A∩C)∪ (A−C)= {
a,b, c,d, e

}
10. (A∩B)×B = {

(d,d), (d, e), (d, f ), (e,d), (e, e), (e, f )
}

11. (A×C)∩ (B×C)= {
(d,1), (d,2), (d,3), (e,1), (e,2), (e,3)

}
Observe that for any sets X and Y it is always true that X ∪Y =Y ∪ X

and X ∩Y =Y ∩ X , but in general X −Y 6=Y − X .
Continuing the example, parts 12–15 below use the interval notation

discussed in Section 1.1, so [2,5] = {
x ∈ R : 2 ≤ x ≤ 5

}
, etc. Sketching these

examples on the number line may help you understand them.
12. [2,5]∪ [3,6]= [2,6]

13. [2,5]∩ [3,6]= [3,5]

14. [2,5]− [3,6]= [2,3)

15. [0,3]− [1,2]= [0,1)∪ (2,3]
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A

B
A∪B

A∩B
A−B

(a) (b) (c) (d)

Figure 1.5. The union, intersection and difference of sets A and B

Example 1.6 Let A = {
(x, x2) : x ∈ R}

be the graph of the equation y = x2

and let B = {
(x, x+2) : x ∈R}

be the graph of the equation y= x+2. These sets
are subsets of R2. They are sketched together in Figure 1.5(a). Figure 1.5(b)
shows A∪B, the set of all points (x, y) that are on one (or both) of the two
graphs. Observe that A∩B = {

(−1,1), (2,4)
}
consists of just two elements,

the two points where the graphs intersect, as illustrated in Figure 1.5(c).
Figure 1.5(d) shows A−B, which is the set A with “holes” where B crossed it.
In set builder notation, we could write A∪B = {

(x, y) : x ∈R, y= x2 or y= x+2
}

and A−B = {
(x, x2) : x ∈R−{−1,2

}}
.

Exercises for Section 1.5
1. Suppose A = {

4,3,6,7,1,9
}
, B = {

5,6,8,4
}
and C = {

5,8,4
}
. Find:

(a) A∪B

(b) A∩B

(c) A−B

(d) A−C

(e) B− A

(f) A∩C

(g) B∩C

(h) B∪C

(i) C−B

2. Suppose A = {
0,2,4,6,8

}
, B = {

1,3,5,7
}
and C = {

2,8,4
}
. Find:

(a) A∪B

(b) A∩B

(c) A−B

(d) A−C

(e) B− A

(f) A∩C

(g) B∩C

(h) C− A

(i) C−B

3. Suppose A = {
0,1

}
and B = {

1,2
}
. Find:

(a) (A×B)∩ (B×B)

(b) (A×B)∪ (B×B)

(c) (A×B)− (B×B)

(d) (A∩B)× A

(e) (A×B)∩B

(f) P(A)∩P(B)

(g) P(A)−P(B)

(h) P(A∩B)

(i) P(A×B)

4. Suppose A = {
b, c,d

}
and B = {

a,b
}
. Find:

(a) (A×B)∩ (B×B)

(b) (A×B)∪ (B×B)

(c) (A×B)− (B×B)

(d) (A∩B)× A

(e) (A×B)∩B

(f) P(A)∩P(B)

(g) P(A)−P(B)

(h) P(A∩B)

(i) P(A)×P(B)
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5. Sketch the sets X = [1,3]×[1,3] and Y = [2,4]×[2,4] on the plane R2. On separate
drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X . (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets
like [1,3]× [1,3] in the exercises for Section 1.2.)

6. Sketch the sets X = [−1,3]× [0,2] and Y = [0,3]× [1,4] on the plane R2. On
separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .

7. Sketch the sets X = {
(x, y) ∈R2 : x2 + y2 ≤ 1

}
and Y = {

(x, y) ∈R2 : x ≥ 0
}
on R2. On

separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .
8. Sketch the sets X = {

(x, y) ∈R2 : x2 + y2 ≤ 1
}
and Y = {

(x, y) ∈R2 :−1≤ y≤ 0
}
on R2.

On separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .
9. Is the statement (R×Z)∩ (Z×R)=Z×Z true or false? What about the statement

(R×Z)∪ (Z×R)=R×R?
10. Do you think the statement (R−Z)×N= (R×N)− (Z×N) is true, or false? Justify.

1.6 Complement
This section introduces yet another set operation, called the set complement.
The definition requires the idea of a universal set, which we now discuss.

When dealing with a set, we almost always regard it as a subset
of some larger set. For example, consider the set of prime numbers
P = {

2,3,5,7,11,13, . . .
}
. If asked to name some things that are not in P, we

might mention some composite numbers like 4 or 6 or 423. It probably
would not occur to us to say that Vladimir Putin is not in P. True, Vladimir
Putin is not in P, but he lies entirely outside of the discussion of what is
a prime number and what is not. We have an unstated assumption that

P ⊆N

because N is the most natural setting in which to discuss prime numbers.
In this context, anything not in P should still be in N. This larger set N is
called the universal set or universe for P.

Almost every useful set in mathematics can be regarded as having
some natural universal set. For instance, the unit circle is the set C ={
(x, y) ∈R2 : x2 + y2 = 1

}
, and since all these points are in the plane R2 it is

natural to regard R2 as the universal set for C. In the absence of specifics,
if A is a set, then its universal set is often denoted as U. We are now
ready to define the complement operation.

Definition 1.6 Let A be a set with a universal set U. The complement
of A, denoted A, is the set A =U − A.
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Example 1.7 If P is the set of prime numbers, then

P =N−P = {
1,4,6,8,9,10,12, . . .

}
.

Thus P is the set of composite numbers and 1.

Example 1.8 Let A = {
(x, x2) : x ∈ R}

be the graph of the equation y = x2.
Figure 1.6(a) shows A in its universal set R2. The complement of A is A =
R2 − A = {

(x, y) ∈R2 : y 6= x2}
, illustrated by the shaded area in Figure 1.6(b).

A A

(a) (b)

Figure 1.6. A set and its complement

Exercises for Section 1.6
1. Let A = {

4,3,6,7,1,9
}
and B = {

5,6,8,4
}
have universal set U = {

0,1,2, . . . ,10
}
.

Find:
(a) A

(b) B

(c) A∩ A

(d) A∪ A

(e) A− A

(f) A−B

(g) A−B

(h) A∩B

(i) A∩B

2. Let A = {
0,2,4,6,8

}
and B = {

1,3,5,7
}
have universal set U = {

0,1,2, . . . ,8
}
. Find:

(a) A

(b) B

(c) A∩ A

(d) A∪ A

(e) A− A

(f) A∪B

(g) A∩B

(h) A∩B

(i) A×B

3. Sketch the set X = [1,3]× [1,2] on the plane R2. On separate drawings, shade in
the sets X and X ∩ ([0,2]× [0,3]).

4. Sketch the set X = [−1,3]× [0,2] on the plane R2. On separate drawings, shade
in the sets X and X ∩ ([−2,4]× [−1,3]).

5. Sketch the set X = {
(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4

}
on the plane R2. On a separate

drawing, shade in the set X .
6. Sketch the set X = {

(x, y) ∈R2 : y< x2}
on R2. Shade in the set X .
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1.7 Venn Diagrams
In thinking about sets, it is sometimes helpful to draw informal, schematic
diagrams of them. In doing this we often represent a set with a circle
(or oval), which we regard as enclosing all the elements of the set. Such
diagrams can illustrate how sets combine using various operations. For
example, Figures 1.7(a–c) show two sets A and B that overlap in a middle
region. The sets A ∪B, A ∩B and A −B are shaded. Such graphical
representations of sets are called Venn diagrams, after their inventor,
British logician John Venn, 1834–1923.

A A AB B B

A∪B A∩B A−B

(a) (b) (c)

Figure 1.7. Venn diagrams for two sets

Though you are unlikely to draw Venn diagrams as a part of a proof
of any theorem, you will probably find them to be useful “scratch work”
devices that help you to understand how sets combine, and to develop
strategies for proving certain theorems or solving certain problems. The
remainder of this section uses Venn diagrams to explore how three sets
can be combined using ∪ and ∩.

Let’s begin with the set A∪B∪C. Our definitions suggest this should
consist of all elements which are in one or more of the sets A, B and C.
Figure 1.8(a) shows a Venn diagram for this. Similarly, we think of A∩B∩C
as all elements common to each of A, B and C, so in Figure 1.8(b) the
region belonging to all three sets is shaded.

A AB B

C C

A∪B∪C A∩B∩C

(a) (b)

Figure 1.8. Venn diagrams for three sets
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We can also think of A∩B∩C as the two-step operation (A∩B)∩C. In
this expression the set A∩B is represented by the region common to both
A and B, and when we intersect this with C we get Figure 1.8(b). This is a
visual representation of the fact that A∩B∩C = (A∩B)∩C. Similarly, we
have A∩B∩C = A∩ (B∩C). Likewise, A∪B∪C = (A∪B)∪C = A∪ (B∪C).

Notice that in these examples, where the expression either contains
only the symbol ∪ or only the symbol ∩, the placement of the parentheses
is irrelevant, so we are free to drop them. It is analogous to the situations
in algebra involving expressions (a+b)+ c = a+ (b+ c) or (a ·b) · c = a · (b · c).
We tend to drop the parentheses and write simply a+b+ c or a ·b · c. By
contrast, in an expression like (a+ b) · c the parentheses are absolutely
essential because (a+b) · c and a+ (b · c) are generally not equal.

Now let’s use Venn diagrams to help us understand the expressions
(A∪B)∩C and A∪ (B∩C), which use a mix of ∪ and ∩. Figure 1.9 shows
how to draw a Venn diagram for (A∪B)∩C. In the drawing on the left, the
set A∪B is shaded with horizontal lines, while C is shaded with vertical
lines. Thus the set (A∪B)∩C is represented by the cross-hatched region
where A∪B and C overlap. The superfluous shadings are omitted in the
drawing on the right showing the set (A∪B)∩C.

A AB B

C C

Figure 1.9. How to make a Venn diagram for (A∪B)∩C

Now think about A∪ (B∩C). In Figure 1.10 the set A is shaded with
horizontal lines, and B∩C is shaded with vertical lines. The union A∪(B∩C)
is represented by the totality of all shaded regions, as shown on the right.

A AB B

C C

Figure 1.10. How to make a Venn diagram for A∪ (B∩C)



Venn Diagrams 23

Compare the diagrams for (A∪B)∩C and A∪ (B∩C) in Figures 1.9 and
1.10. The fact that the diagrams are different indicates that (A∪B)∩C 6=
A∪ (B∩C) in general. Thus an expression such as A∪B∩C is absolutely
meaningless because we can’t tell whether it means (A∪B)∩C or A∪(B∩C).
In summary, Venn diagrams have helped us understand the following.

Important Points:
• If an expression involving sets uses only ∪, then parentheses are optional.
• If an expression involving sets uses only ∩, then parentheses are optional.
• If an expression uses both ∪ and ∩, then parentheses are essential.

In the next section we will study types of expressions that use only ∪
or only ∩. These expressions will not require the use of parentheses.

Exercises for Section 1.7
1. Draw a Venn diagram for A.
2. Draw a Venn diagram for B− A.
3. Draw a Venn diagram for (A−B)∩C.
4. Draw a Venn diagram for (A∪B)−C.
5. Draw Venn diagrams for A∪(B∩C) and (A∪B)∩(A∪C). Based on your drawings,

do you think A∪ (B∩C) = (A∪B)∩ (A∪C)?
6. Draw Venn diagrams for A∩(B∪C) and (A∩B)∪(A∩C). Based on your drawings,

do you think A∩ (B∪C) = (A∩B)∪ (A∩C)?
7. Suppose sets A and B are in a universal set U. Draw Venn diagrams for A∩B

and A∪B. Based on your drawings, do you think it’s true that A∩B = A∪B?
8. Suppose sets A and B are in a universal set U. Draw Venn diagrams for A∪B

and A∩B. Based on your drawings, do you think it’s true that A∪B = A∩B?
9. Draw a Venn diagram for (A∩B)−C.

10. Draw a Venn diagram for (A−B)∪C.

Following are Venn diagrams for expressions involving sets A,B and C. Write the
corresponding expression.

11. A B

C

12. A B

C

13. A B

C

14. A B

C
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1.8 Indexed Sets
When a mathematical problem involves lots of sets, it is often convenient to
keep track of them by using subscripts (also called indices). Thus instead
of denoting three sets as A,B and C, we might instead write them as A1, A2

and A3. These are called indexed sets.
Although we defined union and intersection to be operations that

combine two sets, you by now have no difficulty forming unions and
intersections of three or more sets. (For instance, in the previous section
we drew Venn diagrams for the intersection and union of three sets.)
But let’s take a moment to write down careful definitions. Given sets
A1, A2, . . . , An, the set A1 ∪ A2 ∪ A3 ∪·· ·∪ An consists of everything that is
in at least one of the sets A i. Likewise A1 ∩ A2 ∩ A3 ∩·· ·∩ An consists of
everything that is common to all of the sets A i. Here is a careful definition.

Definition 1.7 Suppose A1, A2, . . . , An are sets. Then

A1 ∪ A2 ∪ A3 ∪·· ·∪ An = {
x : x ∈ A i for at least one set A i, for 1≤ i ≤ n

}
,

A1 ∩ A2 ∩ A3 ∩·· ·∩ An = {
x : x ∈ A i for every set A i, for 1≤ i ≤ n

}
.

But if the number n of sets is large, these expressions can get messy.
To overcome this, we now develop some notation that is akin to sigma
notation. You already know that sigma notation is a convenient symbolism
for expressing sums of many numbers. Given numbers a1,a2,a3, . . . ,an,
then

n∑
i=1

ai = a1 +a2 +a3 +·· ·+an.

Even if the list of numbers is infinite, the sum
∞∑

i=1
ai = a1 +a2 +a3 +·· ·+ai +·· ·

is often still meaningful. The notation we are about to introduce is very
similar to this. Given sets A1, A2, A3, . . . , An, we define

n⋃
i=1

A i = A1 ∪ A2 ∪ A3 ∪·· ·∪ An and
n⋂

i=1
A i = A1 ∩ A2 ∩ A3 ∩·· ·∩ An.

Example 1.9 Suppose A1 =
{
0,2,5

}
, A2 =

{
1,2,5

}
and A3 =

{
2,5,7

}
. Then

3⋃
i=1

A i = A1 ∪ A2 ∪ A3 =
{
0,1,2,5,7

}
and

3⋂
i=1

A i = A1 ∩ A2 ∩ A3 =
{
2,5

}
.
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This notation is also used when the list of sets A1, A2, A3, . . . is infinite:
∞⋃

i=1
A i = A1 ∪ A2 ∪ A3 ∪·· · = {

x : x ∈ A i for at least one set A i with 1≤ i
}
.

∞⋂
i=1

A i = A1 ∩ A2 ∩ A3 ∩·· · = {
x : x ∈ A i for every set A i with 1≤ i

}
.

Example 1.10 This example involves the following infinite list of sets.

A1 =
{−1,0,1

}
, A2 =

{−2,0,2
}
, A3 =

{−3,0,3
}
, · · · , A i =

{− i,0, i
}
, · · ·

Observe that
∞⋃

i=1
A i =Z, and

∞⋂
i=1

A i =
{
0
}
.

Here is a useful twist on our new notation. We can write
3⋃

i=1
A i =

⋃
i∈{1,2,3}

A i,

as this takes the union of the sets A i for i = 1,2,3. Likewise:

3⋂
i=1

A i = ⋂
i∈{1,2,3}

A i

∞⋃
i=1

A i = ⋃
i∈N

A i

∞⋂
i=1

A i = ⋂
i∈N

A i

Here we are taking the union or intersection of a collection of sets A i

where i is an element of some set, be it
{
1,2,3

}
or N. In general, the way

this works is that we will have a collection of sets A i for i ∈ I, where I is
the set of possible subscripts. The set I is called an index set.

It is important to realize that the set I need not even consist of integers.
(We could subscript with letters or real numbers, etc.) Since we are
programmed to think of i as an integer, let’s make a slight notational
change: We use α, not i, to stand for an element of I. Thus we are dealing
with a collection of sets Aα for α ∈ I. This leads to the following definition.

Definition 1.8 If we have a set Aα for every α in some index set I, then⋃
α∈I

Aα = {
x : x ∈ Aα for at least one set Aα with α ∈ I

}
⋂
α∈I

Aα = {
x : x ∈ Aα for every set Aα with α ∈ I

}
.
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Example 1.11 Here the sets Aα will be subsets of R2. Let I = [0,2] ={
x ∈R : 0≤ x ≤ 2

}
. For each number α ∈ I, let Aα = {

(x,α) : x ∈R,1≤ x ≤ 2
}
. For

instance, given α= 1 ∈ I the set A1 = {
(x,1) : x ∈ R,1 ≤ x ≤ 2

}
is a horizontal

line segment one unit above the x-axis and stretching between x = 1 and
x = 2, as shown in Figure 1.11(a). Likewise Ap

2 =
{
(x,

p
2) : x ∈R,1≤ x ≤ 2

}
is

a horizontal line segment
p

2 units above the x-axis and stretching between
x = 1 and x = 2. A few other of the Aα are shown in Figure 1.11(a), but they
can’t all be drawn because there is one Aα for each of the infinitely many
numbers α ∈ [0,2]. The totality of them covers the shaded region in Figure
1.11(b), so this region is the union of all the Aα. Since the shaded region
is the set

{
(x, y) ∈R2 : 1≤ x ≤ 2,0≤ y≤ 2

} = [1,2]× [0,2], it follows that⋃
α∈[0,2]

Aα = [1,2]× [0,2].

Likewise, since there is no point (x, y) that is in every set Aα, we have⋂
α∈[0,2]

Aα =;.

x x

y y

1

1

2

2

1

1

2

2

A0.25
A0.5

A1

A2

Ap
2 ⋃

α∈[0,2]
Aα

(a) (b)

Figure 1.11. The union of an indexed collection of sets

One final comment. Observe that Aα = [1,2]×{
α

}
, so the above expres-

sions can be written as⋃
α∈[0,2]

[1,2]×{
α

}= [1,2]× [0,2] and
⋂

α∈[0,2]
[1,2]×{

α
}=;.
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Example 1.12 In this example our sets are indexed by R2. For any
(a,b) ∈R2, let P(a,b) be the following subset of R3:

P(a,b) =
{
(x, y, z) ∈R3 : ax+by= 0

}
.

In words, given a point (a,b) ∈R2, the corresponding set P(a,b) consists of
all points (x, y, z) in R3 that satisfy the equation ax+by= 0. From previous
math courses you will recognize this as a plane in R3, that is, P(a,b) is a
plane in R3. Moreover, since any point (0,0, z) on the z-axis automatically
satisfies ax+by= 0, each P(a,b) contains the z-axis.

Figure 1.12 (left) shows the set P(1,2) =
{
(x, y, z) ∈R3 : x+2y= 0

}
. It is the

vertical plane that intersects the xy-plane at the line x+2y= 0.

x

y

z

(−2,1,0)

P(1,2)

Figure 1.12. The sets P(a,b) are vertical planes containing the z-axis.

For any point (a,b) ∈R2 with (a,b) 6= (0,0), we can visualize P(a,b) as the
vertical plane that cuts the xy-plane at the line ax+ by = 0. Figure 1.12
(right) shows a few of the P(a,b). Since any two such planes intersect
along the z-axis, and because the z-axis is a subset of every P(a,b), it is
immediately clear that⋂

(a,b)∈R2
P(a,b) =

{
(0,0, z) : z ∈R} = “the z-axis”.

For the union, note that any given point (a,b, c) ∈R3 belongs to the set
P(−b,a) because (x, y, z)= (a,b, c) satisfies the equation −bx+ay= 0. (In fact,
any (a,b, c) belongs to the special set P(0,0) =R3, which is the only P(a,b) that
is not a plane.) Since any point in R3 belongs to some P(a,b) we have⋃

(a,b)∈R2
P(a,b) =R3.
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Exercises for Section 1.8
1. Suppose A1 =

{
a,b,d, e, g, f

}
, A2 =

{
a,b, c,d

}
, A3 =

{
b,d,a

}
and A4 =

{
a,b,h

}
.

(a)
4⋃

i=1
A i = (b)

4⋂
i=1

A i =

2. Suppose


A1 = {

0,2,4,8,10,12,14,16,18,20,22,24
}
,

A2 = {
0,3,6,9,12,15,18,21,24

}
,

A3 = {
0,4,8,12,16,20,24

}
.

(a)
3⋃

i=1
A i = (b)

3⋂
i=1

A i =

3. For each n ∈N, let An = {
0,1,2,3, . . . ,n

}
.

(a)
⋃
i∈N

A i = (b)
⋂
i∈N

A i =

4. For each n ∈N, let An = {−2n,0,2n
}
.

(a)
⋃
i∈N

A i = (b)
⋂
i∈N

A i =

5. (a)
⋃
i∈N

[i, i+1]= (b)
⋂
i∈N

[i, i+1]=

6. (a)
⋃
i∈N

[0, i+1]= (b)
⋂
i∈N

[0, i+1]=

7. (a)
⋃
i∈N

R× [i, i+1]= (b)
⋂
i∈N

R× [i, i+1]=

8. (a)
⋃
α∈R

{
α

}× [0,1]= (b)
⋂
α∈R

{
α

}× [0,1]=

9. (a)
⋃

X∈P(N)
X = (b)

⋂
X∈P(N)

X =

10. (a)
⋃

x∈[0,1]
[x,1]× [0, x2]= (b)

⋂
x∈[0,1]

[x,1]× [0, x2]=

11. Is
⋂
α∈I

Aα ⊆ ⋃
α∈I

Aα always true for any collection of sets Aα with index set I?

12. If
⋂
α∈I

Aα = ⋃
α∈I

Aα, what do you think can be said about the relationships between

the sets Aα?

13. If J 6= ; and J ⊆ I, does it follow that
⋃
α∈J

Aα ⊆ ⋃
α∈I

Aα? What about
⋂
α∈J

Aα ⊆ ⋂
α∈I

Aα?

14. If J 6= ; and J ⊆ I, does it follow that
⋂
α∈I

Aα ⊆ ⋂
α∈J

Aα? Explain.
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1.9 Sets that Are Number Systems
In practice, the sets we tend to be most interested in often have special
properties and structures. For example, the sets Z, Q and R are familiar
number systems: Given such a set, any two of its elements can be added
(or multiplied, etc.) together to produce another element in the set. These
operations obey the familiar commutative, associative and distributive
properties that we all have dealt with for years. Such properties lead to
the standard algebraic techniques for solving equations. Even though we
are concerned with the idea of proof, we will not find it necessary to define,
prove or verify such properties and techniques; we will accept them as the
ground rules upon which our further deductions are based.

We also accept as fact the natural ordering of the elements of N,Z,Q
and R, so that (for example) the meaning of “5< 7” is understood and does
not need to be justified or explained. Similarly, if x ≤ y and a 6= 0, we know
that ax ≤ ay or ax ≥ ay, depending on whether a is positive or negative.

Another thing that our ingrained understanding of the ordering of
numbers tells us is that any non-empty subset of N has a smallest element.
In other words, if A ⊆N and A 6= ;, then there is an element x0 ∈ A that is
smaller than every other element of A. (To find it, start at 1, then move
in increments to 2, 3, 4, etc., until you hit a number x0 ∈ A; this is the
smallest element of A.) Similarly, given an integer b, any non-empty subset
A ⊆ {

b, b+1, b+2, b+3, . . .
}
has a smallest element. This fact is sometimes

called the well-ordering principle. There is no need to remember this
term, but do be aware that we will use this simple, intuitive idea often in
proofs, usually without a second thought.

The well-ordering principle seems innocent enough, but it actually says
something very fundamental and special about the positive integers N.
In fact, the corresponding statement about the positive real numbers
is false: The subset A = { 1

n : n ∈N}
of the positive reals has no smallest

element because for any x0 = 1
n ∈ A that we might pick, there is always a

smaller element 1
n+1 ∈ A.

One consequence of the well-ordering principle (as we will see below)
is the familiar fact that any integer a can be divided by a non-zero integer
b, resulting in a quotient q and remainder r. For example, b = 3 goes
into a = 17 q = 5 times with remainder r = 2. In symbols, 17 = 5 ·3+2, or
a = qb+ r. This significant fact is called the division algorithm.

Fact 1.5 (The Division Algorithm) Given integers a and b with b > 0,
there exist integers q and r for which a = qb+ r and 0≤ r < b.
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Although there is no harm in accepting the division algorithm without
proof, note that it does follow from the well-ordering principle. Here’s how:
Given integers a,b with b > 0, form the set

A = {
a− xb : x ∈Z, 0≤ a− xb

}⊆ {
0,1,2,3, . . .

}
.

(For example, if a = 17 and b = 3 then A = {
2,5,8,11,14,17,20, . . .

}
is the set

of positive integers obtained by adding multiples of 3 to 17. Notice that
the remainder r = 2 of 17÷3 is the smallest element of this set.) In general,
let r be the smallest element of the set A = {

a− xb : x ∈Z, 0≤ a− xb
}
. Then

r = a− qb for some x = q ∈ Z, so a = qb+ r. Moreover, 0 ≤ r < b, as follows.
The fact that r ∈ A ⊆ {

0,1,2,3 . . .
}
implies 0 ≤ r. In addition, it cannot

happen that r ≥ b: If this were the case, then the non-negative number
r−b = (a−qb)−b = a−(q+1)b having form a−xb would be a smaller element
of A than r, and r was explicitly chosen as the smallest element of A.
Since it is not the case that r ≥ b, it must be that r < b. Therefore 0≤ r < b.
We’ve now produced a q and an r for which a = qb+ r and 0≤ r < b.

Moving on, it is time to clarify a small issue. This chapter asserted
that all of mathematics can be described with sets. But at the same time
we maintained that some mathematical entities are not sets. (For instance,
our approach was to say that an individual number, such as 5, is not itself
a set, though it may be an element of a set.)

We have made this distinction because we need a place to stand as
we explore sets: After all, it would appear suspiciously circular to declare
that every mathematical entity is a set, and then go on to define a set as
a collection whose members are sets!

But to most mathematicians, saying “The number 5 is not a set,” is
like saying “The number 5 is not a number.”

The truth is that any number can itself be understood as a set. One
way to do this is to begin with the identification 0=;. Then 1= {;}= {0},
and 2 = {;, {;}

} = {0,1}, and 3 = {;, {;}, {;, {;}}
} = {0,1,2}. In general the

natural number n is the set n = {0,1,2, . . . ,n−1} of the n numbers (which
are themselves sets) that come before it.

We will not undertake such a study here, but the elements of the
number systems Z, Q and R can all be defined in terms of sets. (Even the
operations of addition, multiplication, etc., can be defined in set-theoretic
terms.) In fact, mathematics itself can be regarded as the study of things
that can be described as sets. Any mathematical entity is a set, whether
or not we choose to think of it that way.
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1.10 Russell’s Paradox
This section contains some background information that may be interesting,
but is not used in the remainder of the book.

The philosopher and mathematician Bertrand Russell (1872–1970)
did groundbreaking work on the theory of sets and the foundations of
mathematics. He was probably among the first to understand how the
misuse of sets can lead to bizarre and paradoxical situations. He is famous
for an idea that has come to be known as Russell’s paradox.

Russell’s paradox involves the following set of sets:

A = {
X : X is a set and X ∉ X

}
. (1.1)

In words, A is the set of all sets that do not include themselves as elements.
Most sets we can think of are in A. The set Z of integers is not an integer
(i.e., Z ∉Z) and therefore Z ∈ A. Also ;∈ A because ; is a set and ;∉;.

Is there a set that is not in A? Consider B = {{{{
. . .

}}}}
. Think of B

as a box containing a box, containing a box, containing a box, and so on,
forever. Or a set of Russian dolls, nested one inside the other, endlessly.
The curious thing about B is that it has just one element, namely B itself:

B = { {{{
. . .

}}}︸ ︷︷ ︸
B

}
.

Thus B ∈ B. As B does not satisfy B ∉ B, Equation (1.1) says B ∉ A.
Russell’s paradox arises from the question “Is A an element of A?”
For a set X , Equation (1.1) says X ∈ A means the same thing as X ∉ X .

So for X = A, the previous line says A ∈ A means the same thing as A ∉ A.
Conclusion: if A ∈ A is true, then it is false; if A ∈ A is false, then it is true.
This is Russell’s paradox.

Initially Russell’s paradox sparked a crisis among mathematicians.
How could a mathematical statement be both true and false? This seemed
to be in opposition to the very essence of mathematics.

The paradox instigated a very careful examination of set theory and
an evaluation of what can and cannot be regarded as a set. Eventually
mathematicians settled upon a collection of axioms for set theory—the
so-called Zermelo-Fraenkel axioms. One of these axioms is the well-
ordering principle of the previous section. Another, the axiom of foundation,
states that no non-empty set X is allowed to have the property X ∩ x 6= ;
for all its elements x. This rules out such circularly defined “sets” as
X = {

X
}
introduced above. If we adhere to these axioms, then situations



32 Sets

like Russell’s paradox disappear. Most mathematicians accept all this on
faith and happily ignore the Zermelo-Fraenkel axioms. Paradoxes like
Russell’s do not tend to come up in everyday mathematics—you have to go
out of your way to construct them.

Still, Russell’s paradox reminds us that precision of thought and lan-
guage is an important part of doing mathematics. The next chapter deals
with the topic of logic, a codification of thought and language.

Additional Reading on Sets. For a lively account of Bertrand Russell’s
life and work (including his paradox), see the graphic novel Logicomix: An
Epic Search For Truth, by Apostolos Doxiadis and Christos Papadimitriou.
Also see cartoonist Jessica Hagy’s online strip Indexed—it is based largely
on Venn diagrams.



CHAPTER 2

Logic

Logic is a systematic way of thinking that allows us to deduce new infor-
mation from old information and to parse the meanings of sentences.

You use logic informally in everyday life and certainly also in doing mathe-
matics. For example, suppose you are working with a certain circle, call it
“Circle X,” and you have available the following two pieces of information.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is πr2 square units.

You have no trouble putting these two facts together to get:

3. Circle X has area 9π square units.

In doing this you are using logic to combine existing information to
produce new information. Because deducing new information is central to
mathematics, logic plays a fundamental role. This chapter is intended to
give you a sufficient mastery of it.

It is important to realize that logic is a process of deducing information
correctly, not just deducing correct information. For example, suppose we
were mistaken and Circle X actually had a radius of 4, not 3. Let’s look at
our exact same argument again.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is πr2 square units.

3. Circle X has area 9π square units.

The sentence “Circle X has radius equal to 3.” is now untrue, and so is our
conclusion “Circle X has area 9π square units.” But the logic is perfectly
correct; the information was combined correctly, even if some of it was
false. This distinction between correct logic and correct information is
significant because it is often important to follow the consequences of an
incorrect assumption. Ideally, we want both our logic and our information
to be correct, but the point is that they are different things.
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In proving theorems, we apply logic to information that is considered
obviously true (such as “Any two points determine exactly one line.”) or is
already known to be true (e.g., the Pythagorean theorem). If our logic is
correct, then anything we deduce from such information will also be true
(or at least as true as the “obviously true” information we began with).

2.1 Statements
The study of logic begins with statements. A statement is a sentence
or a mathematical expression that is either definitely true or definitely
false. You can think of statements as pieces of information that are either
correct or incorrect. Thus statements are pieces of information that we
might apply logic to in order to produce other pieces of information (which
are also statements).
Example 2.1 Here are some examples of statements. They are all true.
If a circle has radius r, then its area is πr2 square units.
Every even number is divisible by 2.
2 ∈Z
p

2 ∉Z
N⊆Z
The set {0,1,2} has three elements.
Some right triangles are isosceles.

Example 2.2 Here are some additional statements. They are all false.
All right triangles are isosceles.
5= 2
p

2 ∉R
Z⊆N
{0,1,2}∩N=;

Example 2.3 Here we pair sentences or expressions that are not state-
ments with similar expressions that are statements.
NOT Statements: Statements:
Add 5 to both sides. Adding 5 to both sides of x−5= 37 gives x = 42.
Z 42 ∈Z
42 42 is not a number.
What is the solution of 2x = 84? The solution of 2x = 84 is 42.



Statements 35

Example 2.4 We will often use the letters P, Q, R and S to stand for
specific statements. When more letters are needed we can use subscripts.
Here are more statements, designated with letters. You decide which of
them are true and which are false.

P : For every integer n > 1, the number 2n −1 is prime.
Q : Every polynomial of degree n has at most n roots.
R : The function f (x)= x2 is continuous.
S1 :Z⊆;
S2 : {0,−1,−2}∩N=;

Designating statements with letters (as was done above) is a very useful
shorthand. In discussing a particular statement, such as “The function
f (x) = x2 is continuous,” it is convenient to just refer to it as R to avoid
having to write or say it many times.

Statements can contain variables. Here is an example.

P : If an integer x is a multiple of 6, then x is even.

This is a sentence that is true. (All multiples of 6 are even, so no matter
which multiple of 6 the integer x happens to be, it is even.) Since the
sentence P is definitely true, it is a statement. When a sentence or
statement P contains a variable such as x, we sometimes denote it as P(x)
to indicate that it is saying something about x. Thus the above statement
can be denoted as

P(x) : If an integer x is a multiple of 6, then x is even.

A statement or sentence involving two variables might be denoted
P(x, y), and so on.

It is quite possible for a sentence containing variables to not be a
statement. Consider the following example.

Q(x) : The integer x is even.

Is this a statement? Whether it is true or false depends on just which
integer x is. It is true if x = 4 and false if x = 7, etc. But without any
stipulations on the value of x it is impossible to say whether Q(x) is true or
false. Since it is neither definitely true nor definitely false, Q(x) cannot be
a statement. A sentence such as this, whose truth depends on the value
of one or more variables, is called an open sentence. The variables in
an open sentence (or statement) can represent any type of entity, not just
numbers. Here is an open sentence where the variables are functions:
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R( f , g) : The function f is the derivative of the function g.

This open sentence is true if f (x)= 2x and g(x)= x2. It is false if f (x)= x3

and g(x) = x2, etc. We point out that a sentence such as R( f , g) (that
involves variables) can be denoted either as R( f , g) or just R. We use the
expression R( f , g) when we want to emphasize that the sentence involves
variables.

We will have more to say about open sentences later, but for now let’s
return to statements.

Statements are everywhere in mathematics. Any result or theorem
that has been proved true is a statement. The quadratic formula and the
Pythagorean theorem are both statements:

P : The solutions of the equation ax2 +bx+ c = 0 are x = −b±
p

b2 −4ac
2a

.

Q : If a right triangle has legs of lengths a and b and hypotenuse of
length c, then a2 +b2 = c2.

Here is a very famous statement, so famous, in fact, that it has a name.
It is called Fermat’s last theorem after Pierre Fermat, a seventeenth-
century French mathematician who scribbled it in the margin of a notebook.

R : For all numbers a,b, c,n ∈N with n > 2, it is the case that an+bn 6= cn.

Fermat believed this statement was true. He noted that he could prove
it was true, except his notebook’s margin was too narrow to contain his
proof. It is doubtful that he really had a correct proof in mind, for after his
death generations of brilliant mathematicians tried unsuccessfully to prove
that his statement was true (or false). Finally, in 1993, Andrew Wiles of
Princeton University announced that he had devised a proof. Wiles had
worked on the problem for over seven years, and his proof runs through
hundreds of pages. The moral of this story is that some true statements
are not obviously true.

Here is another statement famous enough to be named. It was first
posed in the eighteenth century by the German mathematician Christian
Goldbach, and thus is called the Goldbach conjecture:

S : Every even integer greater than 2 is a sum of two prime numbers.

You must agree that S is either true or false. It appears to be true, because
when you examine even numbers that are bigger than 2, they seem to
be sums of two primes: 4 = 2+2, 6 = 3+3, 8 = 3+5, 10 = 5+5, 12 = 5+7,
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100= 17+83 and so on. But that’s not to say there isn’t some large even
number that’s not the sum of two primes. If such a number exists, then S
is false. The thing is, in the over 260 years since Goldbach first posed this
problem, no one has been able to determine whether it’s true or false. But
since it is clearly either true or false, S is a statement.

This book is about the methods that can be used to prove that S (or
any other statement) is true or false. To prove that a statement is true,
we start with obvious statements (or other statements that have been
proven true) and use logic to deduce more and more complex statements
until finally we obtain a statement such as S. Of course some statements
are more difficult to prove than others, and S appears to be notoriously
difficult; we will concentrate on statements that are easier to prove.

But the point is this: In proving that statements are true, we use logic
to help us understand statements and to combine pieces of information
to produce new pieces of information. In the next several sections we
explore some standard ways that statements can be combined to form new
statements, or broken down into simpler statements.

Exercises for Section 2.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false, if possible.
1. Every real number is an even integer.
2. Every even integer is a real number.
3. If x and y are real numbers and 5x = 5y, then x = y.
4. Sets Z and N.
5. Sets Z and N are infinite.
6. Some sets are finite.
7. The derivative of any polynomial of degree 5 is a polynomial of degree 6.

8. N ∉P(N).
9. cos(x)=−1

10. (R×N)∩ (N×R)=N×N
11. The integer x is a multiple of 7.
12. If the integer x is a multiple of 7, then it is divisible by 7.
13. Either x is a multiple of 7, or it is not.
14. Call me Ishmael.
15. In the beginning, God created the heaven and the earth.
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2.2 And, Or, Not
The word “and” can be used to combine two statements to form a new
statement. Consider for example the following sentence.

R1 : The number 2 is even and the number 3 is odd.

We recognize this as a true statement, based on our common-sense under-
standing of the meaning of the word “and.” Notice that R1 is made up of
two simpler statements:

P : The number 2 is even.
Q : The number 3 is odd.

These are joined together by the word “and” to form the more complex
statement R1. The statement R1 asserts that P and Q are both true. Since
both P and Q are in fact true, the statement R1 is also true.

Had one or both of P and Q been false, then R1 would be false. For
instance, each of the following statements is false.

R2 : The number 1 is even and the number 3 is odd.
R3 : The number 2 is even and the number 4 is odd.
R4 : The number 3 is even and the number 2 is odd.

From these examples we see that any two statements P and Q can
be combined to form a new statement “P and Q.” In the spirit of using
letters to denote statements, we now introduce the special symbol ∧ to
stand for the word “and.” Thus if P and Q are statements, P ∧Q stands
for the statement “P and Q.” The statement P ∧Q is true if both P and Q
are true; otherwise it is false. This is summarized in the following table,
called a truth table.

P Q P ∧Q

T T T
T F F
F T F
F F F

In this table, T stands for “True,” and F stands for “False.” (T and F are
called truth values.) Each line lists one of the four possible combinations
or truth values for P and Q, and the column headed by P∧Q tells whether
the statement P ∧Q is true or false in each case.
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Statements can also be combined using the word “or.” Consider the
following four statements.

S1 : The number 2 is even or the number 3 is odd.
S2 : The number 1 is even or the number 3 is odd.
S3 : The number 2 is even or the number 4 is odd.
S4 : The number 3 is even or the number 2 is odd.

In mathematics, the assertion “P or Q” is always understood to mean that
one or both of P and Q is true. Thus statements S1, S2, S3 are all true,
while S4 is false. The symbol ∨ is used to stand for the word “or.” So if P
and Q are statements, P ∨Q represents the statement “P or Q.” Here is
the truth table.

P Q P ∨Q

T T T
T F T
F T T
F F F

It is important to be aware that the meaning of “or” expressed in the
above table differs from the way it is often used in everyday conversation.
For example, suppose a university official makes the following threat:

You pay your tuition or you will be withdrawn from school.

You understand that this means that either you pay your tuition or you
will be withdrawn from school, but not both. In mathematics we never use
the word “or” in such a sense. For us “or” means exactly what is stated
in the table for ∨. Thus P ∨Q being true means one or both of P and Q
is true. If we ever need to express the fact that exactly one of P and Q is
true, we use one of the following constructions:

P or Q, but not both.
Either P or Q.
Exactly one of P or Q.

If the university official were a mathematician, he might have qualified
his statement in one of the following ways.

Pay your tuition or you will be withdrawn from school, but not both.
Either you pay your tuition or you will be withdrawn from school.
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To conclude this section, we mention another way of obtaining new
statements from old ones. Given any statement P, we can form the new
statement “It is not true that P.” For example, consider the following
statement.

The number 2 is even.

This statement is true. Now change it by inserting the words “It is not
true that” at the beginning:

It is not true that the number 2 is even.

This new statement is false.

For another example, starting with the false statement “2 ∈;,” we get
the true statement “It is not true that 2 ∈;.”

We use the symbol ∼ to stand for the words “It’s not true that,” so
∼ P means “It’s not true that P.” We often read ∼ P simply as “not P.”
Unlike ∧ and ∨, which combine two statements, the symbol ∼ just alters
a single statement. Thus its truth table has just two lines, one for each
possible truth value of P.

P ∼ P

T F
F T

The statement ∼ P is called the negation of P. The negation of a
specific statement can be expressed in numerous ways. Consider

P : The number 2 is even.

Here are several ways of expressing its negation.

∼ P : It’s not true that the number 2 is even.
∼ P : It is false that the number 2 is even.
∼ P : The number 2 is not even.

In this section we’ve learned how to combine or modify statements with
the operations ∧, ∨ and ∼. Of course we can also apply these operations
to open sentences or a mixture of open sentences and statements. For
example, (x is an even integer)∧ (3 is an odd integer) is an open sentence
that is a combination of an open sentence and a statement.
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Exercises for Section 2.2
Express each statement or open sentence in one of the forms P ∧Q, P ∨Q, or ∼ P.
Be sure to also state exactly what statements P and Q stand for.
1. The number 8 is both even and a power of 2.
2. The matrix A is not invertible.
3. x 6= y 4. x < y 5. y≥ x

6. There is a quiz scheduled for Wednesday or Friday.
7. The number x equals zero, but the number y does not.
8. At least one of the numbers x and y equals 0.

9. x ∈ A−B 10. x ∈ A∪B 11. A ∈ {
X ∈P(N) : |X | <∞}

12. Happy families are all alike, but each unhappy family is unhappy in its own
way. (Leo Tolstoy, Anna Karenina)

13. Human beings want to be good, but not too good, and not all the time.
(George Orwell)

14. A man should look for what is, and not for what he thinks should be.
(Albert Einstein)

2.3 Conditional Statements
There is yet another way to combine two statements. Suppose we have in
mind a specific integer a. Consider the following statement about a.

R : If the integer a is a multiple of 6, then a is divisible by 2.

We immediately spot this as a true statement based on our knowledge of
integers and the meanings of the words “if” and “then.” If integer a is a
multiple of 6, then a is even, so therefore a is divisible by 2. Notice that R
is built up from two simpler statements:

P : The integer a is a multiple of 6.
Q : The integer a is divisible by 2.
R : If P, then Q.
In general, given any two statements P and Q whatsoever, we can form

the new statement “If P, then Q.” This is written symbolically as P ⇒Q
which we read as “If P, then Q,” or “P implies Q.” Like ∧ and ∨, the symbol
⇒ has a very specific meaning. When we assert that the statement P ⇒Q
is true, we mean that if P is true then Q must also be true. (In other words
we mean that the condition P being true forces Q to be true.) A statement
of form P ⇒Q is called a conditional statement because it means Q will
be true under the condition that P is true.
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You can think of P ⇒Q as being a promise that whenever P is true, Q
will be true also. There is only one way this promise can be broken (i.e.
be false) and that is if P is true but Q is false. Thus the truth table for
the promise P ⇒Q is as follows:

P Q P ⇒Q

T T T
T F F
F T T
F F T

Perhaps you are bothered by the fact that P ⇒Q is true in the last two
lines of this table. Here’s an example to convince you that the table is
correct. Suppose your professor makes the following promise:

If you pass the final exam, then you will pass the course.

Your professor is making the promise

(You pass the exam) ⇒ (You pass the course).

Under what circumstances did she lie? There are four possible scenarios,
depending on whether or not you passed the exam and whether or not you
passed the course. These scenarios are tallied in the following table.

You pass exam You pass course (You pass exam)⇒ (You pass course)
T T T
T F F
F T T
F F T

The first line describes the scenario where you pass the exam and you
pass the course. Clearly the professor kept her promise, so we put a T in
the third column to indicate that she told the truth. In the second line,
you passed the exam, but your professor gave you a failing grade in the
course. In this case she broke her promise, and the F in the third column
indicates that what she said was untrue.

Now consider the third row. In this scenario you failed the exam but
still passed the course. How could that happen? Maybe your professor felt
sorry for you. But that doesn’t make her a liar. Her only promise was that
if you passed the exam then you would pass the course. She did not say
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passing the exam was the only way to pass the course. Since she didn’t
lie, then she told the truth, so there is a T in the third column.

Finally look at the fourth row. In that scenario you failed the exam
and you failed the course. Your professor did not lie; she did exactly what
she said she would do. Hence the T in the third column.

In mathematics, whenever we encounter the construction “If P, then
Q” it means exactly what the truth table for ⇒ expresses. But of course
there are other grammatical constructions that also mean P ⇒Q. Here is
a summary of the main ones.

If P, then Q.
Q if P.
Q whenever P.
Q, provided that P.
Whenever P, then also Q.
P is a sufficient condition for Q.
For Q, it is sufficient that P.
Q is a necessary condition for P.
For P, it is necessary that Q.
P only if Q.



P ⇒Q

These can all be used in the place of (and mean exactly the same thing as)
“If P, then Q.” You should analyze the meaning of each one and convince
yourself that it captures the meaning of P ⇒Q. For example, P ⇒Q means
the condition of P being true is enough (i.e., sufficient) to make Q true;
hence “P is a sufficient condition for Q.”

The wording can be tricky. Often an everyday situation involving a
conditional statement can help clarify it. For example, consider your
professor’s promise:

(You pass the exam)⇒ (You pass the course)

This means that your passing the exam is a sufficient (though perhaps
not necessary) condition for your passing the course. Thus your professor
might just as well have phrased her promise in one of the following ways.

Passing the exam is a sufficient condition for passing the course.
For you to pass the course, it is sufficient that you pass the exam.

However, when we want to say “If P, then Q” in everyday conversation,
we do not normally express this as “Q is a necessary condition for P” or
“P only if Q.” But such constructions are not uncommon in mathematics.
To understand why they make sense, notice that P ⇒Q being true means
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that it’s impossible that P is true but Q is false, so in order for P to be
true it is necessary that Q is true; hence “Q is a necessary condition for
P.” And this means that P can only be true if Q is true, i.e., “P only if Q.”

Exercises for Section 2.3

Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then Q.”
1. A matrix is invertible provided that its determinant is not zero.
2. For a function to be continuous, it is sufficient that it is differentiable.
3. For a function to be integrable, it is necessary that it is continuous.
4. A function is rational if it is a polynomial.
5. An integer is divisible by 8 only if it is divisible by 4.
6. Whenever a surface has only one side, it is non-orientable.
7. A series converges whenever it converges absolutely.
8. A geometric series with ratio r converges if |r| < 1.
9. A function is integrable provided the function is continuous.

10. The discriminant is negative only if the quadratic equation has no real solutions.
11. You fail only if you stop writing. (Ray Bradbury)
12. People will generally accept facts as truth only if the facts agree with what

they already believe. (Andy Rooney)
13. Whenever people agree with me I feel I must be wrong. (Oscar Wilde)

2.4 Biconditional Statements
It is important to understand that P ⇒Q is not the same as Q ⇒ P. To see
why, suppose that a is some integer and consider the statements

(a is a multiple of 6) ⇒ (a is divisible by 2),
(a is divisible by 2) ⇒ (a is a multiple of 6).

The first statement asserts that if a is a multiple of 6 then a is divisible
by 2. This is clearly true, for any multiple of 6 is even and therefore
divisible by 2. The second statement asserts that if a is divisible by 2 then
it is a multiple of 6. This is not necessarily true, for a = 4 (for instance) is
divisible by 2, yet not a multiple of 6. Therefore the meanings of P ⇒Q and
Q ⇒ P are in general quite different. The conditional statement Q ⇒ P is
called the converse of P ⇒Q, so a conditional statement and its converse
express entirely different things.
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But sometimes, if P and Q are just the right statements, it can happen
that P ⇒ Q and Q ⇒ P are both necessarily true. For example, consider
the statements

(a is even) ⇒ (a is divisible by 2),
(a is divisible by 2) ⇒ (a is even).

No matter what value a has, both of these statements are true. Since both
P ⇒Q and Q ⇒ P are true, it follows that (P ⇒Q)∧ (Q ⇒ P) is true.

We now introduce a new symbol ⇔ to express the meaning of the
statement (P ⇒Q)∧ (Q ⇒ P). The expression P ⇔Q is understood to have
exactly the same meaning as (P ⇒Q)∧ (Q ⇒ P). According to the previous
section, Q ⇒ P is read as “P if Q,” and P ⇒Q can be read as “P only if Q.”
Therefore we pronounce P ⇔Q as “P if and only if Q.” For example, given
an integer a, we have the true statement

(a is even)⇔ (a is divisible by 2),

which we can read as “Integer a is even if and only if a is divisible by 2.”
The truth table for ⇔ is shown below. Notice that in the first and last

rows, both P ⇒Q and Q ⇒ P are true (according to the truth table for ⇒),
so (P ⇒ Q)∧ (Q ⇒ P) is true, and hence P ⇔ Q is true. However, in the
middle two rows one of P ⇒Q or Q ⇒ P is false, so (P ⇒Q)∧(Q ⇒ P) is false,
making P ⇔Q false.

P Q P ⇔Q

T T T
T F F
F T F
F F T

Compare the statement R : (a is even)⇔ (a is divisible by 2) with this
truth table. If a is even then the two statements on either side of ⇔
are true, so according to the table R is true. If a is odd then the two
statements on either side of ⇔ are false, and again according to the table
R is true. Thus R is true no matter what value a has. In general, P ⇔Q
being true means P and Q are both true or both false.

Not surprisingly, there are many ways of saying P ⇔Q in English. The
following constructions all mean P ⇔Q:
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P if and only if Q.
P is a necessary and sufficient condition for Q.
For P it is necessary and sufficient that Q.
If P, then Q, and conversely.

 P ⇔Q

The first three of these just combine constructions from the previous
section to express that P ⇒Q and Q ⇒ P. In the last one, the words “...and
conversely” mean that in addition to “If P, then Q” being true, the converse
statement “If Q, then P” is also true.

Exercises for Section 2.4
Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if Q.”
1. For matrix A to be invertible, it is necessary and sufficient that det(A) 6= 0.
2. If a function has a constant derivative then it is linear, and conversely.
3. If xy= 0 then x = 0 or y= 0, and conversely.
4. If a ∈Q then 5a ∈Q, and if 5a ∈Q then a ∈Q.
5. For an occurrence to become an adventure, it is necessary and sufficient for

one to recount it. (Jean-Paul Sartre)

2.5 Truth Tables for Statements
You should now know the truth tables for ∧, ∨, ∼, ⇒ and ⇔. They should
be internalized as well as memorized. You must understand the symbols
thoroughly, for we now combine them to form more complex statements.

For example, suppose we want to convey that one or the other of P and
Q is true but they are not both true. No single symbol expresses this, but
we could combine them as

(P ∨Q)∧∼ (P ∧Q),

which literally means:

P or Q is true, and it is not the case that both P and Q are true.

This statement will be true or false depending on the truth values of P
and Q. In fact we can make a truth table for the entire statement. Begin
as usual by listing the possible true/false combinations of P and Q on four
lines. The statement (P ∨Q)∧∼ (P ∧Q) contains the individual statements
(P ∨Q) and (P ∧Q), so we next tally their truth values in the third and
fourth columns. The fifth column lists values for ∼ (P ∧Q), and these
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are just the opposites of the corresponding entries in the fourth column.
Finally, combining the third and fifth columns with ∧, we get the values
for (P ∨Q)∧∼ (P ∧Q) in the sixth column.

P Q (P ∨Q) (P ∧Q) ∼ (P ∧Q) (P ∨Q)∧∼ (P ∧Q)

T T T T F F
T F T F T T
F T T F T T
F F F F T F

This truth table tells us that (P ∨Q)∧ ∼ (P ∧Q) is true precisely when
one but not both of P and Q are true, so it has the meaning we intended.
(Notice that the middle three columns of our truth table are just “helper
columns” and are not necessary parts of the table. In writing truth tables,
you may choose to omit such columns if you are confident about your work.)

For another example, consider the following familiar statement con-
cerning two real numbers x and y:

The product xy equals zero if and only if x = 0 or y= 0.

This can be modeled as (xy = 0) ⇔ (x = 0 ∨ y = 0). If we introduce letters
P,Q and R for the statements xy= 0, x = 0 and y= 0, it becomes P ⇔ (Q∨R).
Notice that the parentheses are necessary here, for without them we
wouldn’t know whether to read the statement as P ⇔ (Q∨R) or (P ⇔Q)∨R.

Making a truth table for P ⇔ (Q∨R) entails a line for each T/F combina-
tion for the three statements P, Q and R. The eight possible combinations
are tallied in the first three columns of the following table.

P Q R Q∨R P ⇔ (Q∨R)

T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F T

We fill in the fourth column using our knowledge of the truth table
for ∨. Finally the fifth column is filled in by combining the first and fourth
columns with our understanding of the truth table for ⇔. The resulting
table gives the true/false values of P ⇔ (Q∨R) for all values of P,Q and R.
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Notice that when we plug in various values for x and y, the statements
P : xy= 0, Q : x = 0 and R : y= 0 have various truth values, but the statement
P ⇔ (Q∨R) is always true. For example, if x = 2 and y= 3, then P,Q and R
are all false. This scenario is described in the last row of the table, and
there we see that P ⇔ (Q∨R) is true. Likewise if x = 0 and y = 7, then P
and Q are true and R is false, a scenario described in the second line of
the table, where again P ⇔ (Q∨R) is true. There is a simple reason why
P ⇔ (Q∨R) is true for any values of x and y: It is that P ⇔ (Q∨R) represents
(xy = 0) ⇔ (x = 0 ∨ y = 0), which is a true mathematical statement. It is
absolutely impossible for it to be false.

This may make you wonder about the lines in the table where P ⇔ (Q∨R)
is false. Why are they there? The reason is that P ⇔ (Q ∨R) can also
represent a false statement. To see how, imagine that at the end of the
semester your professor makes the following promise.

You pass the class if and only if you get an “A” on the final or you get
a “B” on the final.

This promise has the form P ⇔ (Q∨R), so its truth values are tabulated in
the above table. Imagine it turned out that you got an “A” on the exam
but failed the course. Then surely your professor lied to you. In fact, P is
false, Q is true and R is false. This scenario is reflected in the sixth line
of the table, and indeed P ⇔ (Q∨R) is false (i.e., it is a lie).

The moral of this example is that people can lie, but true mathematical
statements never lie.

We close this section with a word about the use of parentheses. The
symbol ∼ is analogous to the minus sign in algebra. It negates the
expression it precedes. Thus ∼ P ∨Q means (∼ P)∨Q, not ∼ (P ∨Q). In
∼ (P ∨Q), the value of the entire expression P ∨Q is negated.

Exercises for Section 2.5
Write a truth table for the logical statements in problems 1–9:
1. P ∨ (Q ⇒ R)

2. (Q∨R)⇔ (R∧Q)

3. ∼ (P ⇒Q)

4. ∼ (P ∨Q)∨ (∼ P)

5. (P∧∼ P)∨Q

6. (P∧∼ P)∧Q

7. (P∧∼ P)⇒Q

8. P ∨ (Q∧∼ R)

9. ∼ (∼ P∨∼Q)

10. Suppose the statement ((P ∧Q)∨R)⇒ (R∨S) is false. Find the truth values of
P,Q,R and S. (This can be done without a truth table.)

11. Suppose P is false and that the statement (R ⇒ S)⇔ (P ∧Q) is true. Find the
truth values of R and S. (This can be done without a truth table.)
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2.6 Logical Equivalence
In contemplating the truth table for P ⇔ Q, you probably noticed that
P ⇔Q is true exactly when P and Q are both true or both false. In other
words, P ⇔Q is true precisely when at least one of the statements P ∧Q
or ∼ P∧∼Q is true. This may tempt us to say that P ⇔Q means the same
thing as (P ∧Q)∨ (∼ P∧∼Q).

To see if this is really so, we can write truth tables for P ⇔ Q and
(P ∧Q)∨ (∼ P∧ ∼ Q). In doing this, it is more efficient to put these two
statements into the same table, as follows. (This table has helper columns
for the intermediate expressions ∼ P, ∼Q, (P ∧Q) and (∼ P∧∼Q).)

P Q ∼ P ∼Q (P ∧Q) (∼ P∧∼Q) (P ∧Q)∨ (∼ P∧∼Q) P ⇔Q

T T F F T F T T
T F F T F F F F
F T T F F F F F
F F T T F T T T

The table shows that P ⇔Q and (P ∧Q)∨ (∼ P∧∼Q) have the same truth
value, no matter the values P and Q. It is as if P ⇔Q and (P∧Q)∨(∼ P∧∼Q)
are algebraic expressions that are equal no matter what is “plugged into”
variables P and Q. We express this state of affairs by writing

P ⇔Q = (P ∧Q)∨ (∼ P∧∼Q)

and saying that P ⇔Q and (P ∧Q)∨ (∼ P∧∼Q) are logically equivalent.
In general, two statements are logically equivalent if their truth

values match up line-for-line in a truth table.
Logical equivalence is important because it can give us different (and

potentially useful) ways of looking at the same thing. As an example, the
following table shows that P ⇒Q is logically equivalent to (∼Q)⇒ (∼ P).

P Q ∼ P ∼Q (∼Q)⇒ (∼ P) P ⇒Q

T T F F T T
T F F T F F
F T T F T T
F F T T T T

The fact that P ⇒Q = (∼Q)⇒ (∼ P) is useful because so many theorems
have the form P ⇒Q. As we will see in Chapter 5, proving such a theorem
may be easier if we express it in the logically equivalent form (∼Q)⇒ (∼ P).
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There are two pairs of logically equivalent statements that come up
again and again throughout this book and beyond. They are prevalent
enough to be dignified by a special name: DeMorgan’s laws.

Fact 2.1 (DeMorgan’s Laws)
1. ∼ (P ∧Q) = (∼ P)∨ (∼Q)

2. ∼ (P ∨Q) = (∼ P)∧ (∼Q)

The first of DeMorgan’s laws is verified by the following table. You are
asked to verify the second in one of the exercises.

P Q ∼ P ∼Q P ∧Q ∼ (P ∧Q) (∼ P)∨ (∼Q)

T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

DeMorgan’s laws are actually very natural and intuitive. Consider the
statement ∼ (P ∧Q), which we can interpret as meaning that it is not the
case that both P and Q are true. If it is not the case that both P and Q
are true, then at least one of P or Q is false, in which case (∼ P)∨ (∼Q) is
true. Thus ∼ (P ∧Q) means the same thing as (∼ P)∨ (∼Q).

DeMorgan’s laws can be very useful. Suppose we happen to know that
some statement having form ∼ (P ∨Q) is true. The second of DeMorgan’s
laws tells us that (∼Q)∧(∼ P) is also true, hence ∼ P and ∼Q are both true
as well. Being able to quickly obtain such additional pieces of information
can be extremely useful.

Here is a summary of some significant logical equivalences. Those that
are not immediately obvious can be verified with a truth table.

P ⇒Q = (∼Q)⇒ (∼ P) Contrapositive law (2.1)
∼ (P ∧Q) = ∼ P∨∼Q
∼ (P ∨Q) = ∼ P∧∼Q

}
DeMorgan’s laws (2.2)

P ∧Q = Q∧P
P ∨Q = Q∨P

}
Commutative laws (2.3)

P ∧ (Q∨R) = (P ∧Q)∨ (P ∧R)
P ∨ (Q∧R) = (P ∨Q)∧ (P ∨R)

}
Distributive laws (2.4)

P ∧ (Q∧R) = (P ∧Q)∧R
P ∨ (Q∨R) = (P ∨Q)∨R

}
Associative laws (2.5)

Notice how the distributive law P ∧ (Q ∨R) = (P ∧Q)∨ (P ∧R) has the
same structure as the distributive law p · (q+ r)= p · q+ p · r from algebra.
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Concerning the associative laws, the fact that P∧(Q∧R)= (P∧Q)∧R means
that the position of the parentheses is irrelevant, and we can write this as
P ∧Q∧R without ambiguity. Similarly, we may drop the parentheses in
an expression such as P ∨ (Q∨R).

But parentheses are essential when there is a mix of ∧ and ∨, as in
P ∨ (Q∧R). Indeed, P ∨ (Q∧R) and (P ∨Q)∧R are not logically equivalent.
(See Exercise 13 for Section 2.6, below.)

Exercises for Section 2.6

A. Use truth tables to show that the following statements are logically equivalent.
1. P ∧ (Q∨R)= (P ∧Q)∨ (P ∧R)

2. P ∨ (Q∧R)= (P ∨Q)∧ (P ∨R)

3. P ⇒Q = (∼ P)∨Q

4. ∼ (P ∨Q) = (∼ P)∧ (∼Q)

5. ∼ (P ∨Q∨R) = (∼ P)∧ (∼Q)∧ (∼ R)

6. ∼ (P ∧Q∧R) = (∼ P)∨ (∼Q)∨ (∼ R)

7. P ⇒Q = (P∧∼Q)⇒ (Q∧∼Q)

8. ∼ P ⇔Q = (P ⇒∼Q)∧ (∼Q ⇒ P)

B. Decide whether or not the following pairs of statements are logically equivalent.
9. P ∧Q and ∼ (∼ P∨∼Q)

10. (P ⇒Q)∨R and ∼ ((P∧∼Q)∧∼ R)

11. (∼ P)∧ (P ⇒Q) and ∼ (Q ⇒ P)

12. ∼ (P ⇒Q) and P∧∼Q

13. P ∨ (Q∧R) and (P ∨Q)∧R

14. P ∧ (Q∨∼Q) and (∼ P)⇒ (Q∧∼Q)

2.7 Quantifiers
Using symbols ∧, ∨, ∼, ⇒ and ⇔, we can deconstruct many English
sentences into a symbolic form. As we have seen, this symbolic form can
help us understand the logical structure of sentences and how different
sentences may actually have the same meaning (as in logical equivalence).

But these symbols alone are not powerful enough to capture the full
meaning of every statement. To help overcome this defect, we introduce
two new symbols that correspond to common mathematical phrases. The
symbol “∀” stands for the phrase “For all” or “For every.” The symbol “∃”
stands for the phrase “There exists a” or “There is a.” Thus the statement

For every n ∈Z, 2n is even,

can be expressed in either of the following ways:

∀n ∈Z, 2n is even,

∀n ∈Z, E(2n).
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Likewise, a statement such as

There exists a subset X of N for which |X | = 5.

can be translated as

∃X , (X ⊆N)∧ (|X | = 5) or ∃X ⊆N, |X | = 5 or ∃X ∈P(N), |X | = 5.

The symbols ∀ and ∃ are called quantifiers because they refer in some
sense to the quantity (i.e., all or some) of the variable that follows them.
Symbol ∀ is called the universal quantifier and ∃ is called the existen-
tial quantifier. Statements which contain them are called quantified
statements. A statement beginning with ∀ is called a universally quan-
tified statement, and one beginning with ∃ is called an existentially
quantified statement.

Example 2.5 The following English statements are paired with their
translations into symbolic form.

Every integer that is not odd is even.
∀n ∈Z,∼ (n is odd )⇒ (n is even), or ∀n ∈Z,∼O(n)⇒ E(n).
There is an integer that is not even.
∃n ∈Z,∼ E(n).
For every real number x, there is a real number y for which y3 = x.
∀x ∈R,∃ y ∈R, y3 = x.

Given any two rational numbers a and b, it follows that ab is rational.
∀a,b ∈Q,ab ∈Q.

Given a set S (such as, but not limited to, N, Z, Q etc.), a quantified
statement of form ∀x ∈ S,P(x) is understood to be true if P(x) is true
for every x ∈ S. If there is at least one x ∈ S for which P(x) is false, then
∀x ∈ S,P(x) is a false statement. Similarly, ∃x ∈ S,P(x) is true provided that
P(x) is true for at least one element x ∈ S; otherwise it is false. Thus each
statement in Example 2.5 is true. Here are some examples of quantified
statements that are false:

Example 2.6 The following false quantified statements are paired with
their translations.

Every integer is even.
∀n ∈Z,E(n).
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There is an integer n for which n2 = 2.
∃n ∈Z,n2 = 2.

For every real number x, there is a real number y for which y2 = x.
∀x ∈R,∃ y ∈R, y2 = x.

Given any two rational numbers a and b, it follows that
p

ab is rational.
∀a,b ∈Q,

p
ab ∈Q.

Example 2.7 When a statement contains two quantifiers you must be
very alert to their order, for reversing the order can change the meaning.
Consider the following statement from Example 2.5.

∀x ∈R,∃ y ∈R, y3 = x.

This statement is true, for no matter what number x is there exists a
number y= 3

p
x for which y3 = x. Now reverse the order of the quantifiers

to get the new statement

∃ y ∈R,∀x ∈R, y3 = x.

This new statement says that there exists a particular number y with
the property that y3 = x for every real number x. Since no number y can
have this property, the statement is false. The two statements above have
entirely different meanings.

Quantified statements are often misused in casual conversation. Maybe
you’ve heard someone say “All students do not pay full tuition.” when they
mean “Not all students pay full tuition.” While the mistake is perhaps
marginally forgivable in casual conversation, it must never be made in a
mathematical context. Do not say “All integers are not even.” because that
means there are no even integers. Instead, say “Not all integers are even.”

Exercises for Section 2.7
Write the following as English sentences. Say whether they are true or false.
1. ∀x ∈R, x2 > 0

2. ∀x ∈R,∃n ∈N, xn ≥ 0

3. ∃a ∈R,∀x ∈R,ax = x

4. ∀X ∈P(N), X ⊆R
5. ∀n ∈N,∃X ∈P(N), |X | < n

6. ∃n ∈N,∀X ∈P(N), |X | < n

7. ∀X ⊆N,∃n ∈Z, |X | = n

8. ∀n ∈Z, ∃X ⊆N, |X | = n

9. ∀n ∈Z,∃m ∈Z,m = n+5

10. ∃m ∈Z,∀n ∈Z,m = n+5
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2.8 More on Conditional Statements
It is time to address a very important point about conditional statements
that contain variables. To motivate this, let’s return to the following
example concerning integers x:

(x is a multiple of 6)⇒ (x is even).

As noted earlier, since every multiple of 6 is even, this is a true statement
no matter what integer x is. We could even underscore this fact by writing
this true statement as

∀x ∈Z, (x is a multiple of 6)⇒ (x is even).

But now switch things around to get the different statement

(x is even)⇒ (x is a multiple of 6).

This is true for some values of x such as −6, 12, 18, etc., but false for
others (such as 2, 4, etc.). Thus we do not have a statement, but rather an
open sentence. (Recall from Section 2.1 that an open sentence is a sentence
whose truth value depends on the value of a certain variable or variables.)
However, by putting a universal quantifier in front we get

∀x ∈Z, (x is even)⇒ (x is a multiple of 6),

which is definitely false, so this new expression is a statement, not an open
sentence. In general, given any two open sentences P(x) and Q(x) about
integers x, the expression ∀x ∈Z, P(x)⇒Q(x) is either true or false, so it is
a statement, not an open sentence.

Now we come to the very important point. In mathematics, whenever
P(x) and Q(x) are open sentences concerning elements x in some set S
(depending on context), an expression of form P(x) ⇒ Q(x) is understood
to be the statement ∀x ∈ S, P(x) ⇒ Q(x). In other words, if a conditional
statement is not explicitly quantified then there is an implied universal
quantifier in front of it. This is done because statements of the form
∀x ∈ S, P(x)⇒Q(x) are so common in mathematics that we would get tired
of putting the ∀x ∈ S in front of them.

Thus the following sentence is a true statement (as it is true for all x).

If x is a multiple of 6, then x is even.
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Likewise, the next sentence is a false statement (as it is not true for all x).

If x is even, then x is a multiple of 6.

This leads to the following significant interpretation of a conditional
statement, which is more general than (but consistent with) the interpre-
tation from Section 2.3.

Definition 2.1 If P and Q are statements or open sentences, then

“If P, then Q,”

is a statement. This statement is true if it’s impossible for P to be true
while Q is false. It is false if there is at least one instance in which P is
true but Q is false.

Thus the following are true statements:

If x ∈R, then x2 +1> 0.
If a function f is differentiable on R, then f is continuous on R.

Likewise, the following are false statements:

If p is a prime number, then p is odd. (2 is prime.)
If f is a rational function, then f has an asymptote. (x2 is rational.)

2.9 Translating English to Symbolic Logic
In writing (and reading) proofs of theorems, we must always be alert to the
logical structure and meanings of the sentences. Sometimes it is necessary
or helpful to parse them into expressions involving logic symbols. This may
be done mentally or on scratch paper, or occasionally even explicitly within
the body of a proof. The purpose of this section is to give you sufficient
practice in translating English sentences into symbolic form so that you
can better understand their logical structure. Here are some examples:

Example 2.8 Consider the Mean Value Theorem from Calculus:

If f is continuous on the interval [a,b] and differentiable on (a,b), then
there is a number c ∈ (a,b) for which f ′(c)= f (b)− f (a)

b−a .

Here is a translation to symbolic form:((
f cont. on [a,b]

)∧ (
f is diff. on (a,b)

))⇒ (
∃ c ∈ (a,b), f ′(c)= f (b)− f (a)

b−a

)
.
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Example 2.9 Consider Goldbach’s conjecture, from Section 2.1:

Every even integer greater than 2 is the sum of two primes.

This can be translated in the following ways, where P is the set of prime
numbers and S = {4,6,8,10, . . .} is the set of even integers greater than 2.(

n ∈ S
)⇒ (∃ p, q ∈ P, n = p+ q

)
∀ n ∈ S, ∃ p, q ∈ P, n = p+ q

These translations of Goldbach’s conjecture illustrate an important
point. The first has the basic structure (n ∈ S)⇒Q(n) and the second has
structure ∀ n ∈ S, Q(n), yet they have exactly the same meaning. This is
significant. Every universally quantified statement can be expressed as a
conditional statement.

Fact 2.2 Suppose S is a set and Q(x) is a statement about x for each
x ∈ S. The following statements mean the same thing:

∀ x ∈ S, Q(x)

(x ∈ S)⇒Q(x).

This fact is significant because so many theorems have the form of
a conditional statement. (The Mean Value Theorem is an example!) In
proving a theorem we have to think carefully about what it says. Sometimes
a theorem will be expressed as a universally quantified statement but it will
be more convenient to think of it as a conditional statement. Understanding
the above fact allows us to switch between the two forms.

We close this section with some final points. In translating a state-
ment, be attentive to its intended meaning. Don’t jump into, for example,
automatically replacing every “and” with ∧ and “or” with ∨. An example:

At least one of the integers x and y is even.

Don’t be led astray by the presence of the word “and.” The meaning of
the statement is that one or both of the numbers is even, so it should be
translated with “or,” not “and”:

(x is even) ∨ (y is even).

Finally, the logical meaning of “but” can be captured by “and.” The
sentence “The integer x is even, but the integer y is odd,” is translated as

(x is even) ∧ (y is odd).
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Exercises for Section 2.9

Translate each of the following sentences into symbolic logic.
1. If f is a polynomial and its degree is greater than 2, then f ′ is not constant.
2. The number x is positive but the number y is not positive.
3. If x is prime then p

x is not a rational number.
4. For every prime number p there is another prime number q with q > p.
5. For every positive number ε, there is a positive number δ for which |x−a| < δ

implies | f (x)− f (a)| < ε.
6. For every positive number ε there is a positive number M for which | f (x)−b| < ε,

whenever x > M.
7. There exists a real number a for which a+ x = x for every real number x.
8. I don’t eat anything that has a face.
9. If x is a rational number and x 6= 0, then tan(x) is not a rational number.

10. If sin(x)< 0, then it is not the case that 0≤ x ≤π.
11. There is a Providence that protects idiots, drunkards, children and the United

States of America. (Otto von Bismarck)
12. You can fool some of the people all of the time, and you can fool all of the people

some of the time, but you can’t fool all of the people all of the time. (Abraham
Lincoln)

13. Everything is funny as long as it is happening to somebody else. (Will Rogers)

2.10 Negating Statements
Given a statement R, the statement ∼ R is called the negation of R. If R
is a complex statement, then it is often the case that its negation ∼ R can
be written in a simpler or more useful form. The process of finding this
form is called negating R. In proving theorems it is often necessary to
negate certain statements. We now investigate how to do this.

We have already examined part of this topic. DeMorgan’s laws

∼ (P ∧Q) = (∼ P)∨ (∼Q) (2.6)
∼ (P ∨Q) = (∼ P)∧ (∼Q) (2.7)

(from Section 2.6) can be viewed as rules that tell us how to negate the
statements P ∧Q and P ∨Q. Here are some examples that illustrate how
DeMorgan’s laws are used to negate statements involving “and” or “or.”
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Example 2.10 Consider negating the following statement.

R : You can solve it by factoring or with the quadratic formula.

Now, R means (You can solve it by factoring) ∨ (You can solve it with Q.F.),
which we will denote as P ∨Q. The negation of this is

∼ (P ∨Q) = (∼ P)∧ (∼Q).

Therefore, in words, the negation of R is
∼ R : You can’t solve it by factoring and you can’t solve it with

the quadratic formula.
Maybe you can find ∼ R without invoking DeMorgan’s laws. That is good;
you have internalized DeMorgan’s laws and are using them unconsciously.

Example 2.11 We will negate the following sentence.

R : The numbers x and y are both odd.

This statement means (x is odd) ∧ (y is odd), so its negation is

∼ (
(x is odd)∧ (y is odd)

) = ∼ (x is odd) ∨ ∼ (y is odd)

= (x is even)∨ (y is even).

Therefore the negation of R can be expressed in the following ways:

∼ R : The number x is even or the number y is even.
∼ R : At least one of x and y is even.

Now let’s move on to a slightly different kind of problem. It’s often
necessary to find the negations of quantified statements. For example,
consider ∼ (∀x ∈N, P(x)). Reading this in words, we have the following:

It is not the case that P(x) is true for all natural numbers x.

This means P(x) is false for at least one x. In symbols, this is ∃x ∈N, ∼ P(x).
Thus ∼ (∀x ∈ N, P(x)) = ∃x ∈ N, ∼ P(x). Similarly, you can reason out that
∼ (∃x ∈N, P(x))=∀x ∈N, ∼ P(x). In general:

∼ (∀x ∈ S, P(x)) = ∃x ∈ S, ∼ P(x), (2.8)
∼ (∃x ∈ S, P(x)) = ∀x ∈ S, ∼ P(x). (2.9)
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Example 2.12 Consider negating the following statement.

R : The square of every real number is non-negative.

Symbolically, R can be expressed as ∀x ∈R, x2 ≥ 0, and thus its negation is
∼ (∀x ∈R, x2 ≥ 0) = ∃x ∈R, ∼ (x2 ≥ 0) = ∃x ∈R, x2 < 0. In words, this is

∼ R : There exists a real number whose square is negative.

Observe that R is true and ∼ R is false. You may be able to get ∼ R
immediately, without using Equation (2.8) as we did above. If so, that is
good; if not, you will probably be there soon.

If a statement has multiple quantifiers, negating it will involve several
iterations of Equations (2.8) and (2.9). Consider the following:

S : For every real number x there is a real number y for which y3 = x.

This statement asserts any real number x has a cube root y, so it’s true.
Symbolically S can be expressed as

∀x ∈R,∃ y ∈R, y3 = x.

Let’s work out the negation of this statement.

∼ (∀x ∈R,∃ y ∈R, y3 = x) = ∃x ∈R,∼ (∃ y ∈R, y3 = x)

= ∃x ∈R,∀ y ∈R, ∼ (y3 = x)

= ∃x ∈R,∀ y ∈R, y3 6= x.

Therefore the negation is the following (false) statement.

∼ S : There is a real number x for which y3 6= x for all real numbers y.

In writing proofs you will sometimes have to negate a conditional
statement P ⇒Q. The remainder of this section describes how to do this.
To begin, look at the expression ∼ (P ⇒Q), which literally says “P ⇒Q is
false.” You know from the truth table for ⇒ that the only way that P ⇒Q
can be false is if P is true and Q is false. Therefore ∼ (P ⇒Q)= P∧∼Q.

∼ (P ⇒Q) = P∧∼Q (2.10)

(In fact, in Exercise 12 of Section 2.6, you used a truth table to verify that
these two statements are indeed logically equivalent.)
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Example 2.13 Negate the following statement about a particular (i.e.,
constant) number a.

R : If a is odd then a2 is odd.

Using Equation (2.10), we get the following negation.

∼ R : a is odd and a2 is not odd.

Example 2.14 This example is like the previous one, but the constant a
is replaced by a variable x. We will negate the following statement.

R : If x is odd then x2 is odd.

As discussed in Section 2.8, we interpret this as the universally quantified
statement

R : ∀x ∈Z, (x odd)⇒ (x2 odd).

By Equations (2.8) and (2.10), we get the following negation for R.

∼ (∀x ∈Z, (x odd)⇒ (x2 odd)
) = ∃x ∈Z,∼ (

(x odd)⇒ (x2 odd)
)

= ∃x ∈Z, (x odd)∧∼ (x2 odd).

Translating back into words, we have

∼ R : There is an odd integer x whose square is not odd.

Notice that R is true and ∼ R is false.
The above Example 2.14 showed how to negate a conditional statement

P(x) ⇒ Q(x). This type of problem can sometimes be embedded in more
complex negation. See Exercise 5 below (and its solution).

Exercises for Section 2.10

Negate the following sentences.
1. The number x is positive, but the number y is not positive.
2. If x is prime, then p

x is not a rational number.
3. For every prime number p, there is another prime number q with q > p.
4. For every positive number ε, there is a positive number δ such that |x−a| < δ

implies | f (x)− f (a)| < ε.
5. For every positive number ε, there is a positive number M for which | f (x)−b| < ε

whenever x > M.
6. There exists a real number a for which a+ x = x for every real number x.
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7. I don’t eat anything that has a face.
8. If x is a rational number and x 6= 0, then tan(x) is not a rational number.
9. If sin(x)< 0, then it is not the case that 0≤ x ≤π.

10. If f is a polynomial and its degree is greater than 2, then f ′ is not constant.
11. You can fool all of the people all of the time.
12. Whenever I have to choose between two evils, I choose the one I haven’t tried

yet. (Mae West)

2.11 Logical Inference
Suppose we know that a statement of form P ⇒ Q is true. This tells us
that whenever P is true, Q will also be true. By itself, P ⇒Q being true
does not tell us that either P or Q is true (they could both be false, or P
could be false and Q true). However if in addition we happen to know
that P is true then it must be that Q is true. This is called a logical
inference: Given two true statements we can infer that a third statement
is true. In this instance true statements P ⇒Q and P are “added together”
to get Q. This is described below with P ⇒Q and P stacked one atop the
other with a line separating them from Q. The intended meaning is that
P ⇒Q combined with P produces Q.

P ⇒Q
P
Q

P ⇒Q
∼Q

∼ P

P ∨Q
∼ P
Q

Two other logical inferences are listed above. In each case you should
convince yourself (based on your knowledge of the relevant truth tables)
that the truth of the statements above the line forces the statement below
the line to be true.

Following are some additional useful logical inferences. The first
expresses the obvious fact that if P and Q are both true then the statement
P ∧Q will be true. On the other hand, P ∧Q being true forces P (also Q)
to be true. Finally, if P is true, then P ∨Q must be true, no matter what
statement Q is.

P
Q

P ∧Q

P ∧Q

P

P
P ∨Q

These inferences are so intuitively obvious that they scarcely need to
be mentioned. However, they represent certain patterns of reasoning that
we will frequently apply to sentences in proofs, so we should be cognizant
of the fact that we are using them.
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2.12 An Important Note
It is important to be aware of the reasons that we study logic. There
are three very significant reasons. First, the truth tables we studied tell
us the exact meanings of the words such as “and,” “or,” “not” and so on.
For instance, whenever we use or read the “If..., then” construction in
a mathematical context, logic tells us exactly what is meant. Second,
the rules of inference provide a system in which we can produce new
information (statements) from known information. Finally, logical rules
such as DeMorgan’s laws help us correctly change certain statements into
(potentially more useful) statements with the same meaning. Thus logic
helps us understand the meanings of statements and it also produces new
meaningful statements.

Logic is the glue that holds strings of statements together and pins down
the exact meaning of certain key phrases such as the “If..., then” or “For
all” constructions. Logic is the common language that all mathematicians
use, so we must have a firm grip on it in order to write and understand
mathematics.

But despite its fundamental role, logic’s place is in the background of
what we do, not the forefront. From here on, the beautiful symbols ∧, ∨,
⇒, ⇔, ∼, ∀ and ∃ are rarely written. But we are aware of their meanings
constantly. When reading or writing a sentence involving mathematics we
parse it with these symbols, either mentally or on scratch paper, so as to
understand the true and unambiguous meaning.



CHAPTER 3

Counting

It may seem peculiar that a college-level text has a chapter on counting.
At its most basic level, counting is a process of pointing to each object

in a collection and calling off “one, two, three,...” until the quantity of
objects is determined. How complex could that be? Actually, counting
can become quite subtle, and in this chapter we explore some of its more
sophisticated aspects. Our goal is still to answer the question “How many?”
but we introduce mathematical techniques that bypass the actual process
of counting individual objects.

Almost every branch of mathematics uses some form of this “sophisti-
cated counting.” Many such counting problems can be modeled with the
idea of a list, so we start there.

3.1 Counting Lists
A list is an ordered sequence of objects. A list is denoted by an opening
parenthesis, followed by the objects, separated by commas, followed by a
closing parenthesis. For example (a,b, c,d, e) is a list consisting of the first
five letters of the English alphabet, in order. The objects a,b, c,d, e are
called the entries of the list; the first entry is a, the second is b, and so
on. If the entries are rearranged we get a different list, so, for instance,

(a,b, c,d, e) 6= (b,a, c,d, e).

A list is somewhat like a set, but instead of being a mere collection of
objects, the entries of a list have a definite order. Note that for sets we
have {

a,b, c,d, e
}= {

b,a, c,d, e
}
,

but—as noted above—the analogous equality for lists does not hold.
Unlike sets, lists are allowed to have repeated entries. For example

(5,3,5,4,3,3) is a perfectly acceptable list, as is (S,O,S). The number of
entries in a list is called its length. Thus (5,3,5,4,3,3) has length six, and
(S,O,S) has length three.
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Occasionally we may get sloppy and write lists without parentheses
and commas; for instance, we may express (S,O,S) as SOS if there is no
danger of confusion. But be alert that doing this can lead to ambiguity.
Is it reasonable that (9,10,11) should be the same as 91011? If so, then
(9,10,11)= 91011= (9,1,0,1,1), which makes no sense. We will thus almost
always adhere to the parenthesis/comma notation for lists.

Lists are important because many real-world phenomena can be de-
scribed and understood in terms of them. For example, your phone number
(with area code) can be identified as a list of ten digits. Order is essential,
for rearranging the digits can produce a different phone number. A byte is
another important example of a list. A byte is simply a length-eight list of
0’s and 1’s. The world of information technology revolves around bytes.

To continue our examples of lists, (a,15) is a list of length two. Likewise
(0, (0,1,1)) is a list of length two whose second entry is a list of length three.
The list (N,Z,R) has length three, and each of its entries is a set. We
emphasize that for two lists to be equal, they must have exactly the same
entries in exactly the same order. Consequently if two lists are equal, then
they must have the same length. Said differently, if two lists have different
lengths, then they are not equal. For example, (0,0,0,0,0,0) 6= (0,0,0,0,0).
For another example note that

( g, r, o, c, e, r, y, l, i, s, t )
bread
milkeggs
mustard
coffee

6=
( )

because the list on the left has length eleven but the list on the right has
just one entry (a piece of paper with some words on it).

There is one very special list which has no entries at all. It is called
the empty list, and is denoted (). It is the only list whose length is zero.

One often needs to count up the number of possible lists that satisfy
some condition or property. For example, suppose we need to make a list of
length three having the property that the first entry must be an element
of the set

{
a,b, c

}
, the second entry must be in

{
5,7

}
and the third entry

must be in
{
a, x

}
. Thus (a,5,a) and (b,5,a) are two such lists. How many

such lists are there all together? To answer this question, imagine making
the list by selecting the first element, then the second and finally the third.
This is described in Figure 3.1. The choices for the first list entry are
a,b or c, and the left of the diagram branches out in three directions, one
for each choice. Once this choice is made there are two choices (5 or 7)
for the second entry, and this is described graphically by two branches
from each of the three choices for the first entry. This pattern continues
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for the choice for the third entry, which is either a or x. Thus, in the
diagram there are 3 ·2 ·2= 12 paths from left to right, each corresponding
to a particular choice for each entry in the list. The corresponding lists
are tallied at the far-right end of each path. So, to answer our original
question, there are 12 possible lists with the stated properties.

first choice second choice third choice
Resulting list

a

b

c

5

7

5

7

5

7

a
x
a
x
a
x

x
a
x
a
x
a

(a,5,a)
(a,5, x)
(a,7,a)
(a,7, x)
(b,5,a)
(b,5, x)
(b,7,a)
(b,7, x)
(c,5,a)
(c,5, x)
(c,7,a)
(c,7, x)

Figure 3.1. Constructing lists of length 3

We summarize the type of reasoning used above in an important fact
called the multiplication principle.

Fact 3.1 (Multiplication Principle) Suppose in making a list of length
n there are a1 possible choices for the first entry, a2 possible choices for
the second entry, a3 possible choices for the third entry and so on. Then
the total number of different lists that can be made this way is the product
a1 ·a2 ·a3 · · · · ·an.

So, for instance, in the above example we had a1 = 3,a2 = 2 and a3 = 2,
so the total number of lists was a1 ·a2 ·a3 = 3 ·2 ·2 = 12. Now let’s look at
some additional examples of how the multiplication principle can be used.

Example 3.1 A standard license plate consists of three letters followed
by four numbers. For example, JRB-4412 and MMX-8901 are two standard
license plates. (Vanity plates such as LV2COUNT are not included among
the standard plates.) How many different standard license plates are
possible?
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To answer this question, note that any standard license plate such as
JRB-4412 corresponds to a length-7 list (J,R,B,4,4,1,2), so the question
can be answered by counting how many such lists are possible. We use the
multiplication principle. There are a1 = 26 possibilities (one for each letter
of the alphabet) for the first entry of the list. Similarly, there are a2 = 26
possibilities for the second entry and a3 = 26 possibilities for the third
entry. There are a4 = 10 possibilities for the fourth entry, and likewise
a5 = a6 = a7 = 10. Therefore there are a total of a1 ·a2 ·a3 ·a4 ·a5 ·a6 ·a7 =
26 ·26 ·26 ·10 ·10 ·10 ·10= 175,760,000 possible standard license plates.

There are two types of list-counting problems. On one hand, there are
situations in which the same symbol or symbols may appear multiple times
in different entries of the list. For example, license plates or telephone
numbers can have repeated symbols. The sequence CCX-4144 is a perfectly
valid license plate in which the symbols C and 4 appear more than once.
On the other hand, for some lists repeated symbols do not make sense or
are not allowed. For instance, imagine drawing 5 cards from a standard
52-card deck and laying them in a row. Since no 2 cards in the deck
are identical, this list has no repeated entries. We say that repetition is
allowed in the first type of list and repetition is not allowed in the second
kind of list. (Often we call a list in which repetition is not allowed a
non-repetitive list.) The following example illustrates the difference.
Example 3.2 Consider making lists from symbols A, B, C, D, E, F, G.
(a) How many length-4 lists are possible if repetition is allowed?
(b) How many length-4 lists are possible if repetition is not allowed?
(c) How many length-4 lists are possible if repetition is not allowed and
the list must contain an E?
(d) How many length-4 lists are possible if repetition is allowed and the
list must contain an E?

Solutions:
(a) Imagine the list as containing four boxes that we fill with selections
from the letters A,B,C,D,E,F and G, as illustrated below.

, , ,( )
7 choices

7 choices
7 choices

7 choices

There are seven possibilities for the contents of each box, so the total
number of lists that can be made this way is 7 ·7 ·7 ·7= 2401.
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(b) This problem is the same as the previous one except that repetition is
not allowed. We have seven choices for the first box, but once it is filled
we can no longer use the symbol that was placed in it. Hence there are
only six possibilities for the second box. Once the second box has been
filled we have used up two of our letters, and there are only five left to
choose from in filling the third box. Finally, when the third box is filled
we have only four possible letters for the last box.

, , ,( )
7 choices

6 choices
5 choices

4 choices

Thus the answer to our question is that there are 7 ·6 ·5 ·4= 840 lists in
which repetition does not occur.
(c) We are asked to count the length-4 lists in which repetition is not
allowed and the symbol E must appear somewhere in the list. Thus E
occurs once and only once in each such list. Let us divide these lists into
four categories depending on whether the E occurs as the first, second,
third or fourth entry. These four types of lists are illustrated below.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
6 choices 6 choices 6 choices 6 choices

5 choices 5 choices 5 choices 5 choices
4 choices 4 choices 4 choices 4 choices

Consider lists of the first type, in which the E appears in the first entry.
We have six remaining choices (A,B,C,D,F or G) for the second entry, five
choices for the third entry and four choices for the fourth entry. Hence
there are 6 ·5 ·4= 120 lists having an E in the first entry. As indicated
in the above diagram, there are also 6 ·5 ·4= 120 lists having an E in the
second, third or fourth entry. Thus there are 120+120+120+120= 480
such lists all together.

(d) Now we must find the number of length-four lists where repetition
is allowed and the list must contain an E. Our strategy is as follows.
By Part (a) of this exercise there are 7 ·7 ·7 ·7 = 74 = 2401 lists where
repetition is allowed. Obviously this is not the answer to our current
question, for many of these lists contain no E. We will subtract from
2401 the number of lists that do not contain an E. In making a list that
does not contain an E, we have six choices for each list entry (because



68 Counting

we can choose any one of the six letters A,B,C,D,F or G). Thus there
are 6 ·6 ·6 ·6= 64 = 1296 lists that do not have an E. Therefore the final
answer to our question is that there are 2401−1296 = 1105 lists with
repetition allowed that contain at least one E.

Perhaps you wondered if Part (d) of Example 3.2 could be solved with
a setup similar to that of Part (c). Let’s try doing it that way. We want
to count the length-4 lists (with repetition allowed) that contain at least
one E. The following diagram is adapted from Part (c), the only difference
being that there are now seven choices in each slot because we are allowed
to repeat any of the seven letters.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
7 choices 7 choices 7 choices 7 choices

7 choices 7 choices 7 choices 7 choices
7 choices 7 choices 7 choices 7 choices

This gives a total of 73 + 73 + 73 + 73 = 1372 lists, an answer that is
substantially larger than the (correct) value of 1105 that we got in our
solution to Part (d) above. It is not hard to see what went wrong. The
list (E,E, A,B) is of type 1 and type 2, so it got counted twice. Similarly
(E,E,C,E) is of type 1, 3 and 4, so it got counted three times. In fact, you
can find many similar lists that were counted multiple times.

In solving counting problems, we must always be careful to avoid this
kind of double-counting or triple-counting, or worse.

Exercises for Section 3.1

Note: A calculator may be helpful for some of the exercises in this chapter. This
is the only chapter for which a calculator may be helpful. (As for the exercises in
the other chapters, a calculator makes them harder.)

1. Consider lists made from the letters T,H,E,O,R,Y, with repetition allowed.
(a) How many length-4 lists are there?
(b) How many length-4 lists are there that begin with T ?
(c) How many length-4 lists are there that do not begin with T ?

2. Airports are identified with 3-letter codes. For example, the Richmond, Virginia
airport has the code RIC, and Portland, Oregon has PDX. How many different
3-letter codes are possible?

3. How many lists of length 3 can be made from the symbols A,B,C,D,E,F if...
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(a) ... repetition is allowed.
(b) ... repetition is not allowed.
(c) ... repetition is not allowed and the list must contain the letter A.
(d) ... repetition is allowed and the list must contain the letter A.

4. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all 5 cards are of the same suit?

5. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all 5 cards are of the same color (i.e.,
all black or all red)?

6. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which exactly one of the 5 cards is a queen?

7. This problem involves 8-digit binary strings such as 10011011 or 00001010
(i.e., 8-digit numbers composed of 0’s and 1’s).
(a) How many such strings are there?
(b) How many such strings end in 0?
(c) How many such strings have the property that their second and fourth

digits are 1’s?
(d) How many such strings have the property that their second or fourth digits

are 1’s?
8. This problem concerns lists made from the symbols A,B,C,D,E.

(a) How many such length-5 lists have at least one letter repeated?
(b) How many such length-6 lists have at least one letter repeated?

9. This problem concerns 4-letter codes made from the letters A,B,C,D,...,Z.
(a) How many such codes can be made?
(b) How many such codes have no two consecutive letters the same?

10. This problem concerns lists made from the letters A,B,C,D,E,F,G,H,I,J.
(a) How many length-5 lists can be made from these letters if repetition is not

allowed and the list must begin with a vowel?
(b) How many length-5 lists can be made from these letters if repetition is not

allowed and the list must begin and end with a vowel?
(c) How many length-5 lists can be made from these letters if repetition is not

allowed and the list must contain exactly one A?
11. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.

How many such lists are possible if repetition is not allowed and the list
contains two consecutive vowels?

12. Consider the lists of length six made with the symbols P, R, O, F, S, where
repetition is allowed. (For example, the following is such a list: (P,R,O,O,F,S).)
How many such lists can be made if the list must end in an S and the symbol
O is used more than once?
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3.2 Factorials
In working the examples from Section 3.1, you may have noticed that often
we need to count the number of non-repetitive lists of length n that are
made from n symbols. In fact, this particular problem occurs with such
frequency that a special idea, called a factorial, is introduced to handle it.

The table below motivates this idea. The first column lists successive
integer values n (beginning with 0) and the second column contains a
set

{
A,B, · · ·} of n symbols. The third column contains all the possible

non-repetitive lists of length n which can be made from these symbols.
Finally, the last column tallies up how many lists there are of that type.
Notice that when n = 0 there is only one list of length 0 that can be made
from 0 symbols, namely the empty list ( ). Thus the value 1 is entered in
the last column of that row.

n Symbols Non-repetitive lists of length n made from the symbols n!

0
{}

( ) 1

1
{
A

}
(A) 1

2
{
A,B

}
(A,B), (B, A) 2

3
{
A,B,C

}
(A,B,C), (A,C,B), (B,C, A), (B, A,C), (C, A,B), (C,B, A) 6

4
{
A,B,C,D

} (A,B,C,D), (A,B,D,C), (A,C,B,D), (A,C,D,B), (A,D,B,C), (A,D,C,B)
(B,A,C,D), (B,A,D,C), (B,C,A,D), (B,C,D,A), (B,D, A,C), (B,D,C,A)
(C,A,B,D), (C,A,D,B), (C,B,A,D), (C,B,D,A), (C,D,A,B), (C,D,B,A)
(D,A,B,C), (D,A,C,B), (D,B,A,C), (D,B,C,A), (D,C,A,B), (D,C,B,A)

24

...
...

...
...

For n > 0, the number that appears in the last column can be computed
using the multiplication principle. The number of non-repetitive lists of
length n that can be made from n symbols is n(n−1)(n−2) · · ·3·2·1. Thus, for
instance, the number in the last column of the row for n = 4 is 4 ·3 ·2 ·1= 24.

The number that appears in the last column of Row n is called the
factorial of n. It is denoted as n! (read “n factorial”). Here is the definition:

Definition 3.1 If n is a non-negative integer, then the factorial of n,
denoted n!, is the number of non-repetitive lists of length n that can
be made from n symbols. Thus 0! = 1 and 1! = 1. If n > 1, then n! =
n(n−1)(n−2) · · ·3 ·2 ·1.
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It follows that 0! = 1
1! = 1
2! = 2 ·1= 2
3! = 3 ·2 ·1= 6
4! = 4 ·3 ·2 ·1= 24
5! = 5 ·4 ·3 ·2 ·1= 120
6! = 6 ·5 ·4 ·3 ·2 ·1= 720, and so on.

Students are often tempted to say 0!= 0, but this is wrong. The correct
value is 0!= 1, as the above definition and table tell us. Here is another
way to see that 0! must equal 1: Notice that 5!= 5 ·4 ·3 ·2 ·1= 5 · (4 ·3 ·2 ·1)=
5 ·4!. Also 4!= 4 ·3 ·2 ·1= 4 · (3 ·2 ·1)= 4 ·3!. Generalizing this reasoning, we
have the following formula.

n!= n · (n−1)! (3.1)

Plugging in n = 1 gives 1!= 1·(1−1)!= 1·0!, that is, 1!= 1·0!. If we mistakenly
thought 0! were 0, this would give the incorrect result 1!= 0.

We round out our discussion of factorials with an example.

Example 3.3 This problem involves making lists of length seven from
the symbols 0,1,2,3,4,5 and 6.

(a) How many such lists are there if repetition is not allowed?
(b) How many such lists are there if repetition is not allowed and the
first three entries must be odd?

(c) How many such lists are there in which repetition is allowed, and
the list must contain at least one repeated number?

To answer the first question, note that there are seven symbols, so the
number of lists is 7! = 5040. To answer the second question, notice that
the set

{
0,1,2,3,4,5,6

}
contains three odd numbers and four even numbers.

Thus in making the list the first three entries must be filled by odd numbers
and the final four must be filled with even numbers. By the multiplication
principle, the number of such lists is 3 ·2 ·1 ·4 ·3 ·2 ·1= 3!4!= 144.

To answer the third question, notice that there are 77 = 823,543 lists
in which repetition is allowed. The set of all such lists includes lists
that are non-repetitive (e.g., (0,6,1,2,4,3,5)) as well as lists that have
some repetition (e.g., (6,3,6,2,0,0,0)). We want to compute the number of
lists that have at least one repeated number. To find the answer we can
subtract the number of non-repetitive lists of length seven from the total
number of possible lists of length seven. Therefore the answer is 77 −7!=
823,543−5040= 818,503.
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We close this section with a formula that combines the ideas of the first
and second sections of the present chapter. One of the main problems of
Section 3.1 was as follows: Given n symbols, how many non-repetitive lists
of length k can be made from the n symbols? We learned how to apply the
multiplication principle to obtain the answer

n(n−1)(n−2) · · · (n−k+1).

Notice that by cancellation this value can also be written as

n(n−1)(n−2) · · · (n−k+1)(n−k)(n−k−1) · · ·3 ·2 ·1
(n−k)(n−k−1) · · ·3 ·2 ·1 = n!

(n−k)!
.

We summarize this as follows:

Fact 3.2 The number of non-repetitive lists of length k whose entries
are chosen from a set of n possible entries is n!

(n−k)! .

For example, consider finding the number of non-repetitive lists of
length five that can be made from the symbols 1,2,3,4,5,6,7,8. We will do
this two ways. By the multiplication principle, the answer is 8 ·7 ·6 ·5 ·4=
6720. Using the formula from Fact 3.2, the answer is 8!

(8−5)! = 8!
3! = 40,320

6 =
6720.

The new formula isn’t really necessary, but it is a nice repackaging of
an old idea and will prove convenient in the next section.

Exercises for Section 3.2

1. What is the smallest n for which n! has more than 10 digits?
2. For which values of n does n! have n or fewer digits?
3. How many 5-digit positive integers are there in which there are no repeated

digits and all digits are odd?
4. Using only pencil and paper, find the value of 100!

95! .
5. Using only pencil and paper, find the value of 120!

118! .
6. There are two 0’s at the end of 10! = 3,628,800. Using only pencil and paper,

determine how many 0’s are at the end of the number 100!.
7. Compute howmany 9-digit numbers can be made from the digits 1,2,3,4,5,6,7,8,9

if repetition is not allowed and all the odd digits occur first (on the left) followed
by all the even digits (i.e. as in 137598264, but not 123456789).

8. Compute how many 7-digit numbers can be made from the digits 1,2,3,4,5,6,7 if
there is no repetition and the odd digits must appear in an unbroken sequence.
(Examples: 3571264 or 2413576 or 2467531, etc., but not 7234615.)
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9. There is a very interesting function Γ : [0,∞)→R called the gamma function.
It is defined as Γ(x)= ∫ ∞

0 tx−1e−tdt. It has the remarkable property that if x ∈N,
then Γ(x)= (x−1)!. Check that this is true for x = 1,2,3,4.
Notice that this function provides a way of extending factorials to numbers other
than integers. Since Γ(n)= (n−1)! for all n ∈N, we have the formula n!=Γ(n+1).
But Γ can be evaluated at any number in [0,∞), not just at integers, so we
have a formula for n! for any n ∈ [0,∞). Extra credit: Compute π!.

10. There is another significant function called Stirling’s formula that provides an
approximation to factorials. It states that n!≈p

2πn
( n

e
)n. It is an approximation

to n! in the sense that n!p
2πn

( n
e
)n approaches 1 as n approaches ∞. Use Stirling’s

formula to find approximations to 5!, 10!, 20! and 50!.

3.3 Counting Subsets
The previous two sections were concerned with counting the number of
lists that can be made by selecting k entries from a set of n possible entries.
We turn now to a related question: How many subsets can be made by
selecting k elements from a set with n elements?

To highlight the differences between these two problems, look at the set
A = {

a,b, c,d, e
}
. First, think of the non-repetitive lists that can be made

from selecting two entries from A. By Fact 3.2 (on the previous page),
there are 5!

(5−2)! = 5!
3! = 120

6 = 20 such lists. They are as follows.

(a,b), (a, c), (a,d), (a, e), (b, c), (b,d), (b, e), (c,d), (c, e) (d, e)
(b,a), (c,a), (d,a), (e,a), (c,b), (d,b), (e,b), (d, c), (e, c) (e,d)

Next consider the subsets of A that can made from selecting two ele-
ments from A. There are only ten such subsets, as follows.{

a,b
}
,

{
a, c

}
,

{
a,d

}
,

{
a, e

}
,

{
b, c

}
,

{
b,d

}
,

{
b, e

}
,

{
c,d

}
,

{
c, e

}
,

{
d, e

}
.

The reason that there are more lists than subsets is that changing the
order of the entries of a list produces a different list, but changing the
order of the elements of a set does not change the set. Using elements
a,b ∈ A, we can make two lists (a,b) and (b,a), but only one subset

{
a,b

}
.

In this section we are concerned not with counting lists, but with
counting subsets. As was noted above, the basic question is this: How
many subsets can be made by choosing k elements from an n-element
set? We begin with some notation that gives a name to the answer to this
question.
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Definition 3.2 If n and k are integers, then
(n

k
)
denotes the number

of subsets that can be made by choosing k elements from a set with n
elements. The symbol

(n
k
)
is read “n choose k.” (Some textbooks write

C(n,k) instead of
(n

k
)
.)

To illustrate this definition, the following table computes the values of(4
k
)
for various values of k by actually listing all the subsets of the 4-element

set A = {
a,b, c,d

}
that have cardinality k. The values of k appear in the

far-left column. To the right of each k are all of the subsets (if any) of A of
size k. For example, when k = 1, set A has four subsets of size k, namely{
a
}
,
{
b
}
,
{
c
}
and

{
d
}
. Therefore

(4
1
)= 4. Similarly, when k = 2 there are six

subsets of size k so
(4
2
)= 6.

k k-element subsets of
{
a,b, c,d

} (4
k
)

−1
( 4
−1

)= 0

0 ; (4
0
)= 1

1
{
a
}
,
{
b
}
,
{
c
}
,
{
d
} (4

1
)= 4

2
{
a,b

}
,
{
a, c

}
,
{
a,d

}
,
{
b, c

}
,
{
b,d

}
,
{
c,d

} (4
2
)= 6

3
{
a,b, c

}
,
{
a,b,d

}
,
{
a, c,d

}
,
{
b, c,d

} (4
3
)= 4

4
{
a,b, c,d

} (4
4
)= 1

5
(4
5
)= 0

6
(4
6
)= 0

When k = 0, there is only one subset of A that has cardinality k, namely
the empty set, ;. Therefore (4

0
)= 1.

Notice that if k is negative or greater than |A|, then A has no subsets
of cardinality k, so

(4
k
)= 0 in these cases. In general

(n
k
)= 0 whenever k < 0

or k > n. In particular this means
(n

k
)= 0 if n is negative.

Although it was not hard to work out the values of
(4
k
)
by writing out

subsets in the above table, this method of actually listing sets would not
be practical for computing

(n
k
)
when n and k are large. We need a formula.

To find one, we will now carefully work out the value of
(5
3
)
in such a way

that a pattern will emerge that points the way to a formula for any
(n

k
)
.
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To begin, note that
(5
3
)
is the number of 3-element subsets of

{
a,b, c,d, e

}
.

These are listed in the following table. We see that in fact
(5
3
)= 10.

{
a,b,c

}{
a,b,d

}{
a,b,e

} {
a,c,d

} {
a,c,e

} {
a,d,e

}{
b,c,d

} {
b,c,e

} {
b,d,e

} {
c,d,e

}
(5
3
)

3!

The formula will emerge when we expand this table as follows. Taking
any one of the ten 3-element sets above, we can make 3! different non-
repetitive lists from its elements. For example, consider the first set

{
a,b, c

}
.

The first column of the following table tallies the 3!= 6 different lists that
can be the letters

{
a,b, c

}
. The second column tallies the lists that can be

made from
{
a,b,d

}
, and so on.

abc abd abe acd ace ade bcd bce bde cde
acb adb aeb adc aec aed bdc bec bed ced
bac bad bae cad cae dae cbd cbe dbe dce
bca bda bea cda cea dea cdb ceb deb dec
cba dba eba dca eca eda dcb ecb edb edc
cab dab eab dac eac ead dbc ebc ebd ecd

3!

(5
3
)

This table has
(5
3
)
columns and 3! rows, so it has a total of 3!

(5
3
)
lists.

But notice also that the table consists of every non-repetitive length-3 list
that can be made from the symbols

{
a,b, c,d, e

}
. We know from Fact 3.2

that there are 5!
(5−3)! such lists. Thus the total number of lists in the table

is 3!
(5
3
)= 5!

(5−3)! . Dividing both sides of this equation by 3!, we get(
5
3

)
= 5!

3!(5−3)!
.

Working this out, you will find that it does give the correct value of 10.
But there was nothing special about the values 5 and 3. We could

do the above analysis for any
(n

k
)
instead of

(5
3
)
. The table would have

(n
k
)

columns and k! rows. We would get(
n
k

)
= n!

k!(n−k)!
.

We summarize this as follows:
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Fact 3.3 If n,k ∈Z and 0≤ k ≤ n, then
(
n
k

)
= n!

k!(n−k)!
. Otherwise

(
n
k

)
= 0.

Let’s now use our new knowledge to work some exercises.
Example 3.4 How many 4-element subsets does

{
1,2,3,4,5,6,7,8,9

}
have?

The answer is
(9
4
)= 9!

4!(9−4)! = 9!
4!5! = 9·8·7·6·5!

4!5! = 9·8·7·6
4! = 9·8·7·6

24 = 126.
Example 3.5 A single 5-card hand is dealt off of a standard 52-card deck.
How many different 5-card hands are possible?

To answer this, think of the deck as being a set D of 52 cards. Then a
5-card hand is just a 5-element subset of D. For example, here is one of
many different 5-card hands that might be dealt from the deck.{

7

♣ ,
2

♣ ,
3

♥ ,
A

♠ ,
5

♦

}
The total number of possible hands equals the number of 5-element

subsets of D, that is(
52
5

)
= 52!

5! ·47!
= 52 ·51 ·50 ·49 ·48 ·47!

5! ·47!
= 52 ·51 ·50 ·49 ·48

5!
= 2,598,960.

Thus the answer to our question is that there are 2,598,960 different
five-card hands that can be dealt from a deck of 52 cards.
Example 3.6 This problem concerns 5-card hands that can be dealt off
of a 52-card deck. How many such hands are there in which two of the
cards are clubs and three are hearts?

Solution: Think of such a hand as being described by a list of length
two of the form ( { ∗

♣ ,
∗

♣

}
,
{ ∗

♥ ,
∗

♥ ,
∗

♥

} )
,

where the first entry is a 2-element subset of the set of 13 club cards, and
the second entry is a 3-element subset of the set of 13 heart cards. There
are

(13
2
)
choices for the first entry and

(13
3
)
choices for the second entry, so

by the multiplication principle there are
(13

2
)(13

3
)= 13!

2!11!
13!

3!10! = 22,308 such
lists. Answer: There are 22,308 possible 5-card hands with two clubs
and three hearts.
Example 3.7 Imagine a lottery that works as follows. A bucket contains
36 balls numbered 1,2,3,4, ...,36. Six of these balls will be drawn randomly.
For $1 you buy a ticket that has six blanks: ääääää . You fill in the
blanks with six different numbers between 1 and 36. You win $1,000,000
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if you chose the same numbers that are drawn, regardless of order. What
are your chances of winning?

Solution: In filling out the ticket you are choosing six numbers from
a set of 36 numbers. Thus there are

(36
6
) = 36!

6!(36−6)! = 1,947,792 different
combinations of numbers you might write. Only one of these will be a
winner. Your chances of winning are one in 1,947,792.

Exercises for Section 3.3

1. Suppose a set A has 37 elements. How many subsets of A have 10 elements?
How many subsets have 30 elements? How many have 0 elements?

2. Suppose A is a set for which |A| = 100. How many subsets of A have 5 elements?
How many subsets have 10 elements? How many have 99 elements?

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
4. Suppose a set B has the property that

∣∣{X : X ∈P(B), |X | = 6
}∣∣= 28. Find |B|.

5. How many 16-digit binary strings contain exactly seven 1’s? (Examples of such
strings include 0111000011110000 and 0011001100110010, etc.)

6.
∣∣{X ∈P(

{
0,1,2,3,4,5,6,7,8,9

}
) : |X | = 4

}∣∣=
7.

∣∣{X ∈P(
{
0,1,2,3,4,5,6,7,8,9

}
) : |X | < 4

}∣∣=
8. This problem concerns lists made from the symbols A,B,C,D,E,F,G,H,I.

(a) How many length-5 lists can be made if repetition is not allowed and the
list is in alphabetical order? (Example: BDEFI or ABCGH, but not BACGH.)

(b) How many length-5 lists can be made if repetition is not allowed and the
list is not in alphabetical order?

9. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,
without repetition. How many such lists have the property that the D occurs
before the A?

10. A department consists of 5 men and 7 women. From this department you select
a committee with 3 men and 2 women. In how many ways can you do this?

11. How many positive 10-digit integers contain no 0’s and exactly three 6’s?
12. Twenty-one people are to be divided into two teams, the Red Team and the

Blue Team. There will be 10 people on Red Team and 11 people on Blue Team.
In how many ways can this be done?

13. Suppose n and k are integers for which 0≤ k ≤ n. Use the formula
(n

k
)= n!

k!(n−k)!
to show that

(n
k
)= ( n

n−k
)
.

14. Suppose n,k ∈Z, and 0≤ k ≤ n. Use Definition 3.2 alone (without using Fact 3.3)
to show that

(n
k
)= ( n

n−k
)
.
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3.4 Pascal’s Triangle and the Binomial Theorem
There are some beautiful and significant patterns among the numbers

(n
k
)
.

This section investigates a pattern based on one equation in particular. It
happens that (

n+1
k

)
=

(
n

k−1

)
+

(
n
k

)
(3.2)

for any integers n and k with 1≤ k ≤ n.
To see why this is true, recall that

(n+1
k

)
equals the number of k-element

subsets of a set with n+1 elements. Now, the set A = {
0,1,2,3, . . . ,n

}
has

n+1 elements, so
(n+1

k
)
equals the number of k-element subsets of A. Such

subsets can be divided into two types: those that contain 0 and those that
do not contain 0. To make a k-element subset that contains 0 we can start
with

{
0
}
and then append to this set an additional k−1 numbers selected

from
{
1,2,3, . . . ,n

}
. There are

( n
k−1

)
ways to make this selection, so there

are
( n
k−1

)
k-element subsets of A that contain 0. Concerning the k-element

subsets of A that do not contain 0, there are
(n

k
)
of these sets, for we can

form them by selecting k elements from the n-element set
{
1,2,3, . . . ,n

}
. In

light of all this, Equation (3.2) just expresses the obvious fact that the
number of k-element subsets of A equals the number of k-element subsets
that contain 0 plus the number of k-element subsets that do not contain 0.

(0
0
)(1

0
) (1

1
)(2

0
) (2

1
) (2

2
)(3

0
) (3

1
) (3

2
) (3

3
)(4

0
) (4

1
) (4

2
) (4

3
) (4

4
)(5

0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)(6

0
) (6

1
) (6

2
) (6

3
) (6

4
) (6

5
) (6

6
)(7

0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)
. . .

...
...

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1 . . .

...
...

Figure 3.2. Pascal’s triangle

Now that we have seen why Equation (3.2) is true, we are going to
arrange the numbers

(n
k
)
in a triangular pattern that highlights various

relationships among them. The left-hand side of Figure 3.2 shows numbers(n
k
)
arranged in a pyramid with

(0
0
)
at the apex, just above a row containing(1

k
)
with k = 0 and k = 1. Below this is a row listing the values of

(2
k
)
for

k = 0,1,2. In general, each row listing the numbers
(n

k
)
is just above a row

listing the numbers
(n+1

k
)
.
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Any number
(n+1

k
)
for 0 < k < n in this pyramid is immediately below

and between the the two numbers
( n
k−1

)
and

(n
k
)
in the previous row. But

Equation 3.2 says
(n+1

k
)= ( n

k−1
)+(n

k
)
, and therefore any number (other than 1)

in the pyramid is the sum of the two numbers immediately above it.
This pattern is especially evident on the right of Figure 3.2, where

each
(n

k
)
is worked out. Notice how 21 is the sum of the numbers 6 and 15

above it. Similarly, 5 is the sum of the 1 and 4 above it and so on.
The arrangement on the right of Figure 3.2 is called Pascal’s triangle.

(It is named after Blaise Pascal, 1623–1662, a French mathematician and
philosopher who discovered many of its properties.) Although we have
written only the first eight rows of Pascal’s triangle (beginning with Row 0
at the apex), it obviously could be extended downward indefinitely. We
could add an additional row at the bottom by placing a 1 at each end and
obtaining each remaining number by adding the two numbers above its
position. Doing this would give the following row:

1 8 28 56 70 56 28 8 1

This row consists of the numbers
(8
k
)
for 0≤ k ≤ 8, and we have computed

them without the formula
(8
k
)= 8!

k!(8−k)! . Any
(n

k
)
can be computed this way.

The very top row (containing only 1) is called Row 0. Row 1 is the
next down, followed by Row 2, then Row 3, etc. With this labeling, Row n
consists of the numbers

(n
k
)
for 0≤ k ≤ n.

Notice that Row n appears to be a list of the coefficients of (x+ y)n.
For example (x+ y)2 = 1x2 +2xy+1y2, and Row 2 lists the coefficients 1 2 1.
Similarly (x+ y)3 = 1x3 +3x2 y+3xy2 +1y3, and Row 3 is 1 3 3 1. Pascal’s
triangle is shown on the left of Figure 3.3 and on the right are the
expansions of (x+ y)n for 0≤ n ≤ 5. In every case (at least as far as you care
to check) the numbers in Row n match up with the coefficients of (x+ y)n.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
. . .

...
...

1

1x + 1y

1x2 + 2xy + 1y2

1x3 + 3x2 y + 3xy2 + 1y3

1x4 + 4x3 y +6x2 y2 + 4xy3 + 1y4

1x5 + 5x4 y +10x3 y2+10x2 y3+ 5xy4 + 1y5

. . .
...

...

Figure 3.3. The nth row of Pascal’s triangle lists the coefficients of (x+ y)n
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In fact this turns out to be true for every n. This result is known as
the binomial theorem, and it is worth mentioning here. It tells how to
raise a binomial x+ y to a non-negative integer power n.
Theorem 3.1 (Binomial Theorem) If n is a non-negative integer, then
(x+ y)n = (n

0
)
xn + (n

1
)
xn−1 y+ (n

2
)
xn−2 y2 + (n

3
)
xn−3 y3 +·· ·+ ( n

n−1
)
xyn−1 + (n

n
)
yn.

For now we will be content to accept the binomial theorem without
proof. (You will be asked to prove it in an exercise in Chapter 10.) You
may find it useful from time to time. For instance, you can apply it if you
ever need to expand an expression such as (x+ y)7. To do this, look at Row
7 of Pascal’s triangle in Figure 3.2 and apply the binomial theorem to get

(x+ y)7 = x7 +7x6 y+21x5 y2 +35x4 y3 +35x3 y4 +21x2 y5 +7xy6 + y7.

For another example,

(2a−b)4 = ((2a)+ (−b))4

= (2a)4 +4(2a)3(−b)+6(2a)2(−b)2 +4(2a)(−b)3 + (−b)4

= 16a4 −32a3b+24a2b2 −8ab3 +b4.

Exercises for Section 3.4
1. Write out Row 11 of Pascal’s triangle.
2. Use the binomial theorem to find the coefficient of x8 y5 in (x+ y)13.
3. Use the binomial theorem to find the coefficient of x8 in (x+2)13.
4. Use the binomial theorem to find the coefficient of x6 y3 in (3x−2y)9.
5. Use the binomial theorem to show ∑n

k=0

(n
k
)= 2n.

6. Use Definition 3.2 (page 74) and Fact 1.3 (page 12) to show ∑n
k=0

(n
k
)= 2n.

7. Use the binomial theorem to show ∑n
k=0 3k(n

k
)= 4n.

8. Use Fact 3.3 (page 76) to derive Equation 3.2 (page 78).
9. Use the binomial theorem to show

(n
0
)− (n

1
)+ (n

2
)− (n

3
)+ (n

4
)−·· ·+ (−1)n(n

n
)= 0.

10. Show that the formula k
(n

k
)= n

(n−1
k−1

)
is true for all integers n,k with 0≤ k ≤ n.

11. Use the binomial theorem to show 9n =∑n
k=0(−1)k(n

k
)
10n−k.

12. Show that
(n

k
)( k

m
)= (n

m
)(n−m

k−m
)
.

13. Show that
(n
3
)= (2

2
)+ (3

2
)+ (4

2
)+ (5

2
)+·· ·+ (n−1

2
)
.

14. The first five rows of Pascal’s triangle appear in the digits of powers of 11:
110 = 1, 111 = 11, 112 = 121, 113 = 1331 and 114 = 14641. Why is this so? Why
does the pattern not continue with 115?
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3.5 Inclusion-Exclusion
Many counting problems involve computing the cardinality of a union A∪B
of two finite sets. We examine this kind of problem now.

First we develop a formula for |A∪B|. It is tempting to say that |A∪B|
must equal |A|+ |B|, but that is not quite right. If we count the elements
of A and then count the elements of B and add the two figures together,
we get |A|+ |B|. But if A and B have some elements in common, then we
have counted each element in A∩B twice.

A B

Therefore |A| + |B| exceeds |A ∪B| by |A ∩B|, and consequently |A ∪B| =
|A|+ |B|− |A∩B|. This can be a useful equation.

|A∪B| = |A|+ |B|− |A∩B| (3.3)

Notice that the sets A, B and A∩B are all generally smaller than A∪B, so
Equation (3.3) has the potential of reducing the problem of determining
|A ∪B| to three simpler counting problems. It is sometimes called an
inclusion-exclusion formula because elements in A∩B are included (twice)
in |A|+|B|, then excluded when |A∩B| is subtracted. Notice that if A∩B =;,
then we do in fact get |A∪B| = |A|+ |B|; conversely if |A∪B| = |A|+ |B|, then
it must be that A∩B =;.
Example 3.8 A 3-card hand is dealt off of a standard 52-card deck. How
many different such hands are there for which all 3 cards are red or all
three cards are face cards?

Solution: Let A be the set of 3-card hands where all three cards are
red (i.e., either ♥ or ♦). Let B be the set of 3-card hands in which all three
cards are face cards (i.e., J,K or Q of any suit). These sets are illustrated
below.

A =
{{

5

♥ ,
K

♦ ,
2

♥

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
A

♦ ,
6

♦ ,
6

♥

}
, . . .

}
(Red cards)

B =
{{

K

♠ ,
K

♦ ,
J

♣

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
Q

♦ ,
Q

♣ ,
Q

♥

}
, . . .

}
(Face cards)
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We seek the number of 3-card hands that are all red or all face cards,
and this number is |A ∪B|. By Formula (3.3), |A ∪B| = |A| + |B| − |A ∩B|.
Let’s examine |A|, |B| and |A ∩B| separately. Any hand in A is formed
by selecting three cards from the 26 red cards in the deck, so |A| = (26

3
)
.

Similarly, any hand in B is formed by selecting three cards from the 12
face cards in the deck, so |B| = (12

3
)
. Now think about A∩B. It contains all

the 3-card hands made up of cards that are red face cards.

A∩B =
{{

K

♥ ,
K

♦ ,
J

♥

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
,

Q

♦ ,
J

♦ ,
Q

♥

}
, . . .

}
(Red face

cards)

The deck has only 6 red face cards, so |A∩B| = (6
3
)
.

Now we can answer our question. The number of 3-card hands that
are all red or all face cards is |A∪B| = |A|+ |B|− |A∩B| = (26

3
)+ (12

3
)− (6

3
) =

2600+220−20= 2800.

There is an analogue to Equation (3.3) that involves three sets. Consider
three sets A, B and C, as represented in the following Venn Diagram.

A B

C

Using the same kind of reasoning that resulted in Equation (3.3), you can
convince yourself that

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|. (3.4)

There’s probably not much harm in ignoring this one for now, but if you
find this kind of thing intriguing you should definitely take a course in
combinatorics. (Ask your instructor!)

As we’ve noted, Equation (3.3) becomes |A∪B| = |A|+ |B| if it happens
that A∩B =;. Also, in Equation (3.4), note that if A∩B =;, A∩C =; and
B∩C =;, we get the simple formula |A∪B∪C| = |A|+ |B|+ |C|. In general,
we have the following formula for n sets, none of which overlap. It is
sometimes called the addition principle.

Fact 3.4 (Addition Principle) If A1, A2, . . . , An are sets with A i∩A j =;
whenever i 6= j, then |A1 ∪ A2 ∪·· ·∪ An| = |A1|+ |A2|+ · · ·+ |An|.
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Example 3.9 How many 7-digit binary strings (0010100, 1101011, etc.)
have an odd number of 1’s?

Solution: Let A be the set of all 7-digit binary strings with an odd
number of 1’s, so the answer to the question will be |A|. To compute |A|,
we break A up into smaller parts. Notice any string in A will have either
one, three, five or seven 1’s. Let A1 be the set of 7-digit binary strings
with only one 1. Let A3 be the set of 7-digit binary strings with three 1’s.
Let A5 be the set of 7-digit binary strings with five 1’s, and let A7 be the
set of 7-digit binary strings with seven 1’s. Therefore A = A1∪ A3∪ A5∪ A7.
Notice that any two of the sets A i have empty intersection, so Fact 3.4
gives |A| = |A1|+ |A3|+ |A5|+ |A7|.

Now the problem is to find the values of the individual terms of this
sum. For instance take A3, the set of 7-digit binary strings with three 1’s.
Such a string can be formed by selecting three out of seven positions for
the 1’s and putting 0’s in the other spaces. Therefore |A3| =

(7
3
)
. Similarly

|A1| =
(7
1
)
, |A5| =

(7
5
)
, and |A7| =

(7
7
)
. Finally the answer to our question is

|A| = |A1|+ |A3|+ |A5|+ |A7| =
(7
1
)+ (7

3
)+ (7

5
)+ (7

7
) = 7+35+21+1 = 64. There

are 64 seven-digit binary strings with an odd number of 1’s.

You may already have been using the Addition Principle intuitively,
without thinking of it as a free-standing result. For instance, we used it
in Example 3.2(c) when we divided lists into four types and computed the
number of lists of each type.

Exercises for Section 3.5

1. At a certain university 523 of the seniors are history majors or math majors
(or both). There are 100 senior math majors, and 33 seniors are majoring in
both history and math. How many seniors are majoring in history?

2. How many 4-digit positive integers are there for which there are no repeated
digits, or for which there may be repeated digits, but all are odd?

3. How many 4-digit positive integers are there that are even or contain no 0’s?
4. This problem involves lists made from the letters T,H,E,O,R,Y, with repetition

allowed.
(a) How many 4-letter lists are there that don’t begin with T, or don’t end in

Y?
(b) How many 4-letter lists are there in which the sequence of letters T,H,E

appears consecutively?
(c) How many 5-letter lists are there in which the sequence of letters T,H,E

appears consecutively?
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5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
6. Is the following statement true or false? Explain. If A1 ∩ A2 ∩ A3 = ;, then

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3|.
7. This problem concerns 4-card hands dealt off of a standard 52-card deck. How

many 4-card hands are there for which all 4 cards are of the same suit or all 4
cards are red?

8. This problem concerns 4-card hands dealt off of a standard 52-card deck. How
many 4-card hands are there for which all 4 cards are of different suits or all 4
cards are red?

9. A 4-letter list is made from the letters L,I,S,T,E,D according to the following
rule: Repetition is allowed, and the first two letters on the list are vowels or
the list ends in D. How many such lists are possible?

10. A 5-card poker hand is called a flush if all cards are the same suit. How many
different flushes are there?



Part II

How to Prove Conditional
Statements





CHAPTER 4

Direct Proof

It is time to prove some theorems. There are various strategies for doing
this; we now examine the most straightforward approach, a technique

called direct proof. As we begin, it is important to keep in mind the
meanings of three key terms: Theorem, proof and definition.

A theorem is a mathematical statement that is true and can be (and
has been) verified as true. A proof of a theorem is a written verification
that shows that the theorem is definitely and unequivocally true. A proof
should be understandable and convincing to anyone who has the requisite
background and knowledge. This knowledge includes an understanding of
the meanings of the mathematical words, phrases and symbols that occur
in the theorem and its proof. It is crucial that both the writer of the proof
and the readers of the proof agree on the exact meanings of all the words,
for otherwise there is an intolerable level of ambiguity. A definition is an
exact, unambiguous explanation of the meaning of a mathematical word or
phrase. We will elaborate on the terms theorem and definition in the next
two sections, and then finally we will be ready to begin writing proofs.

4.1 Theorems
A theorem is a statement that is true and has been proved to be true.
You have encountered many theorems in your mathematical education.
Here are some theorems taken from an undergraduate calculus text. They
will be familiar to you, though you may not have read all the proofs.

Theorem: Let f be differentiable on an open interval I and let c ∈ I.
If f (c) is the maximum or minimum value of f on I, then f ′(c)= 0.

Theorem: If ∑∞
k=1 ak converges, then limk→∞ ak = 0.

Theorem: Suppose f is continuous on the interval [a,b]. Then f is
integrable on [a,b].

Theorem: Every absolutely convergent series converges.
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Observe that each of these theorems either has the conditional form “If
P, then Q,” or can be put into that form. The first theorem has an initial
sentence “Let f be differentiable on an open interval I, and let c ∈ I,” which
sets up some notation, but a conditional statement follows it. The third
theorem has form “Suppose P. Then Q,” but this means the same thing
as “If P, then Q.” The last theorem can be re-expressed as “If a series is
absolutely convergent, then it is convergent.”

A theorem of form “If P, then Q,” can be regarded as a device that
produces new information from P. Whenever we are dealing with a
situation in which P is true, then the theorem guarantees that, in addition,
Q is true. Since this kind of expansion of information is useful, theorems
of form “If P, then Q,” are very common.

But not every theorem is a conditional statement. Some have the form
of the biconditional P ⇔Q, but, as we know, that can be expressed as two
conditional statements. Other theorems simply state facts about specific
things. For example, here is another theorem from your study of calculus.

Theorem: The series 1+ 1
2 + 1

3 + 1
4 + 1

5 +·· · diverges.

It would be difficult (or at least awkward) to restate this as a conditional
statement. Still, it is true that most theorems are conditional statements,
so much of this book will concentrate on that type of theorem.

It is important to be aware that there are a number of words that
mean essentially the same thing as the word “theorem,” but are used in
slightly different ways. In general the word “theorem” is reserved for a
statement that is considered important or significant (the Pythagorean
theorem, for example). A statement that is true but not as significant
is sometimes called a proposition. A lemma is a theorem whose main
purpose is to help prove another theorem. A corollary is a result that is
an immediate consequence of a theorem or proposition. It is not important
that you remember all these words now, for their meanings will become
clear with usage.

Our main task is to learn how to prove theorems. As the above examples
suggest, proving theorems requires a clear understanding of the meaning
of the conditional statement, and that is the primary reason we studied it
so extensively in Chapter 2. In addition, it is also crucial to understand
the role of definitions.
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4.2 Definitions
A proof of a theorem should be absolutely convincing. Ambiguity must be
avoided. Everyone must agree on the exact meaning of each mathematical
term. In Chapter 1 we defined the meanings of the sets N, Z, R, Q and
;, as well as the meanings of the symbols ∈ and ⊆, and we shall make
frequent use of these things. Here is another definition that we use often.

Definition 4.1 An integer n is even if n = 2a for some integer a ∈Z.
Thus, for example, 10 is even because 10= 2 ·5. Also, according to the

definition, 7 is not even because there is no integer a for which 7 = 2a.
While there would be nothing wrong with defining an integer to be odd if
it’s not even, the following definition is more concrete.

Definition 4.2 An integer n is odd if n = 2a+1 for some integer a ∈Z.
Thus 7 is odd because 7= 2·3+1. We will use these definitions whenever

the concept of even or odd numbers arises. If in a proof a certain number
turns out to be even, the definition allows us to write it as 2a for an
appropriate integer a. If some quantity has form 2b+1 where b is an
integer, then the definition tells us the quantity is odd.

Definition 4.3 Two integers have the same parity if they are both even
or they are both odd. Otherwise they have opposite parity.

Thus 5 and −17 have the same parity, as do 8 and 0; but 3 and 4 have
opposite parity.

Two points about definitions are in order. First, in this book the word
or term being defined appears in boldface type. Second, it is common to
express definitions as conditional statements even though the biconditional
would more appropriately convey the meaning. Consider the definition
of an even integer. You understand full well that if n is even then n = 2a
(for a ∈Z), and if n = 2a, then n is even. Thus, technically the definition
should read “An integer n is even if and only if n = 2a for some a ∈ Z.”
However, it is an almost-universal convention that definitions are phrased
in the conditional form, even though they are interpreted as being in the
biconditional form. There is really no good reason for this, other than
economy of words. It is the standard way of writing definitions, and we
have to get used to it.

Here is another definition that we will use often.
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Definition 4.4 Suppose a and b are integers. We say that a divides b,
written a | b, if b = ac for some c ∈Z. In this case we also say that a is a
divisor of b, and that b is a multiple of a.

For example, 5 divides 15 because 15 = 5 ·3. We write this as 5 | 15.
Similarly 8 | 32 because 32 = 8 ·4, and −6 | 6 because 6 =−6 ·−1. However,
6 does not divide 9 because there is no integer c for which 9 = 6 · c. We
express this as 6 - 9, which we read as “6 does not divide 9.”

Be careful of your interpretation of the symbols. There is a big difference
between the expressions a | b and a/b. The expression a | b is a statement,
while a/b is a fraction. For example, 8 | 16 is true and 8 | 20 is false. By
contrast, 8/16= 0.5 and 8/20= 0.4 are numbers, not statements. Be careful
not to write one when you mean the other.

Every integer has a set of integers that divide it. For example, the set
of divisors of 6 is

{
a ∈Z : a | 6} = {−6,−3,−2,−1,1,2,3,6

}
. The set of divisors

of 5 is
{−5,−1,1,5

}
. The set of divisors of 0 is Z. This brings us to the

following definition, with which you are already familiar.

Definition 4.5 A natural number n is prime if it has exactly two positive
divisors, 1 and n.

For example, 2 is prime, as are 5 and 17. The definition implies that 1
is not prime, as it only has one (not two) positive divisor, namely 1. An
integer n is composite if it factors as n = ab where a,b > 1.

Definition 4.6 The greatest common divisor of integers a and b,
denoted gcd(a,b), is the largest integer that divides both a and b. The
least common multiple of non-zero integers a and b, denoted lcm(a,b),
is smallest positive integer that is a multiple of both a and b.

So gcd(18,24) = 6, gcd(5,5) = 5 and gcd(32,−8) = 8. Also gcd(50,18) = 2,
but gcd(50,9)= 1. Note that gcd(0,6)= 6, because, although every integer
divides 0, the largest divisor of 6 is 6.

The expression gcd(0,0) is problematic. Every integer divides 0, so the
only conclusion is that gcd(0,0) =∞. We circumvent this irregularity by
simply agreeing to consider gcd(a,b) only when a and b are not both zero.

Continuing our examples, lcm(4,6)= 12, and lcm(7,7)= 7.

Of course not all terms can be defined. If every word in a definition were
defined, there would be separate definitions for the words that appeared
in those definitions, and so on, until the chain of defined terms became
circular. Thus we accept some ideas as being so intuitively clear that
they require no definitions or verifications. For example, we will not find



Definitions 91

it necessary to define what an integer (or a real number) is. Nor will
we define addition, multiplication, subtraction and division, though we
will use these operations freely. We accept and use such things as the
distributive and commutative properties of addition and multiplication, as
well as other standard properties of arithmetic and algebra.

As mentioned in Section 1.9, we accept as fact the natural ordering
of the elements of N,Z,Q and R, so that (for example) statements such as
“5< 7,” and “x < y implies −x >−y,” do not need to be justified.

In addition, we accept the following fact without justification or proof.

Fact 4.1 Suppose a and b are integers. Then:
• a+b ∈Z
• a−b ∈Z
• ab ∈Z

These three statements can be combined. For example, we see that if a,b
and c are integers, then a2b− ca+b is also an integer.

We will also accept as obvious the fact that any integer a can be divided
by a non-zero integer b, resulting in a unique quotient q and remainder r.
For example, b = 3 goes into a = 17 q = 5 times with remainder r = 2. In
symbols, 17= 5 ·3+2, or a = qb+ r. This fact, called the division algorithm,
was mentioned on page 29.

(The Division Algorithm) Given integers a and b with b > 0, there exist
unique integers q and r for which a = qb+ r and 0≤ r < b.

Another fact that we will accept without proof (at least for now) is
that every natural number greater than 1 has a unique factorization into
primes. For example, the number 1176 can be factored into primes as
1176= 2 ·2 ·2 ·3 ·7 ·7 = 23 ·3 ·72. By unique we mean that any factorization
of 1176 into primes will have exactly the same factors (i.e., three 2’s, one 3
and two 7’s). Thus, for example, there is no valid factorization of 1176 that
has a factor of 5. You may be so used to factoring numbers into primes
that it seems obvious that there cannot be different prime factorizations
of the same number, but in fact this is a fundamental result whose proof
is not transparent. Nonetheless, we will be content to assume that every
natural number greater than 1 has a unique factorization into primes.
(We will revisit the issue of a proof in Section 10.2.)

We will introduce other accepted facts, as well as definitions, as needed.
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4.3 Direct Proof
This section explains a simple way to prove theorems or propositions
that have the form of conditional statements. The technique is called
direct proof. To simplify the discussion, our first examples will involve
proving statements that are almost obviously true. Thus we will call the
statements propositions rather than theorems. (Remember, a proposition
is a statement that, although true, is not as significant as a theorem.)

To understand how the technique of direct proof works, suppose we
have some proposition of the following form.
Proposition If P, then Q.

This proposition is a conditional statement of form P ⇒ Q. Our goal
is to show that this conditional statement is true. To see how to proceed,
look at the truth table.

P Q P ⇒Q

T T T

T F F
F T T
F F T

The table shows that if P is false, the statement P ⇒Q is automatically
true. This means that if we are concerned with showing P ⇒Q is true, we
don’t have to worry about the situations where P is false (as in the last
two lines of the table) because the statement P ⇒Q will be automatically
true in those cases. But we must be very careful about the situations
where P is true (as in the first two lines of the table). We must show that
the condition of P being true forces Q to be true also, for that means the
second line of the table cannot happen.

This gives a fundamental outline for proving statements of the form
P ⇒Q. Begin by assuming that P is true (remember, we don’t need to worry
about P being false) and show this forces Q to be true. We summarize this
as follows.

Outline for Direct Proof
Proposition If P, then Q.

Proof. Suppose P.
...

Therefore Q. ■
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So the setup for direct proof is remarkably simple. The first line
of the proof is the sentence “Suppose P.” The last line is the sentence
“Therefore Q.” Between the first and last line we use logic, definitions and
standard math facts to transform the statement P to the statement Q. It
is common to use the word “Proof” to indicate the beginning of a proof,
and the symbol to indicate the end.

As our first example, let’s prove that if x is odd then x2 is also odd.
(Granted, this is not a terribly impressive result, but we will move on to
more significant things in due time.) The first step in the proof is to fill
in the outline for direct proof. This is a lot like painting a picture, where
the basic structure is sketched in first. We leave some space between the
first and last line of the proof. The following series of frames indicates the
steps you might take to fill in this space with a logical chain of reasoning.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.

Therefore x2 is odd. ■

Now that we have written the first and last lines, we need to fill in the
space with a chain of reasoning that shows that x being odd forces x2 to
be odd.

In doing this it’s always advisable to use any definitions that apply.
The first line says x is odd, and by Definition 4.2 it must be that x = 2a+1
for some a ∈Z, so we write this in as our second line.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.
Then x = 2a+1 for some a ∈Z, by definition of an odd number.

Therefore x2 is odd. ■

Now jump down to the last line, which says x2 is odd. Think about what
the line immediately above it would have to be in order for us to conclude
that x2 is odd. By the definition of an odd number, we would have to have
x2 = 2a+1 for some a ∈Z. However, the symbol a now appears earlier in
the proof in a different context, so we should use a different symbol, say b.
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Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.
Then x = 2a+1 for some a ∈Z, by definition of an odd number.

Thus x2 = 2b+1 for an integer b.
Therefore x2 is odd, by definition of an odd number. ■

We are almost there. We can bridge the gap as follows.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.
Then x = 2a+1 for some a ∈Z, by definition of an odd number.
Thus x2 = (2a+1)2 = 4a2 +4a+1= 2(2a2 +2a)+1.
So x2 = 2b+1 where b is the integer b = 2a2 +2a.
Thus x2 = 2b+1 for an integer b.
Therefore x2 is odd, by definition of an odd number. ■

Finally, we may wish to clean up our work and write the proof in paragraph
form. Here is our final version.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd. Then x = 2a+1 for some a ∈Z, by definition
of an odd number. Thus x2 = (2a+1)2 = 4a2+4a+1= 2(2a2+2a)+1, so
x2 = 2b+1 where b = 2a2 +2a ∈Z. Therefore x2 is odd, by definition
of an odd number. ■

At least initially, it’s generally a good idea to write the first and last line
of your proof first, and then fill in the gap, sometimes jumping alternately
between top and bottom until you meet in the middle, as we did above. This
way you are constantly reminded that you are aiming for the statement
at the bottom. Sometimes you will leave too much space, sometimes not
enough. Sometimes you will get stuck before figuring out what to do. This
is normal. Mathematicians do scratch work just as artists do sketches for
their paintings.
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Here is another example. Consider proving following proposition.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Let’s apply the basic outline for direct proof. To clarify the procedure
we will write the proof in stages again.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Proof. Suppose a | b and b | c.

Therefore a | c. ■

Our first step is to apply Definition 4.4 to the first line. The definition
says a | b means b = ac for some integer c, but since c already appears in
a different context on the first line, we must use a different letter, say d.
Similarly let’s use a new letter e in the definition of b | c.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Proof. Suppose a | b and b | c.
By Definition 4.4, we know a | b means there is an integer d with b = ad.
Likewise, b | c means there is an integer e for which c = be.

Therefore a | c. ■

We have almost bridged the gap. The line immediately above the last line
should show that a | c. According to Definition 4.4, this line should say
that c = ax for some integer x. We can get this equation from the lines at
the top, as follows.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Proof. Suppose a | b and b | c.
By Definition 4.4, we know a | b means there is an integer d with b = ad.
Likewise, b | c means there is an integer e for which c = be.
Thus c = be = (ad)e = a(de), so c = ax for the integer x = de.
Therefore a | c. ■
The next example is presented all at once rather than in stages.
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Proposition If x is an even integer, then x2 −6x+5 is odd.

Proof. Suppose x is an even integer.
Then x = 2a for some a ∈Z, by definition of an even integer.
So x2−6x+5= (2a)2−6(2a)+5= 4a2−12a+5= 4a2−12a+4+1= 2(2a2−6a+2)+1.
Therefore we have x2 −6x+5= 2b+1, where b = 2a2 −6a+2 ∈Z.
Consequently x2 −6x+5 is odd, by definition of an odd number. ■

One doesn’t normally use a separate line for each sentence in a proof,
but for clarity we will often do this in the first few chapters of this book.

Our next example illustrates a standard technique for showing two
quantities are equal. If we can show m ≤ n and n ≤ m then it follows that
m = n. In general, the reasoning involved in showing m ≤ n can be quite
different from that of showing n ≤ m.

Recall Definition 4.6 of a least common multiple on page 90.

Proposition If a,b, c ∈N, then lcm(ca, cb)= c · lcm(a,b).

Proof. Assume a,b, c ∈N. Let m = lcm(ca, cb) and n = c · lcm(a,b). We will
show m = n. By definition, lcm(a,b) is a multiple of both a and b, so
lcm(a,b)= ax = by for some x, y ∈Z. From this we see that n = c · lcm(a,b)=
cax = cby is a multiple of both ca and cb. But m = lcm(ca, cb) is the smallest
multiple of both ca and cb. Thus m ≤ n.

On the other hand, as m = lcm(ca, cb) is a multiple of both ca and cb,
we have m = cax = cby for some x, y ∈Z. Then 1

c m = ax = by is a multiple of
both a and b. Therefore lcm(a,b)≤ 1

c m, so c · lcm(a,b)≤ m, that is, n ≤ m.
We’ve shown m ≤ n and n ≤ m, so m = n. The proof is complete. ■

The examples we’ve looked at so far have all been proofs of statements
about integers. In our next example, we are going to prove that if x and y
are positive real numbers for which x ≤ y, then p

x ≤py. You may feel that
the proof is not as “automatic” as the proofs we have done so far. Finding
the right steps in a proof can be challenging, and that is part of the fun.

Proposition Let x and y be positive numbers. If x ≤ y, then p
x ≤py.

Proof. Suppose x ≤ y. Subtracting y from both sides gives x− y≤ 0.
This can be written as p

x2 −py2 ≤ 0.
Factor this to get (

p
x−py)(

p
x+py)≤ 0.

Dividing both sides by the positive number p
x+py produces p

x−py≤ 0.
Adding py to both sides gives p

x ≤py. ■
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This proposition tells us that whenever x ≤ y, we can take the square
root of both sides and be assured that p

x ≤py. This can be useful, as we
will see in our next proposition.

That proposition will concern the expression 2
pxy≤ x+ y. Notice when

you substitute random positive values for the variables, the expression is
true. For example, for x = 6 and y= 4, the left side is 2

p
6 ·4= 4

p
6 ≈ 9.79,

which is less than the right side 6+4= 10. Is it true that 2
pxy≤ x+ y for

any positive x and y? How could we prove it?
To see how, let’s first cast this into the form of a conditional statement:

If x and y are positive real numbers, then 2
pxy≤ x+ y. The proof begins

with the assumption that x and y are positive, and ends with 2
pxy≤ x+ y.

In mapping out a strategy, it can be helpful to work backwards, working
from 2

pxy≤ x+ y to something that is obviously true. Then the steps can
be reversed in the proof. In this case, squaring both sides of 2

pxy≤ x+ y
gives us

4xy≤ x2 +2xy+ y2.

Now subtract 4xy from both sides and factor.

0 ≤ x2 −2xy+ y2

0 ≤ (x− y)2

But this last line is clearly true, since the square of x−y cannot be negative!
This gives us a strategy for the proof, which follows.

Proposition If x and y are positive real numbers, then 2
pxy≤ x+ y.

Proof. Suppose x and y are positive real numbers.
Then 0≤ (x− y)2, that is, 0≤ x2 −2xy+ y2.
Adding 4xy to both sides gives 4xy≤ x2 +2xy+ y2.
Factoring yields 4xy≤ (x+ y)2.
Previously we proved that such an inequality still holds after taking the
square root of both sides; doing so produces 2

pxy≤ x+ y. ■

Notice that in the last step of the proof we took the square root of both
sides of 4xy ≤ (x+ y)2 and got

√
4xy ≤

√
(x+ y)2, and the fact that this did

not reverse the symbol ≤ followed from our previous proposition. This
is an important point. Often the proof of a proposition or theorem uses
another proposition or theorem (that has already been proved).
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4.4 Using Cases
In proving a statement is true, we sometimes have to examine multiple
cases before showing the statement is true in all possible scenarios. This
section illustrates a few examples.

Our examples will concern the expression 1+ (−1)n(2n−1). Here is a
table showing its value for various integers for n. Notice that 1+(−1)n(2n−1)
is a multiple of 4 in every line.

n 1+ (−1)n(2n−1)

1 0
2 4
3 −4
4 8
5 −8
6 12

Is 1+ (−1)n(2n−1) always a multiple of 4? We prove the answer is “yes”
in our next example. Notice, however, that the expression 1+ (−1)n(2n−1)
behaves differently depending on whether n is even or odd, for in the first
case (−1)n = 1, and in the second (−1)n =−1. Thus the proof must examine
these two possibilities separately.

Proposition If n ∈N, then 1+ (−1)n(2n−1) is a multiple of 4.

Proof. Suppose n ∈N.
Then n is either even or odd. Let’s consider these two cases separately.

Case 1. Suppose n is even. Then n = 2k for some k ∈Z, and (−1)n = 1.
Thus 1+ (−1)n(2n−1) = 1+ (1)(2 ·2k−1) = 4k, which is a multiple of 4.

Case 2. Suppose n is odd. Then n = 2k+1 for some k ∈Z, and (−1)n =−1.
Thus 1+ (−1)n(2n−1) = 1− (2(2k+1)−1) =−4k, which is a multiple of 4.

These cases show that 1+ (−1)n(2n−1) is always a multiple of 4. ■

Now let’s examine the flip side of the question. We just proved that
1+ (−1)n(2n−1) is always a multiple of 4, but can we get every multiple of 4
this way? The following proposition and proof give an affirmative answer.
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Proposition Every multiple of 4 equals 1+ (−1)n(2n−1) for some n ∈N.

Proof. In conditional form, the proposition is as follows:
If k is a multiple of 4, then there is an n ∈N for which 1+ (−1)n(2n−1)= k.
What follows is a proof of this conditional statement.
Suppose k is a multiple of 4.
This means k = 4a for some integer a.
We must produce an n ∈N for which 1+ (−1)n(2n−1)= k.
This is done by cases, depending on whether a is zero, positive or negative.
Case 1. Suppose a = 0. Let n = 1. Then 1+ (−1)n(2n−1)= 1+ (−1)1(2−1)= 0
= 4 ·0 = 4a = k.
Case 2. Suppose a > 0. Let n = 2a, which is in N because a is positive. Also
n is even, so (−1)n = 1. Thus 1+(−1)n(2n−1)= 1+(2n−1)= 2n = 2(2a)= 4a = k.
Case 3. Suppose a < 0. Let n = 1−2a, which is an element of N because
a is negative, making 1−2a positive. Also n is odd, so (−1)n =−1. Thus
1+ (−1)n(2n−1)= 1− (2n−1)= 1− (2(1−2a)−1) = 4a = k.

The above cases show that no matter whether a multiple k = 4a of 4 is
zero, positive or negative, k = 1+ (−1)n(2n−1) for some n ∈N. ■

4.5 Treating Similar Cases
Occasionally two or more cases in a proof will be so similar that writing
them separately seems tedious or unnecessary. Here is an example.

Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.
We need to show that m+n is odd. This is done in two cases, as follows.
Case 1. Suppose m is even and n is odd. Thus m = 2a and n = 2b+1 for
some integers a and b. Therefore m+n = 2a+2b+1= 2(a+b)+1, which is
odd (by Definition 4.2).
Case 2. Suppose m is odd and n is even. Thus m = 2a+1 and n = 2b for
some integers a and b. Therefore m+n = 2a+1+2b = 2(a+b)+1, which is
odd (by Definition 4.2).

In either case, m+n is odd. ■

The two cases in this proof are entirely alike except for the order in
which the even and odd terms occur. It is entirely appropriate to just do
one case and indicate that the other case is nearly identical. The phrase
“Without loss of generality...” is a common way of signaling that the proof is
treating just one of several nearly identical cases. Here is a second version
of the above example.
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Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.
We need to show that m+n is odd.
Without loss of generality, suppose m is even and n is odd.
Thus m = 2a and n = 2b+1 for some integers a and b.
Therefore m+n = 2a+2b+1= 2(a+b)+1, which is odd (by Definition 4.2). ■

In reading proofs in other texts, you may sometimes see the phrase
“Without loss of generality” abbreviated as “WLOG.” However, in the
interest of transparency we will avoid writing it this way. In a similar
spirit, it is advisable—at least until you become more experienced in proof
writing—that you write out all cases, no matter how similar they appear
to be.

Please check your understanding by doing the following exercises. The
odd numbered problems have complete proofs in the Solutions section in
the back of the text.

Exercises for Chapter 4

Use the method of direct proof to prove the following statements.
1. If x is an even integer, then x2 is even.
2. If x is an odd integer, then x3 is odd.
3. If a is an odd integer, then a2 +3a+5 is odd.
4. Suppose x, y ∈Z. If x and y are odd, then xy is odd.
5. Suppose x, y ∈Z. If x is even, then xy is even.
6. Suppose a,b, c ∈Z. If a | b and a | c, then a | (b+ c).
7. Suppose a,b ∈Z. If a | b, then a2 | b2.
8. Suppose a is an integer. If 5 | 2a, then 5 | a.
9. Suppose a is an integer. If 7 | 4a, then 7 | a.

10. Suppose a and b are integers. If a | b, then a | (3b3 −b2 +5b).
11. Suppose a,b, c,d ∈Z. If a | b and c | d, then ac | bd.
12. If x ∈R and 0< x < 4, then 4

x(4−x) ≥ 1.
13. Suppose x, y ∈R. If x2 +5y= y2 +5x, then x = y or x+ y= 5.
14. If n ∈Z, then 5n2 +3n+7 is odd. (Try cases.)
15. If n ∈Z, then n2 +3n+4 is even. (Try cases.)
16. If two integers have the same parity, then their sum is even. (Try cases.)
17. If two integers have opposite parity, then their product is even.
18. Suppose x and y are positive real numbers. If x < y, then x2 < y2.
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19. Suppose a,b and c are integers. If a2 | b and b3 | c, then a6 | c.
20. If a is an integer and a2 | a, then a ∈ {−1,0,1

}
.

21. If p is prime and k is an integer for which 0< k < p, then p divides
(p

k
)
.

22. If n ∈N, then n2 = 2
(n
2
)+ (n

1
)
. (You may need a separate case for n = 1.)

23. If n ∈N, then (2n
n

)
is even.

24. If n ∈N and n ≥ 2, then the numbers n!+2, n!+3, n!+4, n!+5, . . . , n!+n are all
composite. (Thus for any n ≥ 2, one can find n consecutive composite numbers.
This means there are arbitrarily large “gaps” between prime numbers.)

25. If a,b, c ∈N and c ≤ b ≤ a, then
(a
b
)(b

c
)= ( a

b−c
)(a−b+c

c
)
.

26. Every odd integer is a difference of two squares. (Example 7= 42 −32, etc.)
27. Suppose a,b ∈N. If gcd(a,b)> 1, then b | a or b is not prime.
28. If a,b, c ∈Z, then c ·gcd(a,b)≤ gcd(ca, cb).



CHAPTER 5

Contrapositive Proof

We now examine an alternative to direct proof called contrapositive
proof. Like direct proof, the technique of contrapositive proof is

used to prove conditional statements of the form “If P, then Q.” Although
it is possible to use direct proof exclusively, there are occasions where
contrapositive proof is much easier.

5.1 Contrapositive Proof
To understand how contrapositive proof works, imagine that you need to
prove a proposition of the following form.

Proposition If P, then Q.

This is a conditional statement of form P ⇒ Q. Our goal is to show
that this conditional statement is true. Recall that in Section 2.6 we
observed that P ⇒Q is logically equivalent to ∼Q ⇒∼ P. For convenience,
we duplicate the truth table that verifies this fact.

P Q ∼Q ∼ P P ⇒Q ∼Q ⇒∼ P

T T F F T T

T F T F F F

F T F T T T

F F T T T T

According to the table, statements P ⇒Q and ∼Q ⇒∼ P are different
ways of expressing exactly the same thing. The expression ∼ Q ⇒∼ P is
called the contrapositive form of P ⇒Q.1

1Do not confuse the words contrapositive and converse. Recall from Section 2.4 that the
converse of P ⇒Q is the statement Q ⇒ P, which is not logically equivalent to P ⇒Q.
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Since P ⇒Q is logically equivalent to ∼Q ⇒∼ P, it follows that to prove
P ⇒Q is true, it suffices to instead prove that ∼Q ⇒∼ P is true. If we were
to use direct proof to show ∼Q ⇒∼ P is true, we would assume ∼Q is true
use this to deduce that ∼ P is true. This in fact is the basic approach of
contrapositive proof, summarized as follows.

Outline for Contrapositive Proof

Proposition If P, then Q.

Proof. Suppose ∼Q.
...

Therefore ∼ P. ■

So the setup for contrapositive proof is very simple. The first line of the
proof is the sentence “Suppose Q is not true.” (Or something to that effect.)
The last line is the sentence “Therefore P is not true.” Between the first
and last line we use logic and definitions to transform the statement ∼Q
to the statement ∼ P.

To illustrate this new technique, and to contrast it with direct proof,
we now prove a proposition in two ways: first with direct proof and then
with contrapositive proof.

Proposition Suppose x ∈Z. If 7x+9 is even, then x is odd.

Proof. (Direct) Suppose 7x+9 is even.
Thus 7x+9= 2a for some integer a.
Subtracting 6x+9 from both sides, we get x = 2a−6x−9.
Thus x = 2a−6x−9= 2a−6x−10+1= 2(a−3x−5)+1.
Consequently x = 2b+1, where b = a−3x−5 ∈Z.
Therefore x is odd. ■

Here is a contrapositive proof of the same statement:

Proposition Suppose x ∈Z. If 7x+9 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.
Thus x is even, so x = 2a for some integer a.
Then 7x+9= 7(2a)+9= 14a+8+1= 2(7a+4)+1.
Therefore 7x+9= 2b+1, where b is the integer 7a+4.
Consequently 7x+9 is odd.
Therefore 7x+9 is not even. ■
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Though the proofs are of equal length, you may feel that the con-
trapositive proof flowed more smoothly. This is because it is easier to
transform information about x into information about 7x+9 than the other
way around. For our next example, consider the following proposition
concerning an integer x:

Proposition If x2 −6x+5 is even, then x is odd.

A direct proof would be problematic. We would begin by assuming that
x2−6x+5 is even, so x2−6x+5= 2a. Then we would need to transform this
into x = 2b+1 for b ∈Z. But it is not quite clear how that could be done,
for it would involve isolating an x from the quadratic expression. However
the proof becomes very simple if we use contrapositive proof.

Proposition Suppose x ∈Z. If x2 −6x+5 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.
Thus x is even, so x = 2a for some integer a.
So x2−6x+5= (2a)2−6(2a)+5= 4a2−12a+5= 4a2−12a+4+1= 2(2a2−6a+2)+1.
Therefore x2 −6x+5= 2b+1, where b is the integer 2a2 −6a+2.
Consequently x2 −6x+5 is odd.
Therefore x2 −6x+5 is not even. ■

In summary, since x being not odd (∼Q) resulted in x2−6x+5 being not
even (∼ P), then x2 −6x+5 being even (P) means that x is odd (Q). Thus
we have proved P ⇒Q by proving ∼Q ⇒∼ P. Here is another example:

Proposition Suppose x, y ∈R. If y3 + yx2 ≤ x3 + xy2, then y≤ x.

Proof. (Contrapositive) Suppose it is not true that y≤ x, so y> x.
Then y− x > 0. Multiply both sides of y− x > 0 by the positive value x2 + y2.

(y− x)(x2 + y2) > 0(x2 + y2)

yx2 + y3 − x3 − xy2 > 0

y3 + yx2 > x3 + xy2

Therefore y3 + yx2 > x3 + xy2, so it is not true that y3 + yx2 ≤ x3 + xy2. ■

Proving “If P, then Q,” with the contrapositive approach necessarily
involves the negated statements ∼ P and ∼Q. In working with these we
may have to use the techniques for negating statements (e.g., DeMorgan’s
laws) discussed in Section 2.10. We consider such an example next.
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Proposition Suppose x, y ∈Z. If 5 - xy, then 5 - x and 5 - y.

Proof. (Contrapositive) Suppose it is not true that 5 - x and 5 - y.
By DeMorgan’s law, it is not true that 5 - x or it is not true that 5 - y.
Therefore 5 | x or 5 | y. We consider these possibilities separately.
Case 1. Suppose 5 | x. Then x = 5a for some a ∈Z.
From this we get xy= 5(ay), and that means 5 | xy.
Case 2. Suppose 5 | y. Then y= 5a for some a ∈Z.
From this we get xy= 5(ax), and that means 5 | xy.
The above cases show that 5 | xy, so it is not true that 5 - xy. ■

5.2 Congruence of Integers
This is a good time to introduce a new definition. It is not necessarily
related to contrapositive proof, but introducing it now ensures that we
have a sufficient variety of exercises to practice all our proof techniques on.
This new definition occurs in many branches of mathematics, and it will
surely play a role in some of your later courses. But our primary reason
for introducing it is that it will give us more practice in writing proofs.
Definition 5.1 Given integers a and b and an n ∈N, we say that a and b
are congruent modulo n if n | (a−b). We express this as a ≡ b (mod n).
If a and b are not congruent modulo n, we write this as a 6≡ b (mod n).
Example 5.1 Here are some examples:
1. 9≡ 1 (mod 4) because 4 | (9−1).
2. 6≡ 10 (mod 4) because 4 | (6−10).
3. 14 6≡ 8 (mod 4) because 4 - (14−8).
4. 20≡ 4 (mod 8) because 8 | (20−4).
5. 17≡−4 (mod 3) because 3 | (17− (−4)).

In practical terms, a ≡ b (mod n) means that a and b have the same
remainder when divided by n. For example, we saw above that 6 ≡ 10
(mod 4) and indeed 6 and 10 both have remainder 2 when divided by 4.
Also we saw 14 6≡ 8 (mod 4), and sure enough 14 has remainder 2 when
divided by 4, while 8 has remainder 0.

To see that this is true in general, note that if a and b both have the
same remainder r when divided by n, then it follows that a = kn+ r and
b = `n+ r for some k,` ∈ Z. Then a− b = (kn+ r)− (`n+ r) = n(k−`). But
a− b = n(k−`) means n | (a− b), so a ≡ b (mod n). Conversely, one of the
exercises for this chapter asks you to show that if a ≡ b (mod n), then a
and b have the same remainder when divided by n.
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We conclude this section with several proofs involving congruence of
integers, but you will also test your skills with other proofs in the exercises.

Proposition Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a2 ≡ b2 (mod n).

Proof. We will use direct proof. Suppose a ≡ b (mod n).
By definition of congruence of integers, this means n | (a−b).
Then by definition of divisibility, there is an integer c for which a−b = nc.
Now multiply both sides of this equation by a+b.

a−b = nc

(a−b)(a+b) = nc(a+b)

a2 −b2 = nc(a+b)

Since c(a+b) ∈Z, the above equation tells us n | (a2 −b2).
According to Definition 5.1, this gives a2 ≡ b2 (mod n). ■

Let’s pause to consider this proposition’s meaning. It says a ≡ b (mod n)
implies a2 ≡ b2 (mod n). In other words, it says that if integers a and b
have the same remainder when divided by n, then a2 and b2 also have
the same remainder when divided by n. As an example of this, 6 and 10
have the same remainder (2) when divided by n = 4, and their squares
36 and 100 also have the same remainder (0) when divided by n = 4. The
proposition promises this will happen for all a, b and n. In our examples
we tend to concentrate more on how to prove propositions than on what
the propositions mean. This is reasonable since our main goal is to learn
how to prove statements. But it is helpful to sometimes also think about
the meaning of what we prove.

Proposition Let a,b, c ∈Z and n ∈N. If a ≡ b (mod n), then ac ≡ bc (mod n).

Proof. We employ direct proof. Suppose a ≡ b (mod n). By Definition 5.1,
it follows that n | (a−b). Therefore, by definition of divisibility, there exists
an integer k for which a− b = nk. Multiply both sides of this equation
by c to get ac− bc = nkc. Thus ac− bc = n(kc) where kc ∈Z, which means
n | (ac−bc). By Definition 5.1, we have ac ≡ bc (mod n). ■

Contrapositive proof seems to be the best approach in the next example,
since it will eliminate the symbols - and 6≡.
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Proposition Suppose a,b ∈Z and n ∈N. If 12a 6≡ 12b (mod n), then n - 12.

Proof. (Contrapositive) Suppose n | 12, so there is an integer c for which
12= nc. Now reason as follows.

12 = nc

12(a−b) = nc(a−b)

12a−12b = n(ca− cb)

Since ca− cb ∈Z, the equation 12a−12b = n(ca− cb) implies n | (12a−12b).
This in turn means 12a ≡ 12b (mod n). ■

5.3 Mathematical Writing
Now that we have begun writing proofs, it is a good time to contemplate the
craft of writing. Unlike logic and mathematics, where there is a clear-cut
distinction between what is right or wrong, the difference between good
and bad writing is sometimes a matter of opinion. But there are some
standard guidelines that will make your writing clearer. Some of these
are listed below.
1. Begin each sentence with a word, not a mathematical symbol.

The reason is that sentences begin with capital letters, but mathematical
symbols are case sensitive. Because x and X can have entirely different
meanings, putting such symbols at the beginning of a sentence can lead
to ambiguity. Here are some examples of bad usage (marked with ×)
and good usage (marked with X).

A is a subset of B. ×
The set A is a subset of B. X

x is an integer, so 2x+5 is an integer. ×
Because x is an integer, 2x+5 is an integer. X

x2 − x+2= 0 has two solutions. ×
X2 − x+2= 0 has two solutions. × (and silly too)
The equation x2 − x+2= 0 has two solutions. X

2. End each sentence with a period, even when the sentence ends
with a mathematical symbol or expression.

Euler proved that
∞∑

k=1

1
ks = ∏

p∈P

1
1− 1

ps

×

Euler proved that
∞∑

k=1

1
ks = ∏

p∈P

1
1− 1

ps

. X
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Mathematical statements (equations, etc.) are like English phrases that
happen to contain special symbols, so use normal punctuation.

3. Separate mathematical symbols and expressions with words.
Not doing this can cause confusion by making distinct expressions
appear to merge into one. Compare the clarity of the following examples.

Because x2 −1= 0, x = 1 or x =−1. ×
Because x2 −1= 0, it follows that x = 1 or x =−1. X

Unlike A∪B, A∩B equals ;. ×
Unlike A∪B, the set A∩B equals ;. X

4. Avoid misuse of symbols. Symbols such as =, ≤, ⊆, ∈, etc., are not
words. While it is appropriate to use them in mathematical expressions,
they are out of place in other contexts.
Since the two sets are =, one is a subset of the other. ×
Since the two sets are equal, one is a subset of the other. X

The empty set is a ⊆ of every set. ×
The empty set is a subset of every set. X

Since a is odd and x odd ⇒ x2 odd, a2 is odd. ×
Since a is odd and any odd number squared is odd, then a2 is odd.X

5. Avoid using unnecessary symbols. Mathematics is confusing enough
without them. Don’t muddy the water even more.

No set X has negative cardinality. ×
No set has negative cardinality. X

6. Use the first person plural. In mathematical writing, it is common
to use the words “we” and “us” rather than “I,” “you” or “me.” It is as if
the reader and writer are having a conversation, with the writer guiding
the reader through the details of the proof.

7. Use the active voice. This is just a suggestion, but the active voice
makes your writing more lively.

The value x = 3 is obtained through the division of both sides by 5.×
Dividing both sides by 5, we get the value x = 3. X

8. Explain each new symbol. In writing a proof, you must explain the
meaning of every new symbol you introduce. Failure to do this can lead
to ambiguity, misunderstanding and mistakes. For example, consider
the following two possibilities for a sentence in a proof, where a and b
have been introduced on a previous line.
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Since a | b, it follows that b = ac. ×
Since a | b, it follows that b = ac for some integer c. X

If you use the first form, then a reader who has been carefully following
your proof may momentarily scan backwards looking for where the c
entered into the picture, not realizing at first that it came from the
definition of divides.

9. Watch out for “it.” The pronoun “it” can cause confusion when it is
unclear what it refers to. If there is any possibility of confusion, you
should avoid the word “it.” Here is an example:
Since X ⊆Y , and 0< |X |, we see that it is not empty. ×

Is “it” X or Y ? Either one would make sense, but which do we mean?
Since X ⊆Y , and 0< |X |, we see that Y is not empty. X

10. Since, because, as, for, so. In proofs, it is common to use these
words as conjunctions joining two statements, and meaning that one
statement is true and as a consequence the other true. The following
statements all mean that P is true (or assumed to be true) and as a
consequence Q is true also.

Q since P Q because P Q, as P Q, for P P, so Q
Since P, Q Because P, Q as P, Q

Notice that the meaning of these constructions is different from that of
“If P, then Q,” for they are asserting not only that P implies Q, but also
that P is true. Exercise care in using them. It must be the case that P
and Q are both statements and that Q really does follow from P.

x ∈N, so Z ×
x ∈N, so x ∈Z X

11. Thus, hence, therefore consequently. These adverbs precede a
statement that follows logically from previous sentences or clauses. Be
sure that a statement follows them.
Therefore 2k+1. ×
Therefore a = 2k+1. X

12. Clarity is the gold standard of mathematical writing. If you
believe breaking a rule makes your writing clearer, then break the rule.

Your mathematical writing will evolve with practice useage. One of the
best ways to develop a good mathematical writing style is to read other
people’s proofs. Adopt what works and avoid what doesn’t.
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Exercises for Chapter 5

A. Use the method of contrapositive proof to prove the following statements. (In
each case you should also think about how a direct proof would work. You will
find in most cases that contrapositive is easier.)
1. Suppose n ∈Z. If n2 is even, then n is even.
2. Suppose n ∈Z. If n2 is odd, then n is odd.
3. Suppose a,b ∈Z. If a2(b2 −2b) is odd, then a and b are odd.
4. Suppose a,b, c ∈Z. If a does not divide bc, then a does not divide b.
5. Suppose x ∈R. If x2 +5x < 0 then x < 0.
6. Suppose x ∈R. If x3 − x > 0 then x >−1.
7. Suppose a,b ∈Z. If both ab and a+b are even, then both a and b are even.
8. Suppose x ∈R. If x5 −4x4 +3x3 − x2 +3x−4≥ 0, then x ≥ 0.
9. Suppose n ∈Z. If 3 - n2, then 3 - n.
10. Suppose x, y, z ∈Z and x 6= 0. If x - yz, then x - y and x - z.
11. Suppose x, y ∈Z. If x2(y+3) is even, then x is even or y is odd.
12. Suppose a ∈Z. If a2 is not divisible by 4, then a is odd.
13. Suppose x ∈R. If x5 +7x3 +5x ≥ x4 + x2 +8, then x ≥ 0.

B. Prove the following statements using either direct or contrapositive proof.
Sometimes one approach will be much easier than the other.
14. If a,b ∈Z and a and b have the same parity, then 3a+7 and 7b−4 do not.
15. Suppose x ∈Z. If x3 −1 is even, then x is odd.
16. Suppose x ∈Z. If x+ y is even, then x and y have the same parity.
17. If n is odd, then 8 | (n2 −1).
18. For any a,b ∈Z, it follows that (a+b)3 ≡ a3 +b3 (mod 3).
19. Let a,b ∈Z and n ∈N. If a ≡ b (mod n) and a ≡ c (mod n), then c ≡ b (mod n).
20. If a ∈Z and a ≡ 1 (mod 5), then a2 ≡ 1 (mod 5).
21. Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a3 ≡ b3 (mod n)
22. Let a ∈Z, n ∈N. If a has remainder r when divided by n, then a ≡ r (mod n).
23. Let a,b, c ∈Z and n ∈N. If a ≡ b (mod n), then ca ≡ cb (mod n).
24. If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).
25. If n ∈N and 2n −1 is prime, then n is prime.
26. If n = 2k −1 for k ∈N, then every entry in Row n of Pascal’s Triangle is odd.
27. If a ≡ 0 (mod 4) or a ≡ 1 (mod 4), then

(a
2
)
is even.

28. If n ∈Z, then 4 - (n2 −3).
29. If integers a and b are not both zero, then gcd(a,b)= gcd(a−b,b).
30. If a ≡ b (mod n), then gcd(a,n)= gcd(b,n).
31. Suppose the division algorithm applied to a and b yields a = qb+ r. Then

gcd(a,b)= gcd(r,b).



CHAPTER 6

Proof by Contradiction

We now explore a third method of proof: proof by contradiction.
This method is not limited to proving just conditional statements—

it can be used to prove any kind of statement whatsoever. The basic idea
is to assume that the statement we want to prove is false, and then show
that this assumption leads to nonsense. We are then led to conclude that
we were wrong to assume the statement was false, so the statement must
be true. As an example, consider the following proposition and its proof.

Proposition If a,b ∈Z, then a2 −4b 6= 2.

Proof. Suppose this proposition is false.
This conditional statement being false means there exist numbers a and b
for which a,b ∈Z is true, but a2 −4b 6= 2 is false.
In other words, there exist integers a,b ∈Z for which a2 −4b = 2.
From this equation we get a2 = 4b+2= 2(2b+1), so a2 is even.
Because a2 is even, it follows that a is even, so a = 2c for some integer c.
Now plug a = 2c back into the boxed equation to get (2c)2 −4b = 2,
so 4c2 −4b = 2. Dividing by 2, we get 2c2 −2b = 1.
Therefore 1= 2(c2 −b), and because c2 −b ∈Z, it follows that 1 is even.
We know 1 is not even, so something went wrong.
But all the logic after the first line of the proof is correct, so it must be
that the first line was incorrect. In other words, we were wrong to assume
the proposition was false. Thus the proposition is true. ■

You may be a bit suspicious of this line of reasoning, but in the next
section we will see that it is logically sound. For now, notice that at
the end of the proof we deduced that 1 is even, which conflicts with our
knowledge that 1 is odd. In essence, we have obtained the statement
(1 is odd)∧∼ (1 is odd), which has the form C∧∼ C. Notice that no matter
what statement C is, and whether or not it is true, the statement C∧∼ C
is false. A statement—like this one—that cannot be true is called a
contradiction. Contradictions play a key role in our new technique.
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6.1 Proving Statements with Contradiction
Let’s now see why the proof on the previous page is logically valid. In
that proof we needed to show that a statement P : (a,b ∈Z)⇒ (a2 −4b 6= 2)
was true. The proof began with the assumption that P was false, that is
that ∼ P was true, and from this we deduced C∧∼ C. In other words we
proved that ∼ P being true forces C∧∼ C to be true, and this means that
we proved that the conditional statement (∼ P)⇒ (C ∧∼ C) is true. To see
that this is the same as proving P is true, look at the following truth table
for (∼ P) ⇒ (C ∧∼ C). Notice that the columns for P and (∼ P) ⇒ (C ∧∼ C)
are exactly the same, so P is logically equivalent to (∼ P)⇒ (C ∧∼ C).

P C ∼ P C ∧∼ C (∼ P)⇒ (C ∧∼ C)

T T F F T

T F F F T

F T T F F

F F T F F

Therefore to prove a statement P, it suffices to instead prove the conditional
statement (∼ P)⇒ (C ∧∼ C). This can be done with direct proof: Assume
∼ P and deduce C ∧∼ C. Here is the outline:

Outline for Proof by Contradiction

Proposition P.

Proof. Suppose ∼ P.
...

Therefore C ∧∼ C. ■
One slightly unsettling feature of this method is that we may not know

at the beginning of the proof what the statement C is going to be. In
doing the scratch work for the proof, you assume that ∼ P is true, then
deduce new statements until you have deduced some statement C and its
negation ∼ C.

If this method seems confusing, look at it this way. In the first line of
the proof we suppose ∼ P is true, that is we assume P is false. But if P is
really true then this contradicts our assumption that P is false. But we
haven’t yet proved P to be true, so the contradiction is not obvious. We
use logic and reasoning to transform the non-obvious contradiction ∼ P to
an obvious contradiction C∧∼ C.
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The idea of proof by contradiction is quite ancient, and goes back at
least as far as the Pythagoreans, who used it to prove that certain numbers
are irrational. Our next example follows their logic to prove that

p
2 is

irrational. Recall that a number is rational if it equals a fraction of two
integers, and it is irrational if it cannot be expressed as a fraction of two
integers. Here is the exact definition.

Definition 6.1 A real number x is rational if x = a
b for some a,b ∈ Z.

Also, x is irrational if it is not rational, that is if x 6= a
b for every a,b ∈Z.

We are now ready to use contradiction to prove that
p

2 is irrational.
According to the outline, the first line of the proof should be “Suppose that
it is not true that

p
2 is irrational.” But it is helpful (though not mandatory)

to tip our reader off to the fact that we are using proof by contradiction.
One standard way of doing this is to make the first line “Suppose for the
sake of contradiction that it is not true that

p
2 is irrational."

Proposition The number
p

2 is irrational.

Proof. Suppose for the sake of contradiction that it is not true that
p

2 is
irrational. Then

p
2 is rational, so there are integers a and b for which

p
2= a

b
. (6.1)

Let this fraction be fully reduced; in particular, this means that a and b are
not both even. (If they were both even, the fraction could be further reduced
by factoring 2’s from the numerator and denominator and canceling.)
Squaring both sides of Equation 6.1 gives 2= a2

b2 , and therefore

a2 = 2b2. (6.2)

From this it follows that a2 is even. But we proved earlier (Exercise 1
on page 110) that a2 being even implies a is even. Thus, as we know
that a and b are not both even, it follows that b is odd. Now, since a is
even there is an integer c for which a = 2c. Plugging this value for a into
Equation (6.2), we get (2c)2 = 2b2, so 4c2 = 2b2, and hence b2 = 2c2. This
means b2 is even, so b is even also. But previously we deduced that b is
odd. Thus we have the contradiction b is even and b is odd. ■

To appreciate the power of proof by contradiction, imagine trying to
prove that

p
2 is irrational without it. Where would we begin? What would

be our initial assumption? There are no clear answers to these questions.
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Proof by contradiction gives us a starting point: Assume
p

2 is rational,
and work from there.

In the above proof we got the contradiction (b is even) ∧∼(b is even)
which has the form C∧ ∼ C. In general, your contradiction need not
necessarily be of this form. Any statement that is clearly false is sufficient.
For example 2 6= 2 would be a fine contradiction, as would be 4 | 2, provided
that you could deduce them.

Here is another ancient example, dating back at least as far as Euclid:

Proposition There are infinitely many prime numbers.

Proof. For the sake of contradiction, suppose there are only finitely many
prime numbers. Then we can list all the prime numbers as p1, p2, p3, . . . pn,
where p1 = 2, p2 = 3, p3 = 5, p4 = 7 and so on. Thus pn is the nth and largest
prime number. Now consider the number a = (p1 p2 p3 · · · pn)+1, that is, a is
the product of all prime numbers, plus 1. Now a, like any natural number
greater than 1, has at least one prime divisor, and that means pk | a for at
least one of our n prime numbers pk. Thus there is an integer c for which
a = cpk, which is to say

(p1 p2 p3 · · · pk−1 pk pk+1 · · · pn)+1= cpk.

Dividing both sides of this by pk gives us

(p1 p2 p3 · · · pk−1 pk+1 · · · pn)+ 1
pk

= c,

so
1
pk

= c− (p1 p2 p3 · · · pk−1 pk+1 · · · pn).

The expression on the right is an integer, while the expression on the left
is not an integer. This is a contradiction. ■

Proof by contradiction often works well in proving statements of the
form ∀x,P(x). The reason is that the proof set-up involves assuming
∼∀x,P(x), which as we know from Section 2.10 is equivalent to ∃x,∼ P(x).
This gives us a specific x for which ∼ P(x) is true, and often that is enough
to produce a contradiction. Here is an example:

Proposition For every real number x ∈ [0,π/2], we have sin x+cos x ≥ 1.

Proof. Suppose for the sake of contradiction that this is not true.
Then there exists an x ∈ [0,π/2] for which sin x+cos x < 1.
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Since x ∈ [0,π/2], neither sin x nor cos x is negative, so 0≤ sin x+cos x < 1.
Thus 02 ≤ (sin x+cos x)2 < 12, which gives 02 ≤ sin2 x+2sin xcos x+cos2 x < 12.
As sin2 x+cos2 x = 1, this becomes 0≤ 1+2sin xcos x < 1, so 1+2sin xcos x < 1.
Subtracting 1 from both sides gives 2sin xcos x < 0.
But this contradicts the fact that neither sin x nor cos x is negative. ■

6.2 Proving Conditional Statements by Contradiction
Since the previous two chapters dealt exclusively with proving conditional
statements, we now formalize the procedure in which contradiction is used
to prove a conditional statement. Suppose we want to prove a proposition
of the following form.

Proposition If P, then Q.

Thus we need to prove that P ⇒ Q is a true statement. Proof by
contradiction begins with the assumption that ∼ (P ⇒Q) is true, that is,
that P ⇒Q is false. But we know that P ⇒Q being false means that it is
possible that P can be true while Q is false. Thus the first step in the
proof is to assume P and ∼Q. Here is an outline:

Outline for Proving a Conditional
Statement with Contradiction

Proposition If P, then Q.

Proof. Suppose P and ∼Q.
...

Therefore C ∧∼ C. ■

To illustrate this new technique, we revisit a familiar result: If a2 is
even, then a is even. According to the outline, the first line of the proof
should be “For the sake of contradiction, suppose a2 is even and a is not
even.”

Proposition Suppose a ∈Z. If a2 is even, then a is even.

Proof. For the sake of contradiction, suppose a2 is even and a is not even.
Then a2 is even, and a is odd.
Since a is odd, there is an integer c for which a = 2c+1.
Then a2 = (2c+1)2 = 4c2 +4c+1= 2(2c2 +2c)+1, so a2 is odd.
Thus a2 is even and a2 is not even, a contradiction. ■
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Here is another example.

Proposition If a,b ∈Z and a ≥ 2, then a - b or a - (b+1).

Proof. Suppose for the sake of contradiction there exist a,b ∈Z with a ≥ 2,
and for which it is not true that a - b or a - (b+1).
By DeMorgan’s law, we have a | b and a | (b+1).
The definition of divisibility says there are c,d ∈Z with b = ac and b+1= ad.
Subtracting one equation from the other gives ad−ac = 1, so a(d− c)= 1.
Since a is positive, d−c is also positive (otherwise a(d−c) would be negative).
Then d− c is a positive integer and a(d− c)= 1, so a = 1/(d− c)< 2.
Thus we have a ≥ 2 and a < 2, a contradiction. ■

6.3 Combining Techniques
Often, especially in more complex proofs, several proof techniques are
combined within a single proof. For example, in proving a conditional
statement P ⇒Q, we might begin with direct proof and thus assume P to
be true with the aim of ultimately showing Q is true. But the truth of Q
might hinge on the truth of some other statement R which—together with
P—would imply Q. We would then need to prove R, and we would use
whichever proof technique seems most appropriate. This can lead to “proofs
inside of proofs.” Consider the following example. The overall approach is
direct, but inside the direct proof is a separate proof by contradiction.

Proposition Every non-zero rational number can be expressed as a
product of two irrational numbers.

Proof. This proposition can be reworded as follows: If r is a non-zero
rational number, then r is a product of two irrational numbers. In what
follows, we prove this with direct proof.

Suppose r is a non-zero rational number. Then r = a
b for integers a

and b. Also, r can be written as a product of two numbers as follows:

r =
p

2 · rp
2

.

We know
p

2 is irrational, so to complete the proof we must show r/
p

2 is
also irrational.

To show this, assume for the sake of contradiction that r/
p

2 is rational.
This means

rp
2
= c

d
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for integers c and d, so p
2= r

d
c

.

But we know r = a/b, which combines with the above equation to give

p
2= r

d
c
= a

b
d
c
= ad

bc
.

This means
p

2 is rational, which is a contradiction because we know it is
irrational. Therefore r/

p
2 is irrational.

Consequently r =p
2 · r/

p
2 is a product of two irrational numbers. ■

For another example of a proof-within-a-proof, try Exercise 5 at the
end of this chapter (or see its solution). Exercise 5 asks you to prove thatp

3 is irrational. This turns out to be slightly trickier than proving thatp
2 is irrational.

6.4 Some Words of Advice
Despite the power of proof by contradiction, it’s best to use it only when the
direct and contrapositive approaches do not seem to work. The reason for
this is that a proof by contradiction can often have hidden in it a simpler
contrapositive proof, and if this is the case it’s better to go with the simpler
approach. Consider the following example.
Proposition Suppose a ∈Z. If a2 −2a+7 is even, then a is odd.

Proof. To the contrary, suppose a2 −2a+7 is even and a is not odd.
That is, suppose a2 −2a+7 is even and a is even.
Since a is even, there is an integer c for which a = 2c.
Then a2 −2a+7= (2c)2 −2(2c)+7= 2(2c2 −2c+3)+1, so a2 −2a+7 is odd.
Thus a2 −2a+7 is both even and odd, a contradiction. ■

Though there is nothing really wrong with this proof, notice that part
of it assumes a is not odd and deduces that a2 −2a+7 is not even. That is
the contrapositive approach! Thus it would be more efficient to proceed as
follows, using contrapositive proof.
Proposition Suppose a ∈Z. If a2 −2a+7 is even, then a is odd.

Proof. (Contrapositive) Suppose a is not odd.
Then a is even, so there is an integer c for which a = 2c.
Then a2 −2a+7= (2c)2 −2(2c)+7= 2(2c2 −2c+3)+1, so a2 −2a+7 is odd.
Thus a2 −2a+7 is not even. ■
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Exercises for Chapter 6

A. Use the method of proof by contradiction to prove the following statements.
(In each case, you should also think about how a direct or contrapositive proof
would work. You will find in most cases that proof by contradiction is easier.)

1. Suppose n ∈Z. If n is odd, then n2 is odd.
2. Suppose n ∈Z. If n2 is odd, then n is odd.
3. Prove that 3p2 is irrational.
4. Prove that

p
6 is irrational.

5. Prove that
p

3 is irrational.
6. If a,b ∈Z, then a2 −4b−2 6= 0.
7. If a,b ∈Z, then a2 −4b−3 6= 0.
8. Suppose a,b, c ∈Z. If a2 +b2 = c2, then a or b is even.
9. Suppose a,b ∈R. If a is rational and ab is irrational, then b is irrational.
10. There exist no integers a and b for which 21a+30b = 1.
11. There exist no integers a and b for which 18a+6b = 1.
12. For every positive x ∈Q, there is a positive y ∈Q for which y< x.
13. For every x ∈ [π/2,π], sin x−cos x ≥ 1.
14. If A and B are sets, then A∩ (B− A)=;.
15. If b ∈Z and b - k for every k ∈N, then b = 0.
16. If a and b are positive real numbers, then a+b ≥ 2

p
ab.

17. For every n ∈Z, 4 - (n2 +2).
18. Suppose a,b ∈Z. If 4 | (a2 +b2), then a and b are not both odd.

B. Prove the following statements using any method from Chapters 4, 5 or 6.

19. The product of any five consecutive integers is divisible by 120. (For
example, the product of 3,4,5,6 and 7 is 2520, and 2520= 120 ·21.)

20. We say that a point P = (x, y) in R2 is rational if both x and y are rational.
More precisely, P is rational if P = (x, y) ∈Q2. An equation F(x, y)= 0 is said
to have a rational point if there exists x0, y0 ∈Q such that F(x0, y0)= 0. For
example, the curve x2 + y2 −1= 0 has rational point (x0, y0)= (1,0). Show that
the curve x2 + y2 −3= 0 has no rational points.

21. Exercise 20 (above) involved showing that there are no rational points on
the curve x2 + y2 −3= 0. Use this fact to show that

p
3 is irrational.

22. Explain why x2 + y2 −3= 0 not having any rational solutions (Exercise 20)
implies x2+ y2−3k = 0 has no rational solutions for k an odd, positive integer.

23. Use the above result to prove that
√

3k is irrational for all odd, positive k.

24. The number log2 3 is irrational.
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More on Proof





CHAPTER 7

Proving Non-Conditional Statements

The last three chapters introduced three major proof techniques: direct,
contrapositive and contradiction. These three techniques are used to

prove statements of the form “If P, then Q.” As we know, most theorems
and propositions have this conditional form, or they can be reworded to
have this form. Thus the three main techniques are quite important. But
some theorems and propositions cannot be put into conditional form. For
example, some theorems have form “P if and only if Q.” Such theorems
are biconditional statements, not conditional statements. In this chapter
we examine ways to prove them. In addition to learning how to prove
if-and-only-if theorems, we will also look at two other types of theorems.

7.1 If-and-Only-If Proof
Some propositions have the form

P if and only if Q.

We know from Section 2.4 that this statement asserts that both of the
following conditional statements are true:

If P, then Q.
If Q, then P.

So to prove “P if and only if Q,” we must prove two conditional statements.
Recall from Section 2.4 that Q ⇒ P is called the converse of P ⇒Q. Thus
we need to prove both P ⇒Q and its converse. Since these are both condi-
tional statements we may prove them with either direct, contrapositive or
contradiction proof. Here is an outline:

Outline for If-and-Only-If Proof
Proposition P if and only if Q.

Proof.
[Prove P ⇒Q using direct, contrapositive or contradiction proof.]
[Prove Q ⇒ P using direct, contrapositive or contradiction proof.]
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Let’s start with a very simple example. You already know that an
integer n is odd if and only if n2 is odd, but let’s prove it anyway, just
to illustrate the outline. In this example we prove (n is odd)⇒(n2 is odd)
using direct proof and (n2 is odd)⇒(n is odd) using contrapositive proof.

Proposition The integer n is odd if and only if n2 is odd.

Proof. First we show that n being odd implies that n2 is odd. Suppose n
is odd. Then, by definition of an odd number, n = 2a+1 for some integer a.
Thus n2 = (2a+1)2 = 4a2+4a+1= 2(2a2+2a)+1. This expresses n2 as twice
an integer, plus 1, so n2 is odd.

Conversely, we need to prove that n2 being odd implies that n is odd.
We use contrapositive proof. Suppose n is not odd. Then n is even, so
n = 2a for some integer a (by definition of an even number). Thus n2 =
(2a)2 = 2(2a2), so n2 is even because it’s twice an integer. Thus n2 is not
odd. We’ve now proved that if n is not odd, then n2 is not odd, and this is
a contrapositive proof that if n2 is odd then n is odd. ■

In proving “P if and only if Q,” you should begin a new paragraph
when starting the proof of Q ⇒ P. Since this is the converse of P ⇒Q, it’s
a good idea to begin the paragraph with the word “Conversely” (as we did
above) to remind the reader that you’ve finished the first part of the proof
and are moving on to the second. Likewise, it’s a good idea to remind the
reader of exactly what statement that paragraph is proving.

The next example uses direct proof in both parts of the proof.

Proposition Suppose a and b are integers. Then a ≡ b (mod 6) if and
only if a ≡ b (mod 2) and a ≡ b (mod 3).

Proof. First we prove that if a ≡ b (mod 6), then a ≡ b (mod 2) and a ≡ b
(mod 3). Suppose a ≡ b (mod 6). This means 6 | (a−b), so there is an integer
n for which

a−b = 6n.

From this we get a−b = 2(3n), which implies 2 | (a−b), so a ≡ b (mod 2). But
we also get a−b = 3(2n), which implies 3 | (a−b), so a ≡ b (mod 3). Therefore
a ≡ b (mod 2) and a ≡ b (mod 3).

Conversely, suppose a ≡ b (mod 2) and a ≡ b (mod 3). Since a ≡ b (mod 2)
we get 2 | (a−b), so there is an integer k for which a−b = 2k. Therefore a−b
is even. Also, from a ≡ b (mod 3) we get 3 | (a−b), so there is an integer `
for which

a−b = 3`.
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But since we know a− b is even, it follows that ` must be even also, for
if it were odd then a− b = 3` would be odd (because a− b would be the
product of two odd integers). Hence ` = 2m for some integer m. Thus
a−b = 3`= 3 ·2m = 6m. This means 6 | (a−b), so a ≡ b (mod 6). ■

Since if-and-only-if proofs simply combine methods with which we are
already familiar, we will not do any further examples in this section.
However, it is of utmost importance that you practice your skill on some
of this chapter’s exercises.

7.2 Equivalent Statements
In other courses you will sometimes encounter a certain kind of theorem
that is neither a conditional nor a biconditional statement. Instead, it
asserts that a list of statements is “equivalent.” You saw this (or will see
it) in your linear algebra textbook, which featured the following theorem:

Theorem Suppose A is an n×n matrix. The following statements are
equivalent:

(a) The matrix A is invertible.
(b) The equation Ax=b has a unique solution for every b ∈Rn.
(c) The equation Ax= 0 has only the trivial solution.
(d) The reduced row echelon form of A is In.
(e) det(A) 6= 0.
(f) The matrix A does not have 0 as an eigenvalue.

When a theorem asserts that a list of statements is “equivalent,” it is
asserting that either the statements are all true, or they are all false.
Thus the above theorem tells us that whenever we are dealing with a
particular n×n matrix A, then either the statements (a) through (f) are all
true for A, or statements (a) through (f) are all false for A. For example, if
we happen to know that det(A) 6= 0, the theorem assures us that in addition
to statement (e) being true, all the statements (a) through (f) are true. On
the other hand, if it happens that det(A)= 0, the theorem tells us that all
statements (a) through (f) are false. In this way, the theorem multiplies
our knowledge of A by a factor of six. Obviously that can be very useful.

What method would we use to prove such a theorem? In a certain
sense, the above theorem is like an if-and-only-if theorem. An if-and-only-if
theorem of form P ⇔Q asserts that P and Q are either both true or both
false, that is, that P and Q are equivalent. To prove P ⇔Q we prove P ⇒Q
followed by Q ⇒ P, essentially making a “cycle” of implications from P to Q
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and back to P. Similarly, one approach to proving the theorem about the
n×n matrix would be to prove the conditional statement (a) ⇒ (b), then
(b) ⇒ (c), then (c) ⇒ (d), then (d) ⇒ (e), then (e) ⇒ ( f ) and finally ( f ) ⇒ (a).
This pattern is illustrated below.

(a) =⇒ (b) =⇒ (c)
⇑ ⇓

( f ) ⇐= (e) ⇐= (d)

Notice that if these six implications have been proved, then it really does
follow that the statements (a) through (f) are either all true or all false. If
one of them is true, then the circular chain of implications forces them
all to be true. On the other hand, if one of them (say (c)) is false, the fact
that (b)⇒ (c) is true forces (b) to be false. This combined with the truth of
(a)⇒ (b) makes (a) false, and so on counterclockwise around the circle.

Thus to prove that n statements are equivalent, it suffices to prove n
conditional statements showing each statement implies another, in circular
pattern. But it is not necessary that the pattern be circular. The following
schemes would also do the job:

(a) =⇒ (b) ⇐⇒ (c)
⇑ ⇓

( f ) ⇐= (e) ⇐⇒ (d)

(a) ⇐⇒ (b) ⇐⇒ (c)
m

( f ) ⇐⇒ (e) ⇐⇒ (d)

But a circular pattern yields the fewest conditional statements that
must be proved. Whatever the pattern, each conditional statement can be
proved with either direct, contrapositive or contradiction proof.

Though we shall not do any of these proofs in this text, you are sure to
encounter them in subsequent courses.

7.3 Existence Proofs; Existence and Uniqueness Proofs
Up until this point, we have dealt with proving conditional statements
or with statements that can be expressed with two or more conditional
statements. Generally, these conditional statements have form P(x)⇒Q(x).
(Possibly with more than one variable.) We saw in Section 2.8 that this
can be interpreted as a universally quantified statement ∀ x,P(x)⇒Q(x).
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Thus, conditional statements are universally quantified statements, so
in proving a conditional statement—whether we use direct, contrapositive
or contradiction proof—we are really proving a universally quantified
statement.

But how would we prove an existentially quantified statement? What
technique would we employ to prove a theorem of the following form?

∃x,R(x)

This statement asserts that there exists some specific object x for which
R(x) is true. To prove ∃x,R(x) is true, all we would have to do is find and
display an example of a specific x that makes R(x) true.

Though most theorems and propositions are conditional (or if-and-
only-if) statements, a few have the form ∃x,R(x). Such statements are
called existence statements, and theorems that have this form are called
existence theorems. To prove an existence theorem, all you have to do
is provide a particular example that shows it is true. This is often quite
simple. (But not always!) Here are some examples:

Proposition There exists an even prime number.

Proof. Observe that 2 is an even prime number. ■

Admittedly, this last proposition was a bit of an oversimplification. The
next one is slightly more challenging.

Proposition There exists an integer that can be expressed as the sum
of two perfect cubes in two different ways.

Proof. Consider the number 1729. Note that 13 +123 = 1729 and 93 +103 =
1729. Thus the number 1729 can be expressed as the sum of two perfect
cubes in two different ways. ■

Sometimes in the proof of an existence statement, a little verification is
needed to show that the example really does work. For example, the above
proof would be incomplete if we just asserted that 1729 can be written as
a sum of two cubes in two ways without showing how this is possible.

WARNING: Although an example suffices to prove an existence statement,
a single example does not prove a conditional statement.
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Often an existence statement will be embedded inside of a conditional
statement. Consider the following. (Recall the definition of gcd on page 90.)

If a,b ∈N, then there exist integers k and ` for which gcd(a,b)= ak+b`.

This is a conditional statement that has the form

a,b ∈N =⇒ ∃ k,` ∈Z, gcd(a,b)= ak+b`.

To prove it with direct proof, we would first assume that a,b ∈ N, then
prove the existence statement ∃ k,` ∈ Z, gcd(a,b) = ak+ b`. That is, we
would produce two integers k and ` (which depend on a and b) for which
gcd(a,b)= ak+b`. Let’s carry out this plan. (We will use this fundamental
proposition several times later, so it is given a number.)
Proposition 7.1 If a,b ∈N, then there exist integers k and ` for which
gcd(a,b)= ak+b`.

Proof. (Direct) Suppose a,b ∈ N. Consider the set A = {
ax+ by : x, y ∈ Z}

.
This set contains both positive and negative integers, as well as 0. (Reason:
Let y= 0 and let x range over all integers. Then ax+by= ax ranges over
all multiples of a, both positive, negative and zero.) Let d be the smallest
positive element of A. Then, because d is in A, it must have the form
d = ak+b` for some specific k,` ∈Z.

To finish, we will show d = gcd(a,b). We will first argue that d is a
common divisor of a and b, and then that it is the greatest common divisor.

To see that d | a, use the division algorithm (page 29) to write a = qd+r
for integers q and r with 0≤ r < d. The equation a = qd+ r yields

r = a− qd

= a− q(ak+b`)

= a(1− qk)+b(−q`).

Therefore r has form r = ax+ by, so it belongs to A. But 0 ≤ r < d and d
is the smallest positive number in A, so r can’t be positive; hence r = 0.
Updating our equation a = qd+ r, we get a = qd, so d | a. Repeating this
argument with b = qd+ r shows d | b. Thus d is indeed a common divisor
of a and b. It remains to show that it is the greatest common divisor.

As gcd(a,b) divides a and b, we have a = gcd(a,b)·m and b = gcd(a,b)·n for
some m,n ∈Z. So d = ak+b`= gcd(a,b)·mk+gcd(a,b)·n`= gcd(a,b)

(
mk+n`

)
,

and thus d is a multiple of gcd(a,b). Therefore d ≥ gcd(a,b). But d can’t
be a larger common divisor of a and b than gcd(a,b), so d = gcd(a,b). ■
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We conclude this section with a discussion of so-called uniqueness
proofs. Some existence statements have form “There is a unique x for
which P(x).” Such a statement asserts that there is exactly one example x
for which P(x) is true. To prove it, you must produce an example x = d for
which P(d) is true, and you must show that d is the only such example.
The next proposition illustrates this. In essence, it asserts that the set{
ax+by : x, y ∈Z}

consists precisely of all the multiples of gcd(a,b).

Proposition Suppose a,b ∈N. Then there exists a unique d ∈N for which:
An integer m is a multiple of d if and only if m = ax+by for some x, y ∈Z.

Proof. Suppose a,b ∈N. Let d = gcd(a,b). We now show that an integer m
is a multiple of d if and only if m = ax+by for some x, y ∈Z. Let m = dn be a
multiple of d. By Proposition 7.1 (on the previous page), there are integers
k and ` for which d = ak+ b`. Then m = dn = (ak+ b`)n = a(kn)+ b(`n), so
m = ax+by for integers x = kn and y= `n.

Conversely, suppose m = ax+by for some x, y ∈Z. Since d = gcd(a,b) is
a divisor of both a and b, we have a = dc and b = de for some c, e ∈Z. Then
m = ax+by= dcx+dey= d(cx+ ey), and this is a multiple of d.

We have now shown that there is a natural number d with the property
that m is a multiple of d if and only if m = ax+ by for some x, y ∈ Z. It
remains to show that d is the unique such natural number. To do this,
suppose d′ is any natural number with the property that d has:

m is a multiple of d′ ⇐⇒ m = ax+by for some x, y ∈Z. (7.1)

We next argue that d′ = d; that is, d is the unique natural number with
the stated property. Because of (7.1), m = a ·1+b ·0= a is a multiple of d′.
Likewise m = a ·0+ b ·1 = b is a multiple of d′. Hence a and b are both
multiples of d′, so d′ is a common divisor of a and b, and therefore

d′ ≤ gcd(a,b)= d.

But also, by (7.1), the multiple m = d′ ·1 = d′ of d′ can be expressed as
d′ = ax+by for some x, y ∈Z. As noted in the second paragraph of the proof,
a = dc and b = de for some c, e ∈Z. Thus d′ = ax+by= dcx+dey= d(cx+ ey),
so d′ is a multiple d. As d′ and d are both positive, it follows that

d ≤ d′.

We’ve now shown that d′ ≤ d and d ≤ d′, so d = d′. The proof is complete. ■
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7.4 Constructive Versus Non-Constructive Proofs
Existence proofs fall into two categories: constructive and non-constructive.
Constructive proofs display an explicit example that proves the theorem;
non-constructive proofs prove an example exists without actually giving it.
We illustrate the difference with two proofs of the same fact: There exist
irrational numbers x and y (possibly equal) for which xy is rational.
Proposition There exist irrational numbers x, y for which xy is rational.

Proof. Let x =p
2
p

2 and y=p
2. We know y is irrational, but it is not clear

whether x is rational or irrational. On one hand, if x is irrational, then
we have an irrational number to an irrational power that is rational:

xy =
(p

2
p

2
)p2

=
p

2
p

2
p

2 =
p

2
2 = 2.

On the other hand, if x is rational, then yy =p
2
p

2 = x is rational. Either
way, we have a irrational number to an irrational power that is rational. ■

The above is a classic example of a non-constructive proof. It shows
that there exist irrational numbers x and y for which xy is rational without
actually producing (or constructing) an example. It convinces us that one
of

(p
2
p

2)p2 or
p

2
p

2 is an irrational number to an irrational power that
is rational, but it does not say which one is the correct example. It thus
proves that an example exists without explicitly stating one.

Next comes a constructive proof of this statement, one that produces
(or constructs) two explicit irrational numbers x, y for which xy is rational.
Proposition There exist irrational numbers x, y for which xy is rational.

Proof. Let x =p
2 and y= log2 9. Then

xy =
p

2
log2 9 =

p
2

log2 32

=
p

2
2log2 3 =

(p
2

2)log2 3
= 2log2 3 = 3.

As 3 is rational, we have shown that xy = 3 is rational.
We know that x =p

2 is irrational. The proof will be complete if we
can show that y= log2 9 is irrational. Suppose for the sake of contradiction
that log2 9 is rational, so there are integers a and b for which a

b = log2 9.
This means 2a/b = 9, so

(
2a/b)b = 9b, which reduces to 2a = 9b. But 2a is even,

while 9b is odd (because it is the product of the odd number 9 with itself
b times). This is a contradiction; the proof is complete. ■
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This existence proof has inside of it a separate proof (by contradiction)
that log2 9 is irrational. Such combinations of proof techniques are, of
course, typical.

Be alert to constructive and non-constructive proofs as you read proofs
in other books and articles, as well as to the possibility of crafting such
proofs of your own.

Exercises for Chapter 7
Prove the following statements. These exercises are cumulative, covering all
techniques addressed in Chapters 4–7.

1. Suppose x ∈Z. Then x is even if and only if 3x+5 is odd.
2. Suppose x ∈Z. Then x is odd if and only if 3x+6 is odd.
3. Given an integer a, then a3 +a2 +a is even if and only if a is even.
4. Given an integer a, then a2 +4a+5 is odd if and only if a is even.
5. An integer a is odd if and only if a3 is odd.
6. Suppose x, y ∈R. Then x3 + x2 y= y2 + xy if and only if y= x2 or y=−x.
7. Suppose x, y ∈R. Then (x+ y)2 = x2 + y2 if and only if x = 0 or y= 0.
8. Suppose a,b ∈Z. Prove that a ≡ b (mod 10) if and only if a ≡ b (mod 2) and a ≡ b

(mod 5).
9. Suppose a ∈Z. Prove that 14 | a if and only if 7 | a and 2 | a.

10. If a ∈Z, then a3 ≡ a (mod 3).
11. Suppose a,b ∈Z. Prove that (a−3)b2 is even if and only if a is odd or b is even.
12. There exist a positive real number x for which x2 <p

x.
13. Suppose a,b ∈Z. If a+b is odd, then a2 +b2 is odd.
14. Suppose a ∈Z. Then a2 | a if and only if a ∈ {−1,0,1

}
.

15. Suppose a,b ∈Z. Prove that a+b is even if and only if a and b have the same
parity.

16. Suppose a,b ∈Z. If ab is odd, then a2 +b2 is even.
17. There is a prime number between 90 and 100.
18. There is a set X for which N ∈ X and N⊆ X .
19. If n ∈N, then 20 +21 +22 +23 +24 +·· ·+2n = 2n+1 −1.
20. There exists an n ∈N for which 11 | (2n −1).
21. Every real solution of x3 + x+3= 0 is irrational.
22. If n ∈Z, then 4 | n2 or 4 | (n2 −1).
23. Suppose a,b and c are integers. If a | b and a | (b2 − c), then a | c.
24. If a ∈Z, then 4 - (a2 −3).
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25. If p > 1 is an integer and n - p for each integer n for which 2≤ n ≤pp, then p is
prime.

26. The product of any n consecutive positive integers is divisible by n!.
27. Suppose a,b ∈Z. If a2 +b2 is a perfect square, then a and b are not both odd.
28. Prove the division algorithm: If a,b ∈ N, there exist unique integers q, r for

which a = bq+ r, and 0≤ r < b. (A proof of existence is given in Section 1.9, but
uniqueness needs to be established too.)

29. If a | bc and gcd(a,b)= 1, then a | c.
(Suggestion: Use the proposition on page 126.)

30. Suppose a,b, p ∈ Z and p is prime. Prove that if p | ab then p | a or p | b.
(Suggestion: Use the proposition on page 126.)

31. If n ∈Z, then gcd(n,n+1)= 1.
32. If n ∈Z, then gcd(n,n+2) ∈ {

1,2
}
.

33. If n ∈Z, then gcd(2n+1,4n2 +1)= 1.
34. If gcd(a, c)= gcd(b, c)= 1, then gcd(ab, c)= 1.

(Suggestion: Use the proposition on page 126.)
35. Suppose a,b ∈N. Then a = gcd(a,b) if and only if a | b.
36. Suppose a,b ∈N. Then a = lcm(a,b) if and only if b | a.



CHAPTER 8

Proofs Involving Sets

Students in their first advanced mathematics classes are often surprised
by the extensive role that sets play and by the fact that most of the

proofs they encounter are proofs about sets. Perhaps you’ve already seen
such proofs in your linear algebra course, where a vector space was
defined to be a set of objects (called vectors) that obey certain properties.
Your text proved many things about vector spaces, such as the fact that
the intersection of two vector spaces is also a vector space, and the proofs
used ideas from set theory. As you go deeper into mathematics, you will
encounter more and more ideas, theorems and proofs that involve sets.
The purpose of this chapter is to give you a foundation that will prepare
you for this new outlook.

We will discuss how to show that an object is an element of a set, how
to prove one set is a subset of another and how to prove two sets are
equal. As you read this chapter, you may need to occasionally refer back
to Chapter 1 to refresh your memory. For your convenience, the main
definitions from Chapter 1 are summarized below. If A and B are sets,
then:

A×B = {
(x, y) : x ∈ A, y ∈ B

}
,

A∪B = {
x : (x ∈ A)∨ (x ∈ B)

}
,

A∩B = {
x : (x ∈ A)∧ (x ∈ B)

}
,

A−B = {
x : (x ∈ A)∧ (x ∉ B)

}
,

A = U − A.

Recall that A ⊆ B means that every element of A is also an element of B.

8.1 How to Prove a ∈A

We will begin with a review of set-builder notation, and then review how
to show that a given object a is an element of some set A.



132 Proofs Involving Sets

Generally, a set A will be expressed in set-builder notation A = {
x : P(x)

}
,

where P(x) is some statement (or open sentence) about x. The set A is
understood to have as elements all those things x for which P(x) is true.
For example,{

x : x is an odd integer
}= {

. . . ,−5,−3,−1,1,3,5, . . .
}
.

A common variation of this notation is to express a set as A = {
x ∈ S : P(x)

}
.

Here it is understood that A consists of all elements x of the (predetermined)
set S for which P(x) is true. Keep in mind that, depending on context, x
could be any kind of object (integer, ordered pair, set, function, etc.). There
is also nothing special about the particular variable x; any reasonable
symbol x, y, k, etc., would do. Some examples follow.{

n ∈Z : n is odd
} = {

. . . ,−5,−3,−1,1,3,5, . . .
}{

x ∈N : 6 |x} = {
6,12,18,24,30, . . .

}{
(a,b) ∈Z×Z : b = a+5

} = {
. . . , (−2,3), (−1,4), (0,5), (1,6), . . .

}{
X ∈P(Z) : |X | = 1

} = {
. . . ,

{−1
}
,
{
0
}
,
{
1
}
,
{
2
}
,
{
3
}
,
{
4
}
, . . .

}
Now it should be clear how to prove that an object a belongs to a set{
x : P(x)

}
. Since

{
x : P(x)

}
consists of all things x for which P(x) is true, to

show that a ∈ {
x : P(x)

}
we just need to show that P(a) is true. Likewise, to

show a ∈ {
x ∈ S : P(x)

}
, we need to confirm that a ∈ S and that P(a) is true.

These ideas are summarized below. However, you should not memorize
these methods, you should understand them. With contemplation and
practice, using them becomes natural and intuitive.

How to show a ∈ {
x : P(x)

}
How to show a ∈ {

x ∈S : P(x)
}

Show that P(a) is true. 1. Verify that a ∈ S.
2. Show that P(a) is true.

Example 8.1 Let’s investigate elements of A = {
x : x ∈N and 7 |x}

. This set
has form A = {

x : P(x)
}
where P(x) is the open sentence (x ∈N)∧ (7 |x). Thus

21 ∈ A because P(21) is true. Similarly, 7,14,28,35, etc., are all elements of
A. But 8 ∉ A (for example) because P(8) is false. Likewise −14 ∉ A because
P(−14) is false.
Example 8.2 Consider the set A = {

X ∈ P(N) : |X | = 3
}
. We know that{

4,13,45
} ∈ A because

{
4,13,45

} ∈P(N) and
∣∣{4,13,45

}∣∣= 3. Also
{
1,2,3

} ∈ A,{
10,854,3

} ∈ A, etc. However
{
1,2,3,4

} ∉ A because
∣∣{1,2,3,4

}∣∣ 6= 3. Further,{−1,2,3
} ∉ A because

{−1,2,3
} ∉P(N).
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Example 8.3 Consider the set B = {
(x, y) ∈ Z×Z : x ≡ y (mod 5)

}
. Notice

(8,23) ∈ B because (8,23) ∈Z×Z and 8 ≡ 23 (mod 5). Likewise, (100,75) ∈ B,
(102,77) ∈ B, etc., but (6,10) ∉ B.

Now suppose n ∈Z and consider the ordered pair (4n+3,9n−2). Does
this ordered pair belong to B? To answer this, we first observe that
(4n+3,9n−2) ∈Z×Z. Next, we observe that (4n+3)−(9n−2)=−5n+5= 5(1−n),
so 5 |((4n+3)−(9n−2)

)
, which means (4n+3)≡ (9n−2) (mod 5). Therefore we

have established that (4n+3,9n−2) meets the requirements for belonging
to B, so (4n+3,9n−2) ∈ B for every n ∈Z.
Example 8.4 This illustrates another common way of defining a set.
Consider the set C = {

3x3 +2 : x ∈Z}
. Elements of this set consist of all the

values 3x3 +2 where x is an integer. Thus −22 ∈ C because −22= 3(−2)3 +2.
You can confirm −1 ∈ C and 5 ∈ C, etc. Also 0 ∉ C and 1

2 ∉ C, etc.

8.2 How to Prove A⊆B

In this course (and more importantly, beyond it) you will encounter many
circumstances where it is necessary to prove that one set is a subset of an-
other. This section explains how to do this. The methods we discuss should
improve your skills in both writing your own proofs and in comprehending
the proofs that you read.

Recall (Definition 1.3) that if A and B are sets, then A ⊆ B means that
every element of A is also an element of B. In other words, it means if
a ∈ A, then a ∈ B. Therefore to prove that A ⊆ B, we just need to prove that
the conditional statement

“If a ∈ A, then a ∈ B”

is true. This can be proved directly, by assuming a ∈ A and deducing a ∈ B.
The contrapositive approach is another option: Assume a ∉ B and deduce
a ∉ A. Each of these two approaches is outlined below.

How to Prove A⊆B How to Prove A⊆B
(Direct approach) (Contrapositive approach)

Proof. Suppose a ∈ A.
...

Therefore a ∈ B.
Thus a ∈ A implies a ∈ B,
so it follows that A ⊆ B. ■

Proof. Suppose a ∉ B.
...

Therefore a ∉ A.
Thus a ∉ B implies a ∉ A,
so it follows that A ⊆ B. ■
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In practice, the direct approach usually results in the most straight-
forward and easy proof, though occasionally the contrapositive is the
most expedient. (You can even prove A ⊆ B by contradiction: Assume
(a ∈ A)∧ (a ∉ B), and deduce a contradiction.) The remainder of this section
consists of examples with occasional commentary. Unless stated otherwise,
we will use the direct approach in all proofs; pay special attention to how
the above outline for the direct approach is used.

Example 8.5 Prove that
{
x ∈Z : 18 |x}⊆ {

x ∈Z : 6 |x}
.

Proof. Suppose a ∈ {
x ∈Z : 18 |x}

.
This means that a ∈Z and 18 |a.
By definition of divisibility, there is an integer c for which a = 18c.
Consequently a = 6(3c), and from this we deduce that 6 |a.
Therefore a is one of the integers that 6 divides, so a ∈ {

x ∈Z : 6 |x}
.

We’ve shown a ∈ {
x ∈Z : 18 |x}

implies a ∈ {
n ∈Z : 6 |x}

, so it follows that{
x ∈Z : 18 |x}⊆ {

x ∈Z : 6 |x}
. ■

Example 8.6 Prove that
{
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}⊆ {
x ∈Z : 6 |x}

.

Proof. Suppose a ∈ {
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}
.

By definition of intersection, this means a ∈ {
x ∈Z : 2 |x}

and a ∈ {
x ∈Z : 9 |x}

.
Since a ∈ {

x ∈Z : 2 |x}
we know 2 |a, so a = 2c for some c ∈Z. Thus a is even.

Since a ∈ {
x ∈Z : 9 |x}

we know 9 |a, so a = 9d for some d ∈Z.
As a is even, a = 9d implies d is even. (Otherwise a = 9d would be odd.)
Then d = 2e for some integer e, and we have a = 9d = 9(2e)= 6(3e).
From a = 6(3e), we conclude 6 |a, and this means a ∈ {

x ∈Z : 6 |x}
.

We have shown that a ∈ {
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}
implies a ∈ {

x ∈Z : 6 |x}
,

so it follows that
{
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}⊆ {
x ∈Z : 6 |x}

. ■

Example 8.7 Show
{
(x, y) ∈Z×Z : x ≡ y (mod 6)

}⊆ {
(x, y) ∈Z×Z : x ≡ y (mod 3)

}
.

Proof. Suppose (a,b) ∈ {
(x, y) ∈Z×Z : x ≡ y (mod 6)

}
.

This means (a,b) ∈Z×Z and a ≡ b (mod 6).
Consequently 6 |(a−b), so a−b = 6c for some integer c.
It follows that a−b = 3(2c), and this means 3 |(a−b), so a ≡ b (mod 3).
Thus (a,b) ∈ {

(x, y) ∈Z×Z : x ≡ y (mod 3)
}
.

We’ve now seen that (a,b) ∈ {
(x, y) ∈Z×Z : x ≡ y (mod 6)

}
implies (a,b) ∈{

(x, y) ∈Z×Z : x ≡ y (mod 3)
}
, so it follows that

{
(x, y) ∈Z×Z : x ≡ y (mod 6)

}⊆{
(x, y) ∈Z×Z : x ≡ y (mod 3)

}
. ■
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Some statements involving subsets are transparent enough that we
often accept (and use) them without proof. For example, if A and B are any
sets, then it’s very easy to confirm A∩B ⊆ A. (Reason: Suppose x ∈ A∩B.
Then x ∈ A and x ∈ B by definition of intersection, so in particular x ∈ A.
Thus x ∈ A∩B implies x ∈ A, so A∩B ⊆ A.) Other statements of this nature
include A ⊆ A∪B and A−B ⊆ A, as well as conditional statements such as(
(A ⊆ B)∧ (B ⊆ C)

)⇒ (A ⊆ C) and (X ⊆ A)⇒ (X ⊆ A∪B). Our point of view in
this text is that we do not need to prove such obvious statements unless we
are explicitly asked to do so in an exercise. (Still, you should do some quick
mental proofs to convince yourself that the above statements are true. If
you don’t see that A∩B ⊆ A is true but that A ⊆ A∩B is not necessarily
true, then you need to spend more time on this topic.)

The next example will show that if A and B are sets, then P(A)∪P(B)⊆
P(A∪B). Before beginning our proof, let’s look at an example to see if
this statement really makes sense. Suppose A = {

1,2
}
and B = {

2,3
}
. Then

P(A)∪P(B) = {;,
{
1
}
,
{
2
}
,
{
1,2

}}∪{;,
{
2
}
,
{
3
}
,
{
2,3

}}
= {;,

{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
2,3

}}
.

Also P(A∪B) = P(
{
1,2,3

}
) = {;,

{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
2,3

}
,
{
1,3

}
,
{
1,2,3

}}
. Thus,

even though P(A)∪P(B) 6=P(A∪B), it is true that P(A)∪P(B)⊆P(A∪B)
for this particular A and B. Now let’s prove P(A)∪P(B) ⊆ P(A∪B) no
matter what sets A and B are.

Example 8.8 Prove that if A and B are sets, then P(A)∪P(B)⊆P(A∪B).

Proof. Suppose X ∈P(A)∪P(B).
By definition of union, this means X ∈P(A) or X ∈P(B).
Therefore X ⊆ A or X ⊆ B (by definition of power sets). We consider cases.
Case 1. Suppose X ⊆ A. Then X ⊆ A∪B, and this means X ∈P(A∪B).
Case 2. Suppose X ⊆ B. Then X ⊆ A∪B, and this means X ∈P(A∪B).
(We do not need to consider the case where X ⊆ A and X ⊆ B because that
is taken care of by either of cases 1 or 2.) The above cases show that
X ∈P(A∪B).

Thus we’ve shown that X ∈P(A)∪P(B) implies X ∈P(A∪B), and this
completes the proof that P(A)∪P(B)⊆ P(A∪B). ■

In our next example, we prove a conditional statement. Direct proof is
used, and in the process we use our new technique for showing A ⊆ B.
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Example 8.9 Suppose A and B are sets. If P(A)⊆P(B), then A ⊆ B.

Proof. We use direct proof. Assume P(A)⊆P(B).
Based on this assumption, we must now show that A ⊆ B.
To show A ⊆ B, suppose that a ∈ A.
Then the one-element set

{
a
}
is a subset of A, so

{
a
} ∈P(A).

But then, since P(A)⊆P(B), it follows that
{
a
} ∈P(B).

This means that
{
a
}⊆ B, hence a ∈ B.

We’ve shown that a ∈ A implies a ∈ B, so therefore A ⊆ B. ■

8.3 How to Prove A=B

In proofs it is often necessary to show that two sets are equal. There is a
standard way of doing this. Suppose we want to show A = B. If we show
A ⊆ B, then every element of A is also in B, but there is still a possibility
that B could have some elements that are not in A, so we can’t conclude
A = B. But if in addition we also show B ⊆ A, then B can’t contain anything
that is not in A, so A = B. This is the standard procedure for proving A = B:
Prove both A ⊆ B and B ⊆ A.

How to Prove A=B

Proof.
[Prove that A ⊆ B.]
[Prove that B ⊆ A.]

Therefore, since A ⊆ B and B ⊆ A,
it follows that A = B. ■

Example 8.10 Prove that
{
n ∈Z : 35 |n}= {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

.

Proof. First we show
{
n ∈ Z : 35 |n} ⊆ {

n ∈ Z : 5 |n}∩ {
n ∈ Z : 7 |n}

. Suppose
a ∈ {

n ∈Z : 35 |n}
. This means 35 |a, so a = 35c for some c ∈Z. Thus a = 5(7c)

and a = 7(5c). From a = 5(7c) it follows that 5 |a, so a ∈ {
n ∈Z : 5 |n}

. From
a = 7(5c) it follows that 7 |a, which means a ∈ {

n ∈ Z : 7 |n}
. As a belongs

to both
{
n ∈ Z : 5 |n}

and
{
n ∈ Z : 7 |n}

, we get a ∈ {
n ∈ Z : 5 |n}∩ {

n ∈ Z : 7 |n}
.

Thus we’ve shown that
{
n ∈Z : 35 |n}⊆ {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

.
Next we show

{
n ∈ Z : 5 |n}∩ {

n ∈ Z : 7 |n} ⊆ {
n ∈ Z : 35 |n}

. Suppose that
a ∈ {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

. By definition of intersection, this means that
a ∈ {

n ∈Z : 5 |n}
and a ∈ {

n ∈Z : 7 |n}
. Therefore it follows that 5 |a and 7 |a.

By definition of divisibility, there are integers c and d with a = 5c and a = 7d.
Then a has both 5 and 7 as prime factors, so the prime factorization of a
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must include factors of 5 and 7. Hence 5·7= 35 divides a, so a ∈ {
n ∈Z : 35 |n}

.
We’ve now shown that

{
n ∈Z : 5 |n}∩{

n ∈Z : 7 |n}⊆ {
n ∈Z : 35 |n}

.
At this point we’ve shown that

{
n ∈Z : 35 |n}⊆ {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

and
{
n ∈Z : 5 |n}∩{

n ∈Z : 7 |n}⊆ {
n ∈Z : 35 |n}

, so we’ve proved
{
n ∈Z : 35 |n}={

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

. ■

You know from algebra that if c 6= 0 and ac = bc, then a = b. The next
example shows that an analogous statement holds for sets A,B and C. The
example asks us to prove a conditional statement. We will prove it with
direct proof. In carrying out the process of direct proof, we will have to
use the new techniques from this section.

Example 8.11 Suppose A, B, and C are sets, and C 6= ;. Prove that if
A×C = B×C, then A = B.

Proof. Suppose A×C = B×C. We must now show A = B.
First we will show A ⊆ B. Suppose a ∈ A. Since C 6= ;, there exists

an element c ∈ C. Thus, since a ∈ A and c ∈ C, we have (a, c) ∈ A ×C, by
definition of the Cartesian product. But then, since A×C = B×C, it follows
that (a, c) ∈ B×C. Again by definition of the Cartesian product, it follows
that a ∈ B. We have shown a ∈ A implies a ∈ B, so A ⊆ B.

Next we show B ⊆ A. We use the same argument as above, with the
roles of A and B reversed. Suppose a ∈ B. Since C 6= ;, there exists an
element c ∈ C. Thus, since a ∈ B and c ∈ C, we have (a, c) ∈ B×C. But then,
since B×C = A×C, we have (a, c) ∈ A×C. It follows that a ∈ A. We have
shown a ∈ B implies a ∈ A, so B ⊆ A.

The previous two paragraphs have shown A ⊆ B and B ⊆ A, so A = B. In
summary, we have shown that if A×C = B×C, then A = B. This completes
the proof. ■

Now we’ll look at another way that set operations are similar to oper-
ations on numbers. From algebra you are familiar with the distributive
property a · (b+ c)= a ·b+a · c. Replace the numbers a,b, c with sets A,B,C,
and replace · with × and + with ∩. We get A× (B∩C) = (A×B)∩ (A×C).
This statement turns out to be true, as we now prove.

Example 8.12 Given sets A, B, and C, prove A× (B∩C)= (A×B)∩ (A×C).

Proof. First we will show that A× (B∩C)⊆ (A×B)∩ (A×C).
Suppose (a,b) ∈ A× (B∩C).
By definition of the Cartesian product, this means a ∈ A and b ∈ B∩C.
By definition of intersection, it follows that b ∈ B and b ∈ C.
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Thus, since a ∈ A and b ∈ B, it follows that (a,b) ∈ A×B (by definition of ×).
Also, since a ∈ A and b ∈ C, it follows that (a,b) ∈ A×C (by definition of ×).
Now we have (a,b) ∈ A×B and (a,b) ∈ A×C, so (a,b) ∈ (A×B)∩ (A×C).
We’ve shown that (a,b) ∈ A × (B∩C) implies (a,b) ∈ (A ×B)∩ (A ×C) so we
have A× (B∩C)⊆ (A×B)∩ (A×C).

Next we will show that (A×B)∩ (A×C)⊆ A× (B∩C).
Suppose (a,b) ∈ (A×B)∩ (A×C).
By definition of intersection, this means (a,b) ∈ A×B and (a,b) ∈ A×C.
By definition of the Cartesian product, (a,b) ∈ A×B means a ∈ A and b ∈ B.
By definition of the Cartesian product, (a,b) ∈ A×C means a ∈ A and b ∈ C.
We now have b ∈ B and b ∈ C, so b ∈ B∩C, by definition of intersection.
Thus we’ve deduced that a ∈ A and b ∈ B∩C, so (a,b) ∈ A× (B∩C).
In summary, we’ve shown that (a,b) ∈ (A×B)∩(A×C) implies (a,b) ∈ A×(B∩C)
so we have (A×B)∩ (A×C)⊆ A× (B∩C).

The previous two paragraphs show that A×(B∩C)⊆ (A×B)∩(A×C) and
(A×B)∩(A×C)⊆ A×(B∩C), so it follows that (A×B)∩(A×C)= A×(B∩C). ■

Occasionally you can prove two sets are equal by working out a series of
equalities leading from one set to the other. This is analogous to showing
two algebraic expressions are equal by manipulating one until you obtain
the other. We illustrate this in the following example, which gives an
alternate solution to the previous example. You are cautioned that this
approach is sometimes difficult to apply, but when it works it can shorten
a proof dramatically.

Before beginning the example, a note is in order. Notice that any
statement P is logically equivalent to P∧P. (Write out a truth table if you
are in doubt.) At one point in the following example we will replace the
expression x ∈ A with the logically equivalent statement (x ∈ A)∧ (x ∈ A).

Example 8.13 Given sets A, B, and C, prove A× (B∩C)= (A×B)∩ (A×C).

Proof. Just observe the following sequence of equalities.

A× (B∩C) = {
(x, y) : (x ∈ A)∧ (y ∈ B∩C)

}
(def. of ×)

= {
(x, y) : (x ∈ A)∧ (y ∈ B)∧ (y ∈ C)

}
(def. of ∩)

= {
(x, y) : (x ∈ A)∧ (x ∈ A)∧ (y ∈ B)∧ (y ∈ C)

}
(P = P ∧P)

= {
(x, y) : ((x ∈ A)∧ (y ∈ B))∧ ((x ∈ A)∧ (y ∈ C))

}
(rearrange)

= {
(x, y) : (x ∈ A)∧ (y ∈ B)

}∩{
(x, y) : (x ∈ A)∧ (y ∈ C)

}
(def. of ∩)

= (A×B)∩ (A×C) (def. of ×)

The proof is complete. ■
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The equation A×(B∩C)= (A×B)∩(A×C) just obtained is a fundamental
law that you may actually use fairly often as you continue with mathematics.
Some similar equations are listed below. Each of these can be proved with
this section’s techniques, and the exercises will ask that you do so.

A∩B = A∪B
A∪B = A∩B

}
DeMorgan’s laws for sets

A∩ (B∪C)= (A∩B)∪ (A∩C)
A∪ (B∩C)= (A∪B)∩ (A∪C)

}
Distributive laws for sets

A× (B∪C)= (A×B)∪ (A×C)
A× (B∩C)= (A×B)∩ (A×C)

}
Distributive laws for sets

It is very good practice to prove these equations. Depending on your
learning style, it is probably not necessary to commit them to memory.
But don’t forget them entirely. They may well be useful later in your
mathematical education. If so, you can look them up or re-derive them on
the spot. If you go on to study mathematics deeply, you will at some point
realize that you’ve internalized them without even being cognizant of it.

8.4 Examples: Perfect Numbers
Sometimes it takes a good bit of work and creativity to show that one set
is a subset of another or that they are equal. We illustrate this now with
examples from number theory involving what are called perfect numbers.
Even though this topic is quite old, dating back more than 2000 years, it
leads to some questions that are unanswered even today.

The problem involves adding up the positive divisors of a natural
number. To begin the discussion, consider the number 12. If we add up the
positive divisors of 12 that are less than 12, we obtain 1+2+3+4+6= 16,
which is greater than 12. Doing the same thing for 15, we get 1+3+5= 9
which is less than 15. For the most part, given a natural number p, the
sum of its positive divisors less than itself will either be greater than p
or less than p. But occasionally the divisors add up to exactly p. If this
happens, then p is said to be a perfect number.

Definition 8.1 A number p ∈ N is perfect if it equals the sum of its
positive divisors less than itself. Some examples follow.
• The number 6 is perfect since 6= 1+2+3.

• The number 28 is perfect since 28= 1+2+4+7+14.

• The number 496 is perfect since 496= 1+2+4+8+16+31+62+124+248.
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Though it would take a while to find it by trial-and-error, the next
perfect number after 496 is 8128. You can check that 8128 is perfect. Its
divisors are 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064 and indeed

8128= 1+2+4+8+16+32+64+127+254+508+1016+2032+4064.

Are there other perfect numbers? How can they be found? Do they obey any
patterns? These questions fascinated the ancient Greek mathematicians.
In what follows we will develop an idea—recorded by Euclid—that partially
answers these questions. Although Euclid did not use sets,1 we will
nonetheless phrase his idea using the language of sets.

Since our goal is to understand what numbers are perfect, let’s define
the following set:

P = {
p ∈N : p is perfect

}
.

Therefore P = {
6,28,496,8128, . . .

}
, but it is unclear what numbers are in

P other than the ones listed. Our goal is to gain a better understanding
of just which numbers the set P includes. To do this, we will examine
the following set A. It looks more complicated than P, but it will be very
helpful for understanding P, as we will soon see.

A = {
2n−1(2n −1) : n ∈N, and 2n −1 is prime

}
In words, A consists of every natural number of form 2n−1(2n −1), where
2n −1 is prime. To get a feel for what numbers belong to A, look at the
following table. For each natural number n, it tallies the corresponding
numbers 2n−1 and 2n −1. If 2n −1 happens to be prime, then the product
2n−1(2n −1) is given; otherwise that entry is labeled with an ∗.

n 2n−1 2n −1 2n−1(2n −1)

1 1 1 ∗
2 2 3 6
3 4 7 28
4 8 15 ∗
5 16 31 496
6 32 63 ∗
7 64 127 8128
8 128 255 ∗
9 256 511 ∗

10 512 1023 ∗
11 1024 2047 ∗
12 2048 4095 ∗
13 4096 8191 33,550,336

1Set theory was invented over 2000 years after Euclid died.
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Notice that the first four entries of A are the perfect numbers 6, 28,
496 and 8128. At this point you may want to jump to the conclusion that
A = P. But it is a shocking fact that in over 2000 years no one has ever
been able to determine whether or not A = P. But it is known that A ⊆ P,
and we will now prove it. In other words, we are going to show that every
element of A is perfect. (But by itself, that leaves open the possibility that
there may be some perfect numbers in P that are not in A.)

The main ingredient for the proof will be the formula for the sum of a
geometric series with common ratio r. You probably saw this most recently
in Calculus II. The formula is

n∑
k=0

rk = rn+1 −1
r−1

.

We will need this for the case r = 2, which is
n∑

k=0
2k = 2n+1 −1. (8.1)

(See the solution for Exercise 19 in Section 7.4 for a proof of this for-
mula.) Now we are ready to prove our result. Let’s draw attention to its
significance by calling it a theorem rather than a proposition.

Theorem 8.1 If A = {
2n−1(2n −1) : n ∈N, and 2n −1 is prime

}
and P ={

p ∈N : p is perfect
}
, then A ⊆ P.

Proof. Assume A and P are as stated. To show A ⊆ P, we must show that
p ∈ A implies p ∈ P. Thus suppose p ∈ A. By definition of A, this means

p = 2n−1(2n −1) (8.2)

for some n ∈N for which 2n −1 is prime. We want to show that p ∈ P, that
is, we want to show p is perfect. Thus, we need to show that the sum of
the positive divisors of p that are less than p add up to p. Notice that
since 2n −1 is prime, any divisor of p = 2n−1(2n −1) must have the form 2k

or 2k(2n −1) for 0≤ k ≤ n−1. Thus the positive divisors of p are as follows:

20, 21, 22, . . . 2n−2, 2n−1,
20(2n −1), 21(2n −1), 22(2n −1), . . . 2n−2(2n −1), 2n−1(2n −1).

Notice that this list starts with 20 = 1 and ends with 2n−1(2n −1)= p.



142 Proofs Involving Sets

If we add up all these divisors except for the last one (which equals p)
we get the following:

n−1∑
k=0

2k +
n−2∑
k=0

2k(2n −1) =
n−1∑
k=0

2k + (2n −1)
n−2∑
k=0

2k

= (2n −1)+ (2n −1)(2n−1 −1) (by Equation (8.1))
= [1+ (2n−1 −1)](2n −1)
= 2n−1(2n −1)
= p (by Equation (8.2)).

This shows that the positive divisors of p that are less than p add up to p.
Therefore p is perfect, by definition of a perfect number. Thus p ∈ P, by
definition of P.

We have shown that p ∈ A implies p ∈ P, which means A ⊆ P. ■

Combined with the chart on the previous page, this theorem gives us
a new perfect number! The element p = 213−1(213 −1)= 33,550,336 in A is
perfect.

Observe also that every element of A is a multiple of a power of 2, and
therefore even. But this does not necessarily mean every perfect number
is even, because we’ve only shown A ⊆ P, not A = P. For all we know there
may be odd perfect numbers in P − A that are not in A.

Are there any odd perfect numbers? No one knows.
In over 2000 years, no one has ever found an odd perfect number, nor

has anyone been able to prove that there are none. But it is known that the
set A does contain every even perfect number. This fact was first proved by
Euler, and we duplicate his reasoning in the next theorem, which proves
that A = E, where E is the set of all even perfect numbers. It is a good
example of how to prove two sets are equal.

For convenience, we are going to use a slightly different definition of a
perfect number. A number p ∈N is perfect if its positive divisors add up
to 2p. For example, the number 6 is perfect since the sum of its divisors
is 1+2+3+6 = 2 ·6. This definition is simpler than the first one because
we do not have to stipulate that we are adding up the divisors that are
less than p. Instead we add in the last divisor p, and that has the effect
of adding an additional p, thereby doubling the answer.
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Theorem 8.2 If A = {
2n−1(2n −1) : n ∈N, and 2n −1 is prime

}
and E ={

p ∈N : p is perfect and even
}
, then A = E.

Proof. To show that A = E, we need to show A ⊆ E and E ⊆ A.
First we will show that A ⊆ E. Suppose p ∈ A. This means p is even,

because the definition of A shows that every element of A is a multiple of
a power of 2. Also, p is a perfect number because Theorem 8.1 states that
every element of A is also an element of P, hence perfect. Thus p is an
even perfect number, so p ∈ E. Therefore A ⊆ E.

Next we show that E ⊆ A. Suppose p ∈ E. This means p is an even
perfect number. Write the prime factorization of p as p = 2k3n15n27n2 . . .,
where some of the powers n1, n2, n3 . . . may be zero. But, as p is even, the
power k must be greater than zero. It follows p = 2kq for some positive
integer k and an odd integer q. Now, our aim is to show that p ∈ A, which
means we must show p has form p = 2n−1(2n−1). To get our current p = 2kq
closer to this form, let n = k+1, so we now have

p = 2n−1q. (8.3)

List the positive divisors of q as d1,d2,d3, . . . ,dm. (Where d1 = 1 and dm = q.)
Then the divisors of p are:

20d1 20d2 20d3 . . . 20dm

21d1 21d2 21d3 . . . 21dm

22d1 22d2 22d3 . . . 22dm

23d1 23d2 23d3 . . . 23dm
...

...
...

...
2n−1d1 2n−1d2 2n−1d3 . . . 2n−1dm

Since p is perfect, these divisors add up to 2p. By Equation (8.3), their
sum is 2p = 2(2n−1q)= 2nq. Adding the divisors column-by-column, we get

n−1∑
k=0

2kd1 +
n−1∑
k=0

2kd2 +
n−1∑
k=0

2kd3 +·· ·+
n−1∑
k=0

2kdm = 2nq.

Applying Equation (8.1), this becomes

(2n −1)d1 + (2n −1)d2 + (2n −1)d3 +·· ·+ (2n −1)dm = 2nq

(2n −1)(d1 +d2 +d3 +·· ·+dm)= 2nq

d1 +d2 +d3 +·· ·+dm = 2nq
2n −1

,
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so that

d1 +d2 +d3 +·· ·+dm = (2n −1+1)q
2n −1

= (2n −1)q+ q
2n −1

= q+ q
2n −1

.

From this we see that q
2n−1 is an integer. It follows that both q and q

2n−1
are positive divisors of q. Since their sum equals the sum of all positive
divisors of q, it follows that q has only two positive divisors, q and q

2n−1 .
Since one of its divisors must be 1, it must be that q

2n−1 = 1, which means
q = 2n − 1. Now a number with just two positive divisors is prime, so
q = 2n −1 is prime. Plugging this into Equation (8.3) gives p = 2n−1(2n −1),
where 2n −1 is prime. This means p ∈ A, by definition of A. We have now
shown that p ∈ E implies p ∈ A, so E ⊆ A.

Since A ⊆ E and E ⊆ A, it follows that A = E. ■

Do not be alarmed if you feel that you wouldn’t have thought of this
proof. It took the genius of Euler to discover this approach.

We’ll conclude this chapter with some facts about perfect numbers.
• The sixth perfect number is p = 217−1(217 −1)= 8589869056.
• The seventh perfect number is p = 219−1(219 −1)= 137438691328.
• The eighth perfect number is p = 231−1(231 −1)= 2305843008139952128.
• The twentieth perfect number is p = 24423−1(24423−1). It has 2663 digits.
• The twenty-third perfect number is p = 211213−1(211213 −1). It has 6957
digits.
As mentioned earlier, no one knows whether or not there are any odd

perfect numbers. It is not even known whether there are finitely many or
infinitely many perfect numbers. It is known that the last digit of every
even perfect number is either a 6 or an 8. Perhaps this is something you’d
enjoy proving.

We’ve seen that perfect numbers are closely related to prime numbers
that have the form 2n −1. Such prime numbers are called Mersenne
primes, after the French scholar Marin Mersenne (1588–1648), who
popularized them. The first several Mersenne primes are 22 − 1 = 3,
23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127 and 213 − 1 = 8191. To date, only
48 Mersenne primes are known, the largest of which is 257,885,161 − 1.
There is a substantial cash prize for anyone who finds a 49th. (See
http://www.mersenne.org/prime.htm.) You will probably have better luck
with the exercises.
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Exercises for Chapter 8
Use the methods introduced in this chapter to prove the following statements.

1. Prove that
{
12n : n ∈Z}⊆ {

2n : n ∈Z}∩{
3n : n ∈Z}

.
2. Prove that

{
6n : n ∈Z}= {

2n : n ∈Z}∩{
3n : n ∈Z}

.
3. If k ∈Z, then {

n ∈Z : n |k}⊆ {
n ∈Z : n |k2}

.
4. If m,n ∈Z, then {

x ∈Z : mn |x}⊆ {
x ∈Z : m |x}∩{

x ∈Z : n |x}
.

5. If p and q are positive integers, then
{
pn : n ∈N}∩{

qn : n ∈N} 6= ;.
6. Suppose A,B and C are sets. Prove that if A ⊆ B, then A−C ⊆ B−C.
7. Suppose A,B and C are sets. If B ⊆ C, then A×B ⊆ A×C.
8. If A,B and C are sets, then A∪ (B∩C)= (A∪B)∩ (A∪C).
9. If A,B and C are sets, then A∩ (B∪C)= (A∩B)∪ (A∩C).

10. If A and B are sets in a universal set U, then A∩B = A∪B.
11. If A and B are sets in a universal set U, then A∪B = A∩B.
12. If A,B and C are sets, then A− (B∩C)= (A−B)∪ (A−C).
13. If A,B and C are sets, then A− (B∪C)= (A−B)∩ (A−C).
14. If A,B and C are sets, then (A∪B)−C = (A−C)∪ (B−C).
15. If A,B and C are sets, then (A∩B)−C = (A−C)∩ (B−C).
16. If A,B and C are sets, then A× (B∪C)= (A×B)∪ (A×C).
17. If A,B and C are sets, then A× (B∩C)= (A×B)∩ (A×C).
18. If A,B and C are sets, then A× (B−C)= (A×B)− (A×C).
19. Prove that

{
9n : n ∈Z}⊆ {

3n : n ∈Z}
, but

{
9n : n ∈Z} 6= {

3n : n ∈Z}
20. Prove that

{
9n : n ∈Q}= {

3n : n ∈Q}
.

21. Suppose A and B are sets. Prove A ⊆ B if and only if A−B =;.
22. Let A and B be sets. Prove that A ⊆ B if and only if A∩B = A.
23. For each a ∈R, let Aa = {

(x,a(x2−1)) ∈R2 : x ∈R}
. Prove that

⋂
a∈R

Aa = {
(−1,0), (1,0)

}
.

24. Prove that
⋂
x∈R

[3− x2,5+ x2]= [3,5].

25. Suppose A,B,C and D are sets. Prove that (A×B)∪ (C×D)⊆ (A∪C)× (B∪D).
26. Prove

{
4k+5 : k ∈Z}= {

4k+1 : k ∈Z}
.

27. Prove
{
12a+4b : a,b ∈Z}= {

4c : c ∈Z}
.

28. Prove
{
12a+25b : a,b ∈Z}=Z.

29. Suppose A 6= ;. Prove that A×B ⊆ A×C, if and only if B ⊆ C.
30. Prove that (Z×N)∩ (N×Z)=N×N.
31. Suppose B 6= ; and A×B ⊆ B×C. Prove A ⊆ C.



CHAPTER 9

Disproof

Ever since Chapter 4 we have dealt with one major theme: Given a
statement, prove that is it true. In every example and exercise we

were handed a true statement and charged with the task of proving it.
Have you ever wondered what would happen if you were given a false
statement to prove? The answer is that no (correct) proof would be possible,
for if it were, the statement would be true, not false.

But how would you convince someone that a statement is false? The
mere fact that you could not produce a proof does not automatically mean
the statement is false, for you know (perhaps all too well) that proofs
can be difficult to construct. It turns out that there is a very simple and
utterly convincing procedure that proves a statement is false. The process
of carrying out this procedure is called disproof. Thus, this chapter is
concerned with disproving statements.

Before describing the new method, we will set the stage with some
relevant background information. First, we point out that mathematical
statements can be divided into three categories, described below.

One category consists of all those statements that have been proved to be
true. For the most part we regard these statements as significant enough
to be designated with special names such as “theorem,” “proposition,”
“lemma” and “corollary.” Some examples of statements in this category are
listed in the left-hand box in the diagram on the following page. There are
also some wholly uninteresting statements (such as 2= 2) in this category,
and although we acknowledge their existence we certainly do not dignify
them with terms such as “theorem” or “proposition.”

At the other extreme is a category consisting of statements that are
known to be false. Examples are listed in the box on the right. Since
mathematicians are not very interested in them, these types of statements
do not get any special names, other than the blanket term “false statement.”

But there is a third (and quite interesting) category between these
two extremes. It consists of statements whose truth or falsity has not
been determined. Examples include things like “Every perfect number
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is even,” or “Every even integer greater than 2 is the sum of two primes.”
(The latter statement is called the Goldbach conjecture. See Section 2.1.)
Mathematicians have a special name for the statements in this category
that they suspect (but haven’t yet proved) are true. Such statements are
called conjectures.

Three Types of Statements:
Known to be true Truth unknown Known to be false

(Theorems & propositions) (Conjectures)

Examples:

• Pythagorean theorem
• Fermat’s last theorem

(Section 2.1)
• The square of an odd

number is odd.

• The series
∞∑

k=1

1
k

diverges.

Examples:

• All perfect numbers are
even.

• Any even number greater
than 2 is the sum of two
primes. (Goldbach’s
conjecture, Section 2.1)

• There are infinitely many
prime numbers of form
2n −1, with n ∈N.

Examples:
• All prime numbers are

odd.
• Some quadratic equations

have three solutions.
• 0= 1

• There exist natural
numbers a,b and c
for which a3 +b3 = c3.

Mathematicians spend much of their time and energy attempting
to prove or disprove conjectures. (They also expend considerable mental
energy in creating new conjectures based on collected evidence or intuition.)
When a conjecture is proved (or disproved) the proof or disproof will
typically appear in a published paper, provided the conjecture is of sufficient
interest. If it is proved, the conjecture attains the status of a theorem or
proposition. If it is disproved, then no one is really very interested in it
anymore—mathematicians do not care much for false statements.

Most conjectures that mathematicians are interested in are quite
difficult to prove or disprove. We are not at that level yet. In this text, the
“conjectures” that you will encounter are the kinds of statements that an
experienced mathematician would immediately spot as true or false, but
you may have to do some work before figuring out a proof or disproof. But
in keeping with the cloud of uncertainty that surrounds conjectures at the
advanced levels of mathematics, most exercises in this chapter (and many
beyond it) will ask you to prove or disprove statements without giving any
hint as to whether they are true or false. Your job will be to decide whether
or not they are true and to either prove or disprove them. The examples
in this chapter will illustrate the processes one typically goes through in
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deciding whether a statement is true or false, and then verifying that it’s
true or false.

You know the three major methods of proving a statement: direct proof,
contrapositive proof and proof by contradiction. Now we are ready to
understand the method of disproving a statement. Suppose you want to
disprove a statement P. In other words you want to prove that P is false.
The way to do this is to prove that ∼ P is true, for if ∼ P is true, it follows
immediately that P has to be false.

How to disprove P: Prove ∼ P.

Our approach is incredibly simple. To disprove P, prove ∼ P. In theory,
this proof can be carried out by direct, contrapositive or contradiction
approaches. However, in practice things can be even easier than that
if we are disproving a universally quantified statement or a conditional
statement. That is our next topic.

9.1 Disproving Universal Statements: Counterexamples
A conjecture may be described as a statement that we hope is a theorem.
As we know, many theorems (hence many conjectures) are universally
quantified statements. Thus it seems reasonable to begin our discussion
by investigating how to disprove a universally quantified statement such as

∀x ∈ S,P(x).

To disprove this statement, we must prove its negation. Its negation is

∼ (∀x ∈ S,P(x)) = ∃x ∈ S,∼ P(x).

The negation is an existence statement. To prove the negation is true,
we just need to produce an example of an x ∈ S that makes ∼ P(x) true,
that is, an x that makes P(x) false. This leads to the following outline for
disproving a universally quantified statement.

How to disprove ∀x ∈ S,P(x).

Produce an example of an x ∈ S
that makes P(x) false.
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Things are even simpler if we want to disprove a conditional statement
P(x)⇒Q(x). This statement asserts that for every x that makes P(x) true,
Q(x) will also be true. The statement can only be false if there is an x that
makes P(x) true and Q(x) false. This leads to our next outline for disproof.

How to disprove P(x)⇒Q(x).
Produce an example of an x that
makes P(x) true and Q(x) false.

In both of the above outlines, the statement is disproved simply by
exhibiting an example that shows the statement is not always true. (Think
of it as an example that proves the statement is a promise that can be
broken.) There is a special name for an example that disproves a statement:
It is called a counterexample.

Example 9.1 As our first example, we will work through the process of
deciding whether or not the following conjecture is true.

Conjecture: For every n ∈Z, the integer f (n)= n2 −n+11 is prime.

In resolving the truth or falsity of a conjecture, it’s a good idea to gather
as much information about the conjecture as possible. In this case let’s
start by making a table that tallies the values of f (n) for some integers n.

n −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

f (n) 23 17 13 11 11 13 17 23 31 41 53 67 83 101

In every case, f (n) is prime, so you may begin to suspect that the conjecture
is true. Before attempting a proof, let’s try one more n. Unfortunately,
f (11)= 112−11+11= 112 is not prime. The conjecture is false because n = 11
is a counterexample. We summarize our disproof as follows:

Disproof. The statement “For every n ∈ Z, the integer f (n) = n2 −n+11 is
prime,” is false. For a counterexample, note that for n = 11, the integer
f (11)= 121= 11 ·11 is not prime. ■

In disproving a statement with a counterexample, it is important to explain
exactly how the counterexample makes the statement false. Our work
would not have been complete if we had just said “for a counterexample,
consider n = 11,” and left it at that. We need to show that the answer f (11)
is not prime. Showing the factorization f (11)= 11 ·11 suffices for this.
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Example 9.2 Either prove or disprove the following conjecture.

Conjecture If A, B and C are sets, then A− (B∩C)= (A−B)∩ (A−C).

Disproof. This conjecture is false because of the following counterexample.
Let A = {

1,2,3
}
, B = {

1,2
}
and C = {

2,3
}
. Notice that A− (B∩C)= {

1,3
}
and

(A−B)∩ (A−C)=;, so A− (B∩C) 6= (A−B)∩ (A−C). ■

(To see where this counterexample came from, draw Venn diagrams for
A−(B∩C) and (A−B)∩(A−C). You will see that the diagrams are different.
The numbers 1, 2 and 3 can then be inserted into the regions of the
diagrams in such a way as to create the above counterexample.)

9.2 Disproving Existence Statements
We have seen that we can disprove a universally quantified statement or a
conditional statement simply by finding a counterexample. Now let’s turn
to the problem of disproving an existence statement such as

∃x ∈ S,P(x).

Proving this would involve simply finding an example of an x that makes
P(x) true. To disprove it, we have to prove its negation ∼ (∃x ∈ S,P(x)) =
∀x ∈ S,∼ P(x). But this negation is universally quantified. Proving it
involves showing that ∼ P(x) is true for all x ∈ S, and for this an example
does not suffice. Instead we must use direct, contrapositive or contradiction
proof to prove the conditional statement “If x ∈ S, then ∼ P(x).” As an
example, here is a conjecture to either prove or disprove.

Example 9.3 Either prove or disprove the following conjecture.

Conjecture: There is a real number x for which x4 < x < x2.

This may not seem like an unreasonable statement at first glance. After
all, if the statement were asserting the existence of a real number for
which x3 < x < x2, then it would be true: just take x =−2. But it asserts
there is an x for which x4 < x < x2. When we apply some intelligent guessing
to locate such an x we run into trouble. If x = 1

2 , then x4 < x, but we don’t
have x < x2; similarly if x = 2, we have x < x2 but not x4 < x. Since finding
an x with x4 < x < x2 seems problematic, we may begin to suspect that the
given statement is false.

Let’s see if we can disprove it. According to our strategy for disproof,
to disprove it we must prove its negation. Symbolically, the statement is
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∃x ∈R, x4 < x < x2, so its negation is

∼ (∃x ∈R, x4 < x < x2) = ∀x ∈R,∼ (x4 < x < x2).

Thus, in words the negation is:

For every real number x, it is not the case that x4 < x < x2.

This can be proved with contradiction, as follows. Suppose for the
sake of contradiction that there is an x for which x4 < x < x2. Then x must
be positive since it’s greater than the non-negative number x4. Dividing
all parts of x4 < x < x2 by the positive number x produces x3 < 1 < x. Now
subtract 1 from all parts of x3 < 1< x to obtain x3 −1< 0< x−1 and reason
as follows:

x3 −1 < 0 < x−1

(x−1)(x2 + x+1) < 0 < (x−1)

x2 + x+1 < 0 < 1

(Division by x−1 did not reverse the inequality < because the second line
above shows 0< x−1, that is, x−1 is positive.) Now we have x2 + x+1< 0,
which is a contradiction because x being positive forces x2 + x+1> 0

We summarize our work as follows.
The statement “There is a real number x for which x4 < x < x2” is false

because we have proved its negation “For every real number x, it is not the
case that x4 < x < x2.”

As you work the exercises, keep in mind that not every conjecture will be
false. If one is true, then a disproof is impossible and you must produce a
proof. Here is an example:

Example 9.4 Either prove or disprove the following conjecture.

Conjecture There exist three integers x, y, z, all greater than 1 and no
two equal, for which xy = yz.

This conjecture is true. It is an existence statement, so to prove it we
just need to give an example of three integers x, y, z, all greater than 1 and
no two equal, so that xy = yz. A proof follows.

Proof. Note that if x = 2, y= 16 and z = 4, then xy = 216 = (24)4 = 164 = yz. ■
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9.3 Disproof by Contradiction
Contradiction can be a very useful way to disprove a statement. To see
how this works, suppose we wish to disprove a statement P. We know
that to disprove P, we must prove ∼ P. To prove ∼ P with contradiction,
we assume ∼∼ P is true and deduce a contradiction. But since ∼∼ P = P,
this boils down to assuming P is true and deducing a contradiction. Here
is an outline:

How to disprove P with contradiction:

Assume P is true, and deduce a contradiction.

To illustrate this, let’s revisit Example 9.3 but do the disproof with
contradiction. You will notice that the work duplicates much of what we
did in Example 9.3, but is it much more streamlined because here we do
not have to negate the conjecture.

Example 9.5 Disprove the following conjecture.

Conjecture: There is a real number x for which x4 < x < x2.

Disproof. Suppose for the sake of contradiction that this conjecture is true.
Let x be a real number for which x4 < x < x2. Then x is positive, since it is
greater than the non-negative number x4. Dividing all parts of x4 < x < x2

by the positive number x produces x3 < 1< x. Now subtract 1 from all parts
of x3 < 1< x to obtain x3 −1< 0< x−1 and reason as follows:

x3 −1 < 0 < x−1

(x−1)(x2 + x+1) < 0 < (x−1)

x2 + x+1 < 0 < 1

Now we have x2 + x+1< 0, which is a contradiction because x is positive.
Thus the conjecture must be false. ■

Exercises for Chapter 9
Each of the following statements is either true or false. If a statement is true,
prove it. If a statement is false, disprove it. These exercises are cumulative,
covering all topics addressed in Chapters 1–9.
1. If x, y ∈R, then |x+ y| = |x|+ |y|.
2. For every natural number n, the integer 2n2 −4n+31 is prime.
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3. If n ∈Z and n5 −n is even, then n is even.
4. For every natural number n, the integer n2 +17n+17 is prime.
5. If A, B,C and D are sets, then (A×B)∪ (C×D)= (A∪C)× (B∪D).
6. If A, B,C and D are sets, then (A×B)∩ (C×D)= (A∩C)× (B∩D).
7. If A, B and C are sets, and A×C = B×C, then A = B.
8. If A, B and C are sets, then A− (B∪C)= (A−B)∪ (A−C).
9. If A and B are sets, then P(A)−P(B)⊆P(A−B).

10. If A and B are sets and A∩B =;, then P(A)−P(B)⊆P(A−B).
11. If a,b ∈N, then a+b < ab.
12. If a,b, c ∈N and ab, bc and ac all have the same parity, then a,b and c all have

the same parity.
13. There exists a set X for which R⊆ X and ;∈ X .
14. If A and B are sets, then P(A)∩P(B)=P(A∩B).
15. Every odd integer is the sum of three odd integers.
16. If A and B are finite sets, then |A∪B| = |A|+ |B|.
17. For all sets A and B, if A−B =;, then B 6= ;.
18. If a,b, c ∈N, then at least one of a−b, a+ c and b− c is even.
19. For every r, s ∈Q with r < s, there is an irrational number u for which r < u < s.
20. There exist prime numbers p and q for which p− q = 1000.
21. There exist prime numbers p and q for which p− q = 97.
22. If p and q are prime numbers for which p < q, then 2p+ q2 is odd.
23. If x, y ∈R and x3 < y3, then x < y.
24. The inequality 2x ≥ x+1 is true for all positive real numbers x.
25. For all a,b, c ∈Z, if a |bc, then a |b or a | c.
26. Suppose A, B and C are sets. If A = B−C, then B = A∪C.
27. The equation x2 = 2x has three real solutions.
28. Suppose a,b ∈Z. If a |b and b |a, then a = b.
29. If x, y ∈R and |x+ y| = |x− y|, then y= 0.
30. There exist integers a and b for which 42a+7b = 1.
31. No number (other than 1) appears in Pascal’s triangle more than four times.
32. If n,k ∈N and

(n
k
)
is a prime number, then k = 1 or k = n−1.

33. Suppose f (x)= a0 +a1x+a2x2 +·· ·+anxn is a polynomial of degree 1 or greater,
and for which each coefficient ai is in N. Then there is an n ∈N for which the
integer f (n) is not prime.

34. If X ⊆ A∪B, then X ⊆ A or X ⊆ B.
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Mathematical Induction

This chapter explains a powerful proof technique called mathematical
induction (or just induction for short). To motivate the discussion,

let’s first examine the kinds of statements that induction is used to prove.
Consider the following statement.

Conjecture. The sum of the first n odd natural numbers equals n2.

The following table illustrates what this conjecture says. Each row
is headed by a natural number n, followed by the sum of the first n odd
natural numbers, followed by n2.

n sum of the first n odd natural numbers n2

1 1= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 1+3= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 1+3+5= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 1+3+5+7= . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 1+3+5+7+9= . . . . . . . . . . . . . . . . . . . . . . . . 25
...

...
...

n 1+3+5+7+9+11+·· ·+ (2n−1)= . . . . . . . n2

...
...

...

Note that in the first five lines of the table, the sum of the first n odd
numbers really does add up to n2. Notice also that these first five lines
indicate that the nth odd natural number (the last number in each sum)
is 2n−1. (For instance, when n = 2, the second odd natural number is
2 ·2−1= 3; when n = 3, the third odd natural number is 2 ·3−1= 5, etc.)

The table raises a question. Does the sum 1+3+5+7+·· ·+(2n−1) really
always equal n2? In other words, is the conjecture true?

Let’s rephrase this as follows. For each natural number n (i.e., for each
line of the table), we have a statement Sn, as follows:
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S1 : 1= 12

S2 : 1+3= 22

S3 : 1+3+5= 32

...
Sn : 1+3+5+7+·· ·+ (2n−1)= n2

...
Our question is: Are all of these statements true?

Mathematical induction is designed to answer just this kind of question.
It is used when we have a set of statements S1,S2,S3, . . . ,Sn, . . ., and we
need to prove that they are all true. The method is really quite simple.
To visualize it, think of the statements as dominoes, lined up in a row.
Imagine you can prove the first statement S1, and symbolize this as
domino S1 being knocked down. Additionally, imagine that you can prove
that any statement Sk being true (falling) forces the next statement Sk+1

to be true (to fall). Then S1 falls, and knocks down S2. Next S2 falls and
knocks down S3, then S3 knocks down S4, and so on. The inescapable
conclusion is that all the statements are knocked down (proved true).

The Simple Idea Behind Mathematical Induction

Statements are lined up like dominoes.

(1) Suppose the first statement falls (i.e. is proved true);

(2) Suppose the kth falling always causes the (k+1)th to fall;

Then all must fall (i.e. all statements are proved true).

S
1

S
2

S
3

S
4

S
5

S
6

S
1

S
2

S
3

S
4

S
5

S
6

S
k

S
k+1

S
k+2

S
k+3

Sk

Sk

Sk+1

Sk+1

Sk+2

Sk+2

Sk+2

Sk+3

Sk+3

Sk+3

Sk+4

Sk+4

Sk+4

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

S1

Sk Sk+1

S1 S2 S3 S4 S5 S6

S2 S3 S4 S5 S6



156 Mathematical Induction

This picture gives our outline for proof by mathematical induction.

Outline for Proof by Induction
Proposition The statements S1,S2,S3,S4, . . . are all true.

Proof. (Induction)
(1) Prove that the first statement S1 is true.
(2) Given any integer k ≥ 1, prove that the statement Sk ⇒ Sk+1 is true.
It follows by mathematical induction that every Sn is true. ■

In this setup, the first step (1) is called the basis step. Because S1 is
usually a very simple statement, the basis step is often quite easy to do.
The second step (2) is called the inductive step. In the inductive step
direct proof is most often used to prove Sk ⇒ Sk+1, so this step is usually
carried out by assuming Sk is true and showing this forces Sk+1 to be true.
The assumption that Sk is true is called the inductive hypothesis.

Now let’s apply this technique to our original conjecture that the sum
of the first n odd natural numbers equals n2. Our goal is to show that for
each n ∈N, the statement Sn : 1+3+5+7+·· ·+ (2n−1)= n2 is true. Before
getting started, observe that Sk is obtained from Sn by plugging k in for n.
Thus Sk is the statement Sk : 1+3+5+7+·· ·+(2k−1)= k2. Also, we get Sk+1

by plugging in k+1 for n, so that Sk+1 : 1+3+5+7+·· ·+(2(k+1)−1)= (k+1)2.

Proposition If n ∈N, then 1+3+5+7+·· ·+ (2n−1)= n2.

Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1= 12, which is obviously true.

(2) We must now prove Sk ⇒ Sk+1 for any k ≥ 1. That is, we must show
that if 1+3+5+7+·· ·+(2k−1)= k2, then 1+3+5+7+·· ·+(2(k+1)−1)= (k+1)2.
We use direct proof. Suppose 1+3+5+7+·· ·+ (2k−1)= k2. Then

1+3+5+7+·· · · · · · · · · · · · · ·+ (2(k+1)−1) =
1+3+5+7+·· ·+ (2k−1) + (2(k+1)−1) =(
1+3+5+7+·· ·+ (2k−1)

)+ (2(k+1)−1) =
k2 + (2(k+1)−1) = k2 +2k+1

= (k+1)2.

Thus 1+3+5+7+·· ·+ (2(k+1)−1)= (k+1)2. This proves that Sk ⇒ Sk+1.

It follows by induction that 1+3+5+7+·· ·+ (2n−1)= n2 for every n ∈N. ■
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In induction proofs it is usually the case that the first statement
S1 is indexed by the natural number 1, but this need not always be so.
Depending on the problem, the first statement could be S0, or Sm for any
other integer m. In the next example the statements are S0,S1,S2,S3, . . .
The same outline is used, except that the basis step verifies S0, not S1.

Proposition If n is a non-negative integer, then 5 | (n5 −n).

Proof. We will prove this with mathematical induction. Observe that the
first non-negative integer is 0, so the basis step involves n = 0.

(1) If n = 0, this statement is 5 | (05 −0) or 5 | 0, which is obviously true.

(2) Let k ≥ 0. We need to prove that if 5 | (k5 −k), then 5 | ((k+1)5 − (k+1)).
We use direct proof. Suppose 5 | (k5 −k). Thus k5 −k = 5a for some a ∈Z.
Observe that

(k+1)5 − (k+1) = k5 +5k4 +10k3 +10k2 +5k+1−k−1

= (k5 −k)+5k4 +10k3 +10k2 +5k

= 5a+5k4 +10k3 +10k2 +5k

= 5(a+k4 +2k3 +2k2 +k).

This shows (k+1)5−(k+1) is an integer multiple of 5, so 5 | ((k+1)5−(k+1)).
We have now shown that 5 | (k5 −k) implies 5 | ((k+1)5 − (k+1)).

It follows by induction that 5 | (n5 −n) for all non-negative integers n. ■

As noted, induction is used to prove statements of the form ∀n ∈N,Sn.
But notice the outline does not work for statements of form ∀n ∈ Z,Sn

(where n is in Z, not N). The reason is that if you are trying to prove
∀n ∈Z,Sn by induction, and you’ve shown S1 is true and Sk ⇒ Sk+1, then
it only follows from this that Sn is true for n ≥ 1. You haven’t proved
that any of the statements S0,S−1,S−2, . . . are true. If you ever want to
prove ∀n ∈Z,Sn by induction, you have to show that some Sa is true and
Sk ⇒ Sk+1 and Sk ⇒ Sk−1.

Unfortunately, the term mathematical induction is sometimes confused
with inductive reasoning, that is, the process of reaching the conclusion
that something is likely to be true based on prior observations of similar
circumstances. Please note that that mathematical induction, as intro-
duced here, is a rigorous method that proves statements with absolute
certainty.
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To round out this section, we present four additional induction proofs.

Proposition If n ∈Z and n ≥ 0, then
n∑

i=0
i · i!= (n+1)!−1.

Proof. We will prove this with mathematical induction.
(1) If n = 0, this statement is

0∑
i=0

i · i!= (0+1)!−1.

Since the left-hand side is 0 ·0!= 0, and the right-hand side is 1!−1= 0,
the equation ∑0

i=0 i · i!= (0+1)!−1 holds, as both sides are zero.
(2) Consider any integer k ≥ 0. We must show that Sk implies Sk+1. That
is, we must show that

k∑
i=0

i · i!= (k+1)!−1

implies
k+1∑
i=0

i · i!= ((k+1)+1)!−1.

We use direct proof. Suppose
k∑

i=0
i · i!= (k+1)!−1. Observe that

k+1∑
i=0

i · i! =
(

k∑
i=0

i · i!
)
+ (k+1)(k+1)!

=
(
(k+1)!−1

)
+ (k+1)(k+1)!

= (k+1)!+ (k+1)(k+1)!−1

= (
1+ (k+1)

)
(k+1)!−1

= (k+2)(k+1)!−1

= (k+2)!−1

= ((k+1)+1)!−1.

Therefore
k+1∑
i=0

i · i! = ((k+1)+1)!−1.

It follows by induction that
n∑

i=0
i · i!= (n+1)!−1 for every integer n ≥ 0. ■
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The next example illustrates a trick that is occasionally useful. You
know that you can add equal quantities to both sides of an equation without
violating equality. But don’t forget that you can add unequal quantities to
both sides of an inequality, as long as the quantity added to the bigger
side is bigger than the quantity added to the smaller side. For example, if
x ≤ y and a ≤ b, then x+a ≤ y+b. Similarly, if x ≤ y and b is positive, then
x ≤ y+b. This oft-forgotten fact is used in the next proof.
Proposition For each n ∈N, it follows that 2n ≤ 2n+1 −2n−1 −1.

Proof. We will prove this with mathematical induction.

(1) If n = 1, this statement is 21 ≤ 21+1 − 21−1 − 1, which simplifies to
2≤ 4−1−1, which is obviously true.

(2) Suppose k ≥ 1. We need to show that 2k ≤ 2k+1 − 2k−1 − 1 implies
2k+1 ≤ 2(k+1)+1−2(k+1)−1−1. We use direct proof. Suppose 2k ≤ 2k+1−2k−1−1,
and reason as follows:

2k ≤ 2k+1 −2k−1 −1

2(2k) ≤ 2(2k+1 −2k−1 −1) (multiply both sides by 2)
2k+1 ≤ 2k+2 −2k −2

2k+1 ≤ 2k+2 −2k −2+1 (add 1 to the bigger side)
2k+1 ≤ 2k+2 −2k −1

2k+1 ≤ 2(k+1)+1 −2(k+1)−1 −1.

It follows by induction that 2n ≤ 2n+1 −2n−1 −1 for each n ∈N. ■
We next prove that if n ∈N, then the inequality (1+ x)n ≥ 1+nx holds

for all x ∈R with x >−1. Thus we will need to prove that the statement

Sn : (1+ x)n ≥ 1+nx for every x ∈R with x >−1

is true for every natural number n. This is (only) slightly different from
our other examples, which proved statements of the form ∀n ∈ N, P(n),
where P(n) is a statement about the number n. This time we are proving
something of form

∀n ∈N, P(n, x),

where the statement P(n, x) involves not only n, but also a second variable x.
(For the record, the inequality (1+ x)n ≥ 1+ nx is known as Bernoulli’s
inequality.)
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Proposition If n ∈N, then (1+ x)n ≥ 1+nx for all x ∈R with x >−1.

Proof. We will prove this with mathematical induction.

(1) For the basis step, notice that when n = 1 the statement is (1+ x)1 ≥
1+1 · x , and this is true because both sides equal 1+ x.

(2) Assume that for some k ≥ 1, the statement (1+ x)k ≥ 1+kx is true for
all x ∈R with x >−1. From this we need to prove (1+ x)k+1 ≥ 1+ (k+1)x.
Now, 1+ x is positive because x >−1, so we can multiply both sides of
(1+ x)k ≥ 1+kx by (1+ x) without changing the direction of the ≥.

(1+ x)k(1+ x) ≥ (1+kx)(1+ x)

(1+ x)k+1 ≥ 1+ x+kx+kx2

(1+ x)k+1 ≥ 1+ (k+1)x+kx2

The above term kx2 is positive, so removing it from the right-hand side
will only make that side smaller. Thus we get (1+ x)k+1 ≥ 1+ (k+1)x. ■

Next, an example where the basis step involves more than routine
checking. (It will be used later, so it is numbered for reference.)
Proposition 10.1 Suppose a1,a2, . . . ,an are n integers, where n ≥ 2. If p
is prime and p | (a1 ·a2 ·a3 · · ·an), then p | ai for at least one of the ai.

Proof. The proof is induction on n.
(1) The basis step involves n = 2. Let p be prime and suppose p | (a1a2).
We need to show that p | a1 or p | a2, or equivalently, if p - a1, then
p | a2. Thus suppose p - a1. Since p is prime, it follows that gcd(p,a1)= 1.
By Proposition 7.1 (on page 126), there are integers k and ` for which
1= pk+a1`. Multiplying this by a2 gives

a2 = pka2 +a1a2`.

As we are assuming that p divides a1a2, it is clear that p divides the
expression pka2+a1a2` on the right; hence p | a2. We’ve now proved that
if p | (a1a2), then p | a1 or p | a2. This completes the basis step.

(2) Suppose that k ≥ 2, and p | (a1 ·a2 · · ·ak) implies then p | ai for some ai.
Now let p | (a1 ·a2 · · ·ak ·ak+1). Then p | ((a1 ·a2 · · ·ak) ·ak+1

)
. By what we

proved in the basis step, it follows that p | (a1 ·a2 · · ·ak) or p | ak+1. This
and the inductive hypothesis imply that p divides one of the ai. ■
Please test your understanding now by working a few exercises.
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10.1 Proof by Strong Induction
This section describes a useful variation on induction.

Occasionally it happens in induction proofs that it is difficult to show
that Sk forces Sk+1 to be true. Instead you may find that you need to use
the fact that some “lower” statements Sm (with m < k) force Sk+1 to be true.
For these situations you can use a slight variant of induction called strong
induction. Strong induction works just like regular induction, except that
in Step (2) instead of assuming Sk is true and showing this forces Sk+1

to be true, we assume that all the statements S1,S2, . . . ,Sk are true and
show this forces Sk+1 to be true. The idea is that if it always happens that
the first k dominoes falling makes the (k+1)th domino fall, then all the
dominoes must fall. Here is the outline.

Outline for Proof by Strong Induction
Proposition The statements S1,S2,S3,S4, . . . are all true.

Proof. (Strong induction)
(1) Prove the first statement S1. (Or the first several Sn.)
(2) Given any integer k ≥ 1, prove (S1 ∧S2 ∧S3 ∧·· ·∧Sk)⇒ Sk+1. ■

Strong induction can be useful in situations where assuming Sk is true
does not neatly lend itself to forcing Sk+1 to be true. You might be better
served by showing some other statement (Sk−1 or Sk−2 for instance) forces
Sk to be true. Strong induction says you are allowed to use any (or all) of
the statements S1,S2, . . . ,Sk to prove Sk+1.

As our first example of strong induction, we are going to prove that
12 | (n4 −n2) for any n ∈ N. But first, let’s look at how regular induction
would be problematic. In regular induction we would start by showing
12 | (n4 −n2) is true for n = 1. This part is easy because it reduces to 12 | 0,
which is clearly true. Next we would assume that 12 | (k4 −k2) and try to
show this implies 12 | ((k+1)4−(k+1)2). Now, 12 | (k4−k2) means k4−k2 = 12a
for some a ∈Z. Next we use this to try to show (k+1)4 − (k+1)2 = 12b for
some integer b. Working out (k+1)4 − (k+1)2, we get

(k+1)4 − (k+1)2 = (k4 +4k3 +6k2 +4k+1)− (k2 +2k+1)

= (k4 −k2)+4k3 +6k2 +6k

= 12a+4k3 +6k2 +6k.

At this point we’re stuck because we can’t factor out a 12. Now let’s see
how strong induction can get us out of this bind.
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Strong induction involves assuming each of statements S1,S2, . . . ,Sk is
true, and showing that this forces Sk+1 to be true. In particular, if S1

through Sk are true, then certainly Sk−5 is true, provided that 1≤ k−5< k.
The idea is then to show Sk−5 ⇒ Sk+1 instead of Sk ⇒ Sk+1. For this to
make sense, our basis step must involve checking that S1,S2,S3,S4,S5,S6

are all true. Once this is established, Sk−5 ⇒ Sk+1 will imply that the other
Sk are all true. For example, if k = 6, then Sk−5 ⇒ Sk+1 is S1 ⇒ S7, so S7 is
true; for k = 7, then Sk−5 ⇒ Sk+1 is S2 ⇒ S8, so S8 is true, etc.

Proposition If n ∈N, then 12 | (n4 −n2).

Proof. We will prove this with strong induction.

(1) First note that the statement is true for the first six positive integers:
If n = 1, 12 divides n4 −n2 = 14 −12 = 0.
If n = 2, 12 divides n4 −n2 = 24 −22 = 12.
If n = 3, 12 divides n4 −n2 = 34 −32 = 72.
If n = 4, 12 divides n4 −n2 = 44 −42 = 240.
If n = 5, 12 divides n4 −n2 = 54 −52 = 600.
If n = 6, 12 divides n4 −n2 = 64 −62 = 1260.

(2) Let k ≥ 6 and assume 12 | (m4 −m2) for 1 ≤ m ≤ k. (That is, assume
statements S1,S2, . . . ,Sk are all true.) We must show 12 | ((k+1)4−(k+1)2)

.
(That is, we must show that Sk+1 is true.) Since Sk−5 is true, we have
12 | ((k−5)4 − (k−5)2). For simplicity, let’s set m = k−5, so we know
12 | (m4−m2), meaning m4 −m2 = 12a for some integer a. Observe that:

(k+1)4 − (k+1)2 = (m+6)4 − (m+6)2

= m4 +24m3 +216m2 +864m+1296− (m2 +12m+36)

= (m4 −m2)+24m3 +216m2 +852m+1260

= 12a+24m3 +216m2 +852m+1260

= 12
(
a+2m3 +18m2 +71m+105

)
.

As (a+2m3+18m2+71m+105) is an integer, we get 12 | ((k+1)4− (k+1)2).

This shows by strong induction that 12 | (n4 −n2) for every n ∈N. ■
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Our next example involves mathematical objects called graphs. In
mathematics, the word graph is used in two contexts. One context involves
the graphs of equations and functions from algebra and calculus. In
the other context, a graph is a configuration consisting of points (called
vertices) and edges which are lines connecting the vertices. Following
are some pictures of graphs. Let’s agree that all of our graphs will be in
“one piece,” that is, you can travel from any vertex of a graph to any other
vertex by traversing a route of edges from one vertex to the other.

v0

v1

v2 v3

v4

Figure 10.1. Examples of Graphs

A cycle in a graph is a sequence of distinct edges in the graph that
form a route that ends where it began. For example, the graph on the
far left of Figure 10.1 has a cycle that starts at vertex v1, then goes to v2,
then to v3, then v4 and finally back to its starting point v1. You can find
cycles in both of the graphs on the left, but the two graphs on the right do
not have cycles. There is a special name for a graph that has no cycles;
it is called a tree. Thus the two graphs on the right of Figure 10.1 are
trees, but the two graphs on the left are not trees.

Figure 10.2. A tree

Note that the trees in Figure 10.1 both have one fewer edge than vertex.
The tree on the far right has 5 vertices and 4 edges. The one next to it
has 6 vertices and 5 edges. Draw any tree; you will find that if it has n
vertices, then it has n−1 edges. We now prove that this is always true.
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Proposition If a tree has n vertices, then it has n−1 edges.

Proof. Notice that this theorem asserts that for any n ∈N, the following
statement is true: Sn : A tree with n vertices has n−1 edges. We use strong
induction to prove this.
(1) Observe that if a tree has n = 1 vertex then it has no edges. Thus it
has n−1= 0 edges, so the theorem is true when n = 1.
(2) Now take an integer k ≥ 1. We must show (S1 ∧S2 ∧·· ·∧Sk) ⇒ Sk+1.
In words, we must show that if it is true that any tree with m vertices
has m−1 edges, where 1 ≤ m ≤ k, then any tree with k+1 vertices has
(k+1)−1= k edges. We will use direct proof.
Suppose that for each integer m with 1≤ m ≤ k, any tree with m vertices
has m−1 edges. Now let T be a tree with k+1 vertices. Single out an
edge of T and label it e, as illustrated below.

· · ·
· · · · · ·· · ·

T1 T2

T
e

· · ·
· · · · · ·· · ·

Now remove the edge e from T, but leave the two endpoints of e. This
leaves two smaller trees that we call T1 and T2. Let’s say T1 has x
vertices and T2 has y vertices. As each of these two smaller trees has
fewer than k+1 vertices, our inductive hypothesis guarantees that T1

has x−1 edges, and T2 has y−1 edges. Think about our original tree T.
It has x+ y vertices. It has x−1 edges that belong to T1 and y−1 edges
that belong to T2, plus it has the additional edge e that belongs to
neither T1 nor T2. Thus, all together, the number of edges that T has is
(x−1)+ (y−1)+1= (x+ y)−1. In other words, T has one fewer edges than
it has vertices. Thus it has (k+1)−1= k edges.

It follows by strong induction that a tree with n vertices has n−1 edges. ■

Notice that it was absolutely essential that we used strong induction
in the above proof because the two trees T1 and T2 will not both have k
vertices. At least one will have fewer than k vertices. Thus the statement
Sk is not enough to imply Sk+1. We need to use the assumption that Sm

will be true whenever m ≤ k, and strong induction allows us to do this.
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10.2 Proof by Smallest Counterexample
This section introduces yet another proof technique, called proof by small-
est counterexample. It is a hybrid of induction and proof by contradiction.
It has the nice feature that it leads you straight to a contradiction. It
is therefore more “automatic” than the proof by contradiction that was
introduced in Chapter 6. Here is the outline:

Outline for Proof by Smallest Counterexample
Proposition The statements S1,S2,S3,S4, . . . are all true.

Proof. (Smallest counterexample)
(1) Check that the first statement S1 is true.
(2) For the sake of contradiction, suppose not every Sn is true.
(3) Let k > 1 be the smallest integer for which Sk is false.
(4) Then Sk−1 is true and Sk is false. Use this to get a contradiction. ■

Notice that this setup leads you to a point where Sk−1 is true and
Sk is false. It is here, where true and false collide, that you will find a
contradiction. Let’s do an example.

Proposition If n ∈N, then 4 | (5n −1).

Proof. We use proof by smallest counterexample. (We will number the
steps to match the outline, but that is not usually done in practice.)
(1) If n = 1, then the statement is 4 | (51 −1), or 4 | 4, which is true.
(2) For sake of contradiction, suppose it’s not true that 4 | (5n−1) for all n.
(3) Let k > 1 be the smallest integer for which 4 - (5k −1).
(4) Then 4 | (5k−1−1), so there is an integer a for which 5k−1−1= 4a. Then:

5k−1 −1 = 4a

5(5k−1 −1) = 5 ·4a

5k −5 = 20a

5k −1 = 20a+4

5k −1 = 4(5a+1)

This means 4 | (5k−1), a contradiction, because 4 - (5k−1) in Step 3. Thus,
we were wrong in Step 2 to assume that it is untrue that 4 | (5n −1) for
every n. Therefore 4 | (5n −1) is true for every n. ■
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We next prove the fundamental theorem of arithmetic, which says
any integer greater than 1 has a unique prime factorization. For example,
12 factors into primes as 12= 2 ·2 ·3, and moreover any factorization of 12
into primes uses exactly the primes 2, 2 and 3. Our proof combines the
techniques of induction, cases, minimum counterexample and the idea of
uniqueness of existence outlined at the end of Section 7.3. We dignify this
fundamental result with the label of “Theorem.”

Theorem 10.1 (Fundamental Theorem of Arithmetic) Any integer n > 1
has a unique prime factorization. That is, if n = p1 · p2 · p3 · · · pk and n =
a1 ·a2 ·a3 · · ·a` are two prime factorizations of n, then k = `, and the primes
pi and ai are the same, except that they may be in a different order.

Proof. Suppose n > 1. We first use strong induction to show that n has a
prime factorization. For the basis step, if n = 2, it is prime, so it is already
its own prime factorization. Let n ≥ 2 and assume every integer between 2
and n (inclusive) has a prime factorization. Consider n+1. If it is prime,
then it is its own prime factorization. If it is not prime, then it factors as
n+1= ab with a,b > 1. Because a and b are both less than n+1 they have
prime factorizations a = p1 · p2 · p3 · · · pk and b = p′

1 · p′
2 · p′

3 · · · p′
`
. Then

n+1= ab = (p1 · p2 · p3 · · · pk)(p′
1 · p′

2 · p′
3 · · · p′

`)

is a prime factorization of n+1. This competes the proof by strong induction
that every integer greater than 1 has a prime factorization.

Next we use proof by smallest counterexample to prove that the prime
factorization of any n ≥ 2 is unique. If n = 2, then n clearly has only one
prime factorization, namely itself. Assume for the sake of contradiction that
there is an n > 2 that has different prime factorizations n = p1 · p2 · p3 · · · pk
and n = a1 ·a2 ·a3 · · ·a`. Assume n is the smallest number with this property.
From n = p1 · p2 · p3 · · · pk, we see that p1 | n, so p1 | (a1 · a2 · a3 · · ·a`). By
Proposition 10.1 (page 160), p1 divides one of the primes ai. As ai is prime,
we have p1 = ai. Dividing n = p1 · p2 · p3 · · · pk = a1 · a2 · a3 · · ·a` by p1 = ai

yields
p2 · p3 · · · pk = a1 ·a2 ·a3 · · ·ai−1 ·ai+1 · · ·a`.

These two factorizations are different, because the two prime factorizations
of n were different. (Remember: the primes p1 and ai are equal, so the
difference appears in the remaining factors, displayed above.) But also the
above number p2 · p3 · · · pk is smaller than n, and this contradicts the fact
that n was the smallest number with two different prime factorizations. ■
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One word of warning about proof by smallest counterexample. In proofs
in other textbooks or in mathematical papers, it often happens that the
writer doesn’t tell you up front that proof by smallest counterexample
is being used. Instead, you will have to read through the proof to glean
from context that this technique is being used. In fact, the same warning
applies to all of our proof techniques. If you continue with mathematics,
you will gradually gain through experience the ability to analyze a proof
and understand exactly what approach is being used when it is not stated
explicitly. Frustrations await you, but do not be discouraged by them.
Frustration is a natural part of anything that’s worth doing.

10.3 Fibonacci Numbers
Leonardo Pisano, now known as Fibonacci, was a mathematician born
around 1175 in what is now Italy. His most significant work was a book
Liber Abaci, which is recognized as a catalyst in medieval Europe’s slow
transition from Roman numbers to the Hindu-Arabic number system. But
he is best known today for a number sequence that he described in his
book and that bears his name. The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

The numbers that appear in this sequence are called Fibonacci numbers.
The first two numbers are 1 and 1, and thereafter any entry is the sum
of the previous two entries. For example 3+5= 8, and 5+8= 13, etc. We
denote the nth term of this sequence as Fn. Thus F1 = 1, F2 = 1, F3 = 2,
F4 = 3, F7 = 13 and so on. Notice that the Fibonacci Sequence is entirely
determined by the rules F1 = 1, F2 = 1, and Fn = Fn−1 +Fn−2.

We introduce Fibonacci’s sequence here partly because it is something
everyone should know about, but also because it is a great source of induc-
tion problems. This sequence, which appears with surprising frequency in
nature, is filled with mysterious patterns and hidden structures. Some of
these structures will be revealed to you in the examples and exercises.

We emphasize that the condition Fn = Fn−1+Fn−2 (or equivalently Fn+1 =
Fn + Fn−1) is the perfect setup for induction. It suggests that we can
determine something about Fn by looking at earlier terms of the sequence.
In using induction to prove something about the Fibonacci sequence, you
should expect to use the equation Fn = Fn−1 +Fn−2 somewhere.

For our first example we will prove that F2
n+1 −Fn+1Fn −F2

n = (−1)n for
any natural number n. For example, if n = 5 we have F2

6 −F6F5 −F2
5 =

82 −8 ·5−52 = 64−40−25= −1= (−1)5.
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Proposition The Fibonacci sequence obeys F2
n+1 −Fn+1Fn −F2

n = (−1)n.

Proof. We will prove this with mathematical induction.
(1) If n = 1 we have F2

n+1−Fn+1Fn−F2
n = F2

2 −F2F1−F2
1 = 12−1 ·1−12 =−1=

(−1)1 = (−1)n, so indeed F2
n+1 −Fn+1Fn −F2

n = (−1)n is true when n = 1.

(2) Take any integer k ≥ 1. We must show that if F2
k+1−Fk+1Fk−F2

k = (−1)k,
then F2

k+2 − Fk+2Fk+1 − F2
k+1 = (−1)k+1. We use direct proof. Suppose

F2
k+1 −Fk+1Fk −F2

k = (−1)k. Now we are going to carefully work out the
expression F2

k+2 − Fk+2Fk+1 − F2
k+1 and show that it really does equal

(−1)k+1. In so doing, we will use the fact that Fk+2 = Fk+1 +Fk.

F2
k+2 −Fk+2Fk+1 −F2

k+1 = (Fk+1 +Fk)2 − (Fk+1 +Fk)Fk+1 −F2
k+1

= F2
k+1 +2Fk+1Fk +F2

k −F2
k+1 −FkFk+1 −F2

k+1

= −F2
k+1 +Fk+1Fk +F2

k

= −(F2
k+1 −Fk+1Fk −F2

k)

= −(−1)k (inductive hypothesis)
= (−1)1(−1)k

= (−1)k+1

Therefore F2
k+2 −Fk+2Fk+1 −F2

k+1 = (−1)k+1.
It follows by induction that F2

n+1 −Fn+1Fn −F2
n = (−1)n for every n ∈N. ■

Let’s pause for a moment and think about what the result we just
proved means. Dividing both sides of F2

n+1−Fn+1Fn−F2
n = (−1)n by F2

n gives
(

Fn+1

Fn

)2
− Fn+1

Fn
−1= (−1)n

F2
n

.

For large values of n, the right-hand side is very close to zero, and the
left-hand side is Fn+1/Fn plugged into the polynomial x2 − x−1. Thus, as
n increases, the ratio Fn+1/Fn approaches a root of x2 − x−1 = 0. By the
quadratic formula, the roots of x2−x−1 are 1±p5

2 . As Fn+1/Fn > 1, this ratio
must be approaching the positive root 1+p5

2 . Therefore

lim
n→∞

Fn+1

Fn
= 1+p

5
2

. (10.1)

For a quick spot check, note that F13/F12 ≈ 1.618025, while 1+p5
2 ≈ 1.618033.

Even for the small value n = 12, the numbers match to four decimal places.
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The number Φ= 1+p5
2 is sometimes called the golden ratio, and there

has been much speculation about its occurrence in nature as well as
in classical art and architecture. One theory holds that the Parthenon
and the Great Pyramids of Egypt were designed in accordance with this
number.

But we are here concerned with things that can be proved. We close by
observing how the Fibonacci sequence in many ways resembles a geometric
sequence. Recall that a geometric sequence with first term a and
common ratio r has the form

a, ar, ar2, ar3, ar4, ar5, ar6, ar7, ar8, . . .

where any term is obtained by multiplying the previous term by r. In
general its nth term is Gn = arn, and Gn+1/Gn = r. Equation (10.1) tells
us that Fn+1/Fn ≈ Φ. Thus even though it is not a geometric sequence,
the Fibonacci sequence tends to behave like a geometric sequence with
common ratio Φ, and the further “out” you go, the higher the resemblance.

Exercises for Chapter 10
Prove the following statements with either induction, strong induction or proof
by smallest counterexample.

1. For every integer n ∈N, it follows that 1+2+3+4+·· ·+n = n2 +n
2

.

2. For every integer n ∈N, it follows that 12 +22 +32 +42 +·· ·+n2 = n(n+1)(2n+1)
6

.

3. For every integer n ∈N, it follows that 13 +23 +33 +43 +·· ·+n3 = n2(n+1)2

4
.

4. If n ∈N, then 1 ·2+2 ·3+3 ·4+4 ·5+·· ·+n(n+1)= n(n+1)(n+2)
3

.

5. If n ∈N, then 21 +22 +23 +·· ·+2n = 2n+1 −2.

6. For every natural number n, it follows that
n∑

i=1
(8i−5)= 4n2 −n.

7. If n ∈N, then 1 ·3+2 ·4+3 ·5+4 ·6+·· ·+n(n+2)= n(n+1)(2n+7)
6

.

8. If n ∈N, then 1
2!

+ 2
3!

+ 3
4!

+·· ·+ n
(n+1)!

= 1− 1
(n+1)!

9. For any integer n ≥ 0, it follows that 24 | (52n −1).
10. For any integer n ≥ 0, it follows that 3 | (52n −1).
11. For any integer n ≥ 0, it follows that 3 | (n3 +5n+6).
12. For any integer n ≥ 0, it follows that 9 | (43n +8).
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13. For any integer n ≥ 0, it follows that 6 | (n3 −n).
14. Suppose a ∈Z. Prove that 5 | 2na implies 5 | a for any n ∈N.
15. If n ∈N, then 1

1 ·2 + 1
2 ·3 + 1

3 ·4 + 1
4 ·5 +·· ·+ 1

n(n+1)
= 1− 1

n+1
.

16. For every natural number n, it follows that 2n +1≤ 3n.
17. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that

A1 ∩ A2 ∩·· ·∩ An = A1 ∪ A2 ∪·· ·∪ An.
18. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that

A1 ∪ A2 ∪·· ·∪ An = A1 ∩ A2 ∩·· ·∩ An.

19. Prove that 1
1
+ 1

4
+ 1

9
+·· ·+ 1

n2 ≤ 2− 1
n
.

20. Prove that (1+2+3+·· ·+n)2 = 13 +23 +33 +·· ·+n3 for every n ∈N.
21. If n ∈N, then 1

1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+·· ·+ 1

2n −1
+ 1

2n ≥ 1+ n
2
.

(Note: This problem asserts that the sum of the first 2n terms of the harmonic
series is at least 1+n/2. It thus implies that the harmonic series diverges.)

22. If n ∈N, then
(
1− 1

2

)(
1− 1

4

)(
1− 1

8

)(
1− 1

16

)
· · ·

(
1− 1

2n

)
≥ 1

4
+ 1

2n+1 .

23. Use mathematical induction to prove the binomial theorem (Theorem 3.1 on
page 80). You may find that you need Equation (3.2) on page 78.

24. Prove that
n∑

k=1
k

(n
k
)= n2n−1 for each natural number n.

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2−1.

26. Concerning the Fibonacci sequence, prove that
n∑

k=1
F2

k = FnFn+1.

27. Concerning the Fibonacci sequence, prove that F1+F3+F5+F7+ . . .+F2n−1 = F2n.
28. Concerning the Fibonacci sequence, prove that F2 + F4 + F6 + F8 + . . .+ F2n =

F2n+1 −1.
29. In this problem n ∈N and Fn is the nth Fibonacci number. Prove that(n

0
)+ (n−1

1
)+ (n−2

2
)+ (n−3

3
)+·· ·+ ( 0

n
)= Fn+1.

(For example,
(6

0
)+ (5

1
)+ (4

2
)+ (3

3
)+ (2

4
)+ (1

5
)+ (0

6
)= 1+5+6+1+0+0+0= 13= F6+1.)

30. Here Fn is the nth Fibonacci number. Prove that

Fn =
(

1+p5
2

)n −
(

1−p5
2

)n

p
5

.

31. Prove that
n∑

k=0

(
k
r
)= (n+1

r+1
)
, where 1≤ r ≤ n.

32. Prove that the number of n-digit binary numbers that have no consecutive
1’s is the Fibonacci number Fn+2. For example, for n = 2 there are three such
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numbers (00, 01, and 10), and 3= F2+2 = F4. Also, for n = 3 there are five such
numbers (000, 001, 010, 100, 101), and 5= F3+2 = F5.

33. Suppose n (infinitely long) straight lines lie on a plane in such a way that no
two of the lines are parallel, and no three of the lines intersect at a single
point. Show that this arrangement divides the plane into n2+n+2

2 regions.

34. Prove that 31 +32 +33 +34 +·· ·+3n = 3n+1 −3
2

for every n ∈N.
35. Prove that if n,k ∈N, and n is even and k is odd, then

(n
k
)
is even.

36. Prove that if n = 2k−1 for some k ∈N, then every entry in the nth row of Pascal’s
triangle is odd.

The remaining odd-numbered exercises below are not solved in the back of the
book.

37. Prove that if m,n ∈N, then
n∑

k=0
k
(m+k

m
)= n

(m+n+1
m+1

)− (m+n+1
m+2

)
.

38. Prove that if n is a positive integer, then
(n
0
)2 + (n

1
)2 + (n

2
)2 +·· ·+ (n

n
)2 = (2n

n
)
.

39. Prove that if n is a positive integer, then
(n+0

0
)+ (n+1

1
)+ (n+2

2
)+·· ·+ (n+k

k
)= (n+k+1

k
)
.

40. Prove that
p∑

k=0

(m
k
)( n

p−k
)= (m+n

p
)
for positive integers m,n and p.

41. Prove that
m∑

k=0

(m
k
)( n

p+k
)= (m+n

m+p
)
for positive integers m,n and p.
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CHAPTER 11

Relations

In mathematics there are endless ways that two entities can be related
to each other. Consider the following mathematical statements.

5< 10 5≤ 5 6= 30
5 5 | 80 7> 4 x 6= y 8 - 3

a ≡ b ( mod n) 6 ∈Z X ⊆Y π≈ 3.14 0≥−1
p

2 ∉Z Z 6⊆N

In each case two entities appear on either side of a symbol, and we
interpret the symbol as expressing some relationship between the two
entities. Symbols such as <,≤,=, |, -,≥,>, ∈ and ⊂, etc., are called relations
because they convey relationships among things.

Relations are significant. In fact, you would have to admit that there
would be precious little left of mathematics if we took away all the relations.
Therefore it is important to have a firm understanding of them, and this
chapter is intended to develop that understanding.

Rather than focusing on each relation individually (an impossible task
anyway since there are infinitely many different relations), we will develop
a general theory that encompasses all relations. Understanding this
general theory will give us the conceptual framework and language needed
to understand and discuss any specific relation.

Before stating the theoretical definition of a relation, let’s look at a
motivational example. This example will lead naturally to our definition.

Consider the set A = {
1,2,3,4,5

}
. (There’s nothing special about this

particular set; any set of numbers would do for this example.) Elements of
A can be compared to each other by the symbol “<.” For example, 1 < 4,
2< 3, 2< 4, and so on. You have no trouble understanding this because the
notion of numeric order is so ingrained. But imagine you had to explain
it to an idiot savant, one with an obsession for detail but absolutely no
understanding of the meaning of (or relationships between) integers. You
might consider writing down for your student the following set:

R = {
(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)

}
.
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The set R encodes the meaning of the < relation for elements in A. An
ordered pair (a,b) appears in the set if and only if a < b. If asked whether
or not it is true that 3 < 4, your student could look through R until he
found the ordered pair (3,4); then he would know 3 < 4 is true. If asked
about 5< 2, he would see that (5,2) does not appear in R, so 5 6< 2. The set
R, which is a subset of A× A, completely describes the relation < for A.

Though it may seem simple-minded at first, this is exactly the idea
we will use for our main definition. This definition is general enough to
describe not just the relation < for the set A = {

1,2,3,4,5
}
, but any relation

for any set A.
Definition 11.1 A relation on a set A is a subset R ⊆ A× A. We often
abbreviate the statement (x, y) ∈ R as xR y. The statement (x, y) ∉ R is
abbreviated as x 6R y.

Notice that a relation is a set, so we can use what we know about sets
to understand and explore relations. But before getting deeper into the
theory of relations, let’s look at some examples of Definition 11.1.

Example 11.1 Let A = {
1,2,3,4

}
, and consider the following set:

R = {
(1,1), (2,1), (2,2), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1)

}⊆ A× A.

The set R is a relation on A, by Definition 11.1. Since (1,1) ∈ R, we have
1R1. Similarly 2R1 and 2R2, and so on. However, notice that (for example)
(3,4) ∉ R, so 3 6R 4. Observe that R is the familiar relation ≥ for the set A.

Chapter 1 proclaimed that all of mathematics can be described with
sets. Just look at how successful this program has been! The greater-
than-or-equal-to relation is now a set R. (We might even express this in
the rather cryptic form ≥= R.)

Example 11.2 Let A = {
1,2,3,4

}
, and consider the following set:

S = {
(1,1), (1,3), (3,1), (3,3), (2,2), (2,4), (4,2), (4,4)

}⊆ A× A.

Here we have 1S1, 1S3, 4S2, etc., but 3 6S 4 and 2 6S 1. What does S mean?
Think of it as meaning “has the same parity as.” Thus 1S1 reads “1 has
the same parity as 1,” and 4S2 reads “4 has the same parity as 2.”

Example 11.3 Consider relations R and S of the previous two examples.
Note that R∩S = {

(1,1), (2,2), (3,3), (3,1), (4,4), (4,2)
}⊆ A×A is a relation on A.

The expression x(R∩S)y means “x ≥ y, and x, y have the same parity.”
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Example 11.4 Let B = {
0,1,2,3,4,5

}
, and consider the following set:

U = {
(1,3), (3,3), (5,2), (2,5), (4,2)

}⊆ B×B.

Then U is a relation on B because U ⊆ B×B. You may be hard-pressed
to invent any “meaning” for this particular relation. A relation does not
have to have any meaning. Any random subset of B×B is a relation on B,
whether or not it describes anything familiar.

Some relations can be described with pictures. For example, we can
depict the above relation U on B by drawing points labeled by elements of
B. The statement (x, y) ∈U is then represented by an arrow pointing from
x to y, a graphic symbol meaning “x relates to y.” Here’s a picture of U:

0 1 2

3 4 5

The next picture illustrates the relation R on the set A = {
a,b, c,d

}
, where

xR y means x comes before y in the alphabet. According to Definition 11.1,
as a set this relation is R = {

(a,b), (a, c), (a,d), (b, c), (b,d), (c,d)
}
. You may

feel that the picture conveys the relation better than the set does. They
are two different ways of expressing the same thing. In some instances
pictures are more convenient than sets for discussing relations.

d

cb

a

Although such diagrams can help us visualize relations, they do have
their limitations. If A and R were infinite, then the diagram would be
impossible to draw, but the set R might be easily expressed in set-builder
notation. Here are some examples.

Example 11.5 Consider the set R = {
(x, y) ∈Z×Z : x− y ∈N}⊆Z×Z. This

is the > relation on the set A =Z. It is infinite because there are infinitely
many ways to have x > y where x and y are integers.

Example 11.6 The set R = {
(x, x) : x ∈ R}⊆ R×R is the relation = on the

set R, because xR y means the same thing as x = y. Thus R is a set that
expresses the notion of equality of real numbers.
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Exercises for Section 11.0
1. Let A = {

0,1,2,3,4,5
}
. Write out the relation R that expresses > on A. Then

illustrate it with a diagram.
2. Let A = {

1,2,3,4,5,6
}
. Write out the relation R that expresses | (divides) on A.

Then illustrate it with a diagram.
3. Let A = {

0,1,2,3,4,5
}
. Write out the relation R that expresses ≥ on A. Then

illustrate it with a diagram.
4. Here is a diagram for a relation R on a set A. Write the sets A and R.

0 1 2

3 4 5

5. Here is a diagram for a relation R on a set A. Write the sets A and R.
0 1 2

3 4 5

6. Congruence modulo 5 is a relation on the set A =Z. In this relation xR y means
x ≡ y (mod 5). Write out the set R in set-builder notation.

7. Write the relation < on the set A =Z as a subset R of Z×Z. This is an infinite
set, so you will have to use set-builder notation.

8. Let A = {
1,2,3,4,5,6

}
. Observe that ;⊆ A×A, so R =; is a relation on A. Draw

a diagram for this relation.
9. Let A = {

1,2,3,4,5,6
}
. How many different relations are there on the set A?

10. Consider the subset R = (R×R)−{
(x, x) : x ∈R}⊆R×R. What familiar relation on

R is this? Explain.
11. Given a finite set A, how many different relations are there on A?

In the following exercises, subsets R of R2 = R×R or Z2 =Z×Z are indicated by
gray shading. In each case, R is a familiar relation on R or Z. State it.

12.
R

13.
R

14. 15.
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11.1 Properties of Relations
A relational expression xR y is a statement (or an open sentence); it is either
true or false. For example, 5 < 10 is true, and 10 < 5 is false. (Thus an
operation like + is not a relation, because, for instance, 5+10 has a numeric
value, not a T/F value.) Since relational expressions have T/F values, we
can combine them with logical operators; for example, xR y ⇒ yRx is a
statement or open sentence whose truth or falsity may depend on x and y.

With this in mind, note that some relations have properties that others
don’t have. For example, the relation ≤ on Z satisfies x ≤ x for every x ∈Z.
But this is not so for < because x < x is never true. The next definition
lays out three particularly significant properties that relations may have.

Definition 11.2 Suppose R is a relation on a set A.
1. Relation R is reflexive if xRx for every x ∈ A.

That is, R is reflexive if ∀x ∈ A, xRx.
2. Relation R is symmetric if xR y implies yRx for all x, y ∈ A

That is, R is symmetric if ∀x, y ∈ A, xR y ⇒ yRx.
3. Relation R is transitive if whenever xR y and yRz, then also xRz.

That is, R is transitive if ∀x, y, z ∈ A,
(
(xR y)∧ (yRz)

)⇒ xRz.

To illustrate this, let’s consider the set A = Z. Examples of reflexive
relations on Z include ≤, =, and |, because x ≤ x, x = x and x |x are all true
for any x ∈Z. On the other hand, >, <, 6= and - are not reflexive for none
of the statements x < x, x > x, x 6= x and x - x is ever true.

The relation 6= is symmetric, for if x 6= y, then surely y 6= x also. Also,
the relation = is symmetric because x = y always implies y= x.

The relation ≤ is not symmetric, as x ≤ y does not necessarily imply
y≤ x. For instance 5≤ 6 is true, but 6≤ 5 is false. Notice (x ≤ y) ⇒ (y≤ x)
is true for some x and y (for example, it is true when x = 2 and y= 2), but
still ≤ is not symmetric because it is not the case that (x ≤ y) ⇒ (y≤ x) is
true for all integers x and y.

The relation ≤ is transitive because whenever x ≤ y and y≤ z, it also
is true that x ≤ z. Likewise <,≥,> and = are all transitive. Examine the
following table and be sure you understand why it is labeled as it is.

Relations on Z: < ≤ = | - 6=
Reflexive no yes yes yes no no
Symmetric no no yes no no yes
Transitive yes yes yes yes no no
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Example 11.7 Here A = {
b, c,d, e

}
, and R is the following relation on A:

R = {
(b,b), (b, c), (c,b), (c, c), (d,d), (b,d), (d,b), (c,d), (d, c)

}
.

This relation is not reflexive, for although bRb, cRc and dRd, it is not
true that eRe. For a relation to be reflexive, xRx must be true for all x ∈ A.

The relation R is symmetric, because whenever we have xR y, it follows
that yRx too. Observe that bRc and cRb; bRd and dRb; dRc and cRd.
Take away the ordered pair (c,b) from R, and R is no longer symmetric.

The relation R is transitive, but it takes some work to check it. We
must check that the statement (xR y∧ yRz)⇒ xRz is true for all x, y, z ∈ A.
For example, taking x = b, y = c and z = d, we have (bRc∧ cRd) ⇒ bRd,
which is the true statement (T ∧T) ⇒ T. Likewise, (bRd∧dRc) ⇒ bRc is
the true statement (T ∧T) ⇒ T. Take note that if x = b, y = e and z = c,
then (bRe∧ eRc) ⇒ bRc becomes (F ∧F) ⇒ T, which is still true. It’s not
much fun, but going through all the combinations, you can verify that
(xR y∧ yRz) ⇒ xRz is true for all choices x, y, z ∈ A. (Try at least a few of
them.)

The relation R from Example 11.7 has a meaning. You can think of
xR y as meaning that x and y are both consonants. Thus bRc because b
and c are both consonants; but b 6Re because it’s not true that b and e are
both consonants. Once we look at it this way, it’s immediately clear that R
has to be transitive. If x and y are both consonants and y and z are both
consonants, then surely x and z are both consonants. This illustrates a
point that we will see again later in this section: Knowing the meaning of
a relation can help us understand it and prove things about it.

Here is a picture of R. Notice that we can immediately spot several
properties of R that may not have been so clear from its set description.
For instance, we see that R is not reflexive because it lacks a loop at e,
hence e 6Re.

b

c

d

e

Figure 11.1. The relation R from Example 11.7
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In what follows, we summarize how to spot the various properties of a
relation from its diagram. Compare these with Figure 11.1.

1.
A relation is
reflexive if
for each point x ...

x ...there is a
loop at x: x

2.

A relation is
symmetric if
whenever there is an
arrow from x to y ...

x y

...there is also
an arrow from
y back to x:

x y

3.

A relation is
transitive if
whenever there are
arrows from x to y
and y to z ...

x

y

z

...there is also
an arrow from
x to z:

x

y

z

(If x = z, this means
that if there are
arrows from x to y
and from y to x ... x

y ...there is also
a loop from
x back to x.)

x

y

Consider the bottom diagram in Box 3, above. The transitive property
demands (xR y∧ yRx)⇒ xRx. Thus, if xR y and yRx in a transitive relation,
then also xRx, so there is a loop at x. In this case (yRx∧ xR y)⇒ yR y, so
there will be a loop at y too.

Although these visual aids can be illuminating, their use is limited be-
cause many relations are too large and complex to be adequately described
as diagrams. For example, it would be impossible to draw a diagram
for the relation ≡ (mod n), where n ∈ N. Such a relation would best be
explained in a more theoretical (and less visual) way.

We next prove that ≡ (mod n) is reflexive, symmetric and transitive.
Obviously we will not glean this from a drawing. Instead we will prove it
from the properties of ≡ (mod n) and Definition 11.2. Pay attention to this
example. It illustrates how to prove things about relations.
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Example 11.8 Prove the following proposition.

Proposition Let n ∈N. The relation ≡ (mod n) on the set Z is reflexive,
symmetric and transitive.

Proof. First we will show that ≡ (mod n) is reflexive. Take any integer x ∈Z,
and observe that n |0, so n | (x− x). By definition of congruence modulo n,
we have x ≡ x (mod n). This shows x ≡ x (mod n) for every x ∈Z, so ≡ (mod n)
is reflexive.

Next, we will show that ≡ (mod n) is symmetric. For this, we must show
that for all x, y ∈Z, the condition x ≡ y (mod n) implies that y≡ x (mod n).
We use direct proof. Suppose x ≡ y (mod n). Thus n | (x− y) by definition
of congruence modulo n. Then x− y = na for some a ∈ Z by definition of
divisibility. Multiplying both sides by −1 gives y− x = n(−a). Therefore
n | (y− x), and this means y ≡ x (mod n). We’ve shown that x ≡ y (mod n)
implies that y≡ x (mod n), and this means ≡ (mod n) is symmetric.

Finally we will show that ≡ (mod n) is transitive. For this we must
show that if x ≡ y (mod n) and y ≡ z (mod n), then x ≡ z (mod n). Again
we use direct proof. Suppose x ≡ y (mod n) and y ≡ z (mod n). This
means n | (x− y) and n | (y− z). Therefore there are integers a and b for
which x− y = na and y− z = nb. Adding these two equations, we obtain
x−z = na+nb. Consequently, x−z = n(a+b), so n | (x−z), hence x ≡ z (mod n).
This completes the proof that ≡ (mod n) is transitive.

The past three paragraphs have shown that ≡ (mod n) is reflexive,
symmetric and transitive, so the proof is complete. ■

As you continue with mathematics you will find that the reflexive,
symmetric and transitive properties take on special significance in a
variety of settings. In preparation for this, the next section explores
further consequences of these properties. But first work some of the
following exercises.

Exercises for Section 11.1

1. Consider the relation R = {
(a,a), (b,b), (c, c), (d,d), (a,b), (b,a)

}
on set A = {

a,b, c,d
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
2. Consider the relation R = {

(a,b), (a, c), (c, c), (b,b), (c,b), (b, c)
}
on the set A = {

a,b, c
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
3. Consider the relation R = {

(a,b), (a, c), (c,b), (b, c)
}
on the set A = {

a,b, c
}
. Is R

reflexive? Symmetric? Transitive? If a property does not hold, say why.



Properties of Relations 183

4. Let A = {
a,b, c,d

}
. Suppose R is the relation

R = {
(a,a), (b,b), (c, c), (d,d), (a,b), (b,a), (a, c), (c,a),

(a,d), (d,a), (b, c), (c,b), (b,d), (d,b), (c,d), (d, c)
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
5. Consider the relation R = {

(0,0), (
p

2,0), (0,
p

2), (
p

2,
p

2)
}
on R. Is R reflexive?

Symmetric? Transitive? If a property does not hold, say why.
6. Consider the relation R = {

(x, x) : x ∈ Z}
on Z. Is R reflexive? Symmetric?

Transitive? If a property does not hold, say why. What familiar relation is
this?

7. There are 16 possible different relations R on the set A = {
a,b

}
. Describe all of

them. (A picture for each one will suffice, but don’t forget to label the nodes.)
Which ones are reflexive? Symmetric? Transitive?

8. Define a relation on Z as xR y if |x−y| < 1. Is R reflexive? Symmetric? Transitive?
If a property does not hold, say why. What familiar relation is this?

9. Define a relation on Z by declaring xR y if and only if x and y have the same
parity. Is R reflexive? Symmetric? Transitive? If a property does not hold, say
why. What familiar relation is this?

10. Suppose A 6= ;. Since ;⊆ A× A, the set R =; is a relation on A. Is R reflexive?
Symmetric? Transitive? If a property does not hold, say why.

11. Suppose A = {
a,b, c,d

}
and R = {

(a,a), (b,b), (c, c), (d,d)
}
. Is R reflexive? Symmet-

ric? Transitive? If a property does not hold, say why.
12. Prove that the relation | (divides) on the set Z is reflexive and transitive. (Use

Example 11.8 as a guide if you are unsure of how to proceed.)
13. Consider the relation R = {

(x, y) ∈R×R : x− y ∈Z}
on R. Prove that this relation

is reflexive, symmetric and transitive.
14. Suppose R is a symmetric and transitive relation on a set A, and there is an

element a ∈ A for which aRx for every x ∈ A. Prove that R is reflexive.
15. Prove or disprove: If a relation is symmetric and transitive, then it is also

reflexive.
16. Define a relation R on Z by declaring that xR y if and only if x2 ≡ y2 (mod 4).

Prove that R is reflexive, symmetric and transitive.
17. Modifying the above Exercise 8 (above) slightly, define a relation ∼ on Z as x ∼ y

if and only if |x− y| ≤ 1. Say whether ∼ is reflexive. Is it symmetric? Transitive?
18. The table on page 179 shows that relations on Z may obey various combinations

of the reflexive, symmetric and transitive properties. In all, there are 23 =
8 possible combinations, and the table shows 5 of them. (There is some
redundancy, as ≤ and | have the same type.) Complete the table by finding
examples of relations on Z for the three missing combinations.
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11.2 Equivalence Relations
The relation = on the set Z (or on any set A) is reflexive, symmetric
and transitive. There are many other relations that are also reflexive,
symmetric and transitive. Relations that have all three of these properties
occur very frequently in mathematics and often play quite significant roles.
(For instance, this is certainly true of the relation = .) Such relations are
given a special name. They are called equivalence relations.

Definition 11.3 A relation R on a set A is an equivalence relation if
it is reflexive, symmetric and transitive.

As an example, Figure 11.2 shows four different equivalence relations
R1,R2,R3 and R4 on the set A = {−1,1,2,3,4

}
. Each one has its own meaning,

as labeled. For example, in the second row the relation R2 literally means
“has the same parity as.” So 1R2 3 means “1 has the same parity as 3,” etc.

Relation R Diagram Equivalence classes
(see next page)

“is equal to” (=)

R1 =
{
(−1,−1), (1,1), (2,2), (3,3), (4,4)

}
−1

3

1

4

2 {−1
}
,

{
1
}
,

{
2
}
,

{
3
}
,

{
4
}

“has same parity as”
R2 =

{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(−1,1), (1,−1), (−1,3), (3,−1),
(1,3), (3,1), (2,4), (4,2)

}
−1

3

1

4

2 {−1,1,3
}
,

{
2,4

}

“has same sign as”
R3 =

{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (3,4),
(4,3), (2,3), (3,2), (2,4), (4,2), (1,3), (3,1)

}
−1

3

1

4

2 {−1
}
,

{
1,2,3,4

}

“has same parity and sign as”

R4 =
{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(1,3), (3,1), (2,4), (4,2)
}

−1

3

1

4

2 {−1
}
,

{
1,3

}
,

{
2,4

}

Figure 11.2. Examples of equivalence relations on the set A = {−1,1,2,3,4
}
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The above diagrams make it easy to check that each relation is reflexive,
symmetric and transitive, i.e., that each is an equivalence relation. For
example, R1 is symmetric because xR1 y⇒ yR1x is always true: When x = y
it becomes T ⇒ T (true), and when x 6= y it becomes F ⇒ F (also true). In
a similar fashion, R1 is transitive because (xR1 y∧ yR1z)⇒ xR1z is always
true: It always works out to one of T ⇒ T, F ⇒ T or F ⇒ F. (Check this.)

As you can see from the examples in Figure 11.2, equivalence relations
on a set tend to express some measure of “sameness” among the elements
of the set, whether it is true equality or something weaker (like having
the same parity).

It’s time to introduce an important definition. Whenever you have
an equivalence relation R on a set A, it divides A into subsets called
equivalence classes. Here is the definition:

Definition 11.4 Suppose R is an equivalence relation on a set A. Given
any element a ∈ A, the equivalence class containing a is the subset{
x ∈ A : xRa

}
of A consisting of all the elements of A that relate to a. This

set is denoted as [a]. Thus the equivalence class containing a is the set
[a]= {

x ∈ A : xRa
}
.

Example 11.9 Consider the relation R1 in Figure 11.2. The equivalence
class containing 2 is the set [2] = {

x ∈ A : xR12
}
. Because in this relation

the only element that relates to 2 is 2 itself, we have [2] = {
2
}
. Other

equivalence classes for R1 are [−1]= {−1
}
, [1]= {

1
}
, [3]= {

3
}
and [4]= {

4
}
.

Thus this relation has five separate equivalence classes.

Example 11.10 Consider the relation R2 in Figure 11.2. The equivalence
class containing 2 is the set [2]= {

x ∈ A : xR22
}
. Because only 2 and 4 relate

to 2, we have [2] = {
2,4

}
. Observe that we also have [4] = {

x ∈ A : xR24
} ={

2,4
}
, so [2] = [4]. Another equivalence class for R2 is [1] = {

x ∈ A : xR21
}

= {−1,1,3
}
. In addition, note that [1] = [−1] = [3] = {−1,1,3

}
. Thus this

relation has just two equivalence classes, namely
{
2,4

}
and

{−1,1,3
}
.

Example 11.11 The relation R4 in Figure 11.2 has three equivalence
classes. They are [−1]= {−1

}
and [1]= [3]= {

1,3
}
and [2]= [4]= {

2,4
}
.

Don’t be misled by Figure 11.2. It’s important to realize that not
every equivalence relation can be drawn as a diagram involving nodes
and arrows. Even the simple relation R = {

(x, x) : x ∈ R}
, which expresses

equality in the set R, is too big to be drawn. Its picture would involve a
point for every real number and a loop at each point. Clearly that’s too
many points and loops to draw.
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We close this section with several other examples of equivalence rela-
tions on infinite sets.

Example 11.12 Let P be the set of all polynomials with real coefficients.
Define a relation R on P as follows. Given f (x), g(x) ∈ P, let f (x)R g(x) mean
that f (x) and g(x) have the same degree. Thus (x2 +3x−4)R (3x2 −2) and
(x3 +3x2 −4) 6R (3x2 −2), for example. It takes just a quick mental check to
see that R is an equivalence relation. (Do it.) It’s easy to describe the
equivalence classes of R. For example, [3x2+2] is the set of all polynomials
that have the same degree as 3x2 +2, that is, the set of all polynomials of
degree 2. We can write this as [3x2 +2]= {

ax2 +bx+ c : a,b, c ∈R,a 6= 0
}
.

Example 11.8 proved that for a given n ∈N the relation ≡ (mod n) is
reflexive, symmetric and transitive. Thus, in our new parlance, ≡ (mod n)
is an equivalence relation on Z. Consider the case n = 3. Let’s find the
equivalence classes of the equivalence relation ≡ (mod 3). The equivalence
class containing 0 seems like a reasonable place to start. Observe that

[0]= {
x ∈Z : x ≡ 0(mod 3)

}={
x ∈Z : 3 | (x−0)

}= {
x ∈Z : 3 | x

}= {
. . . ,−3,0,3,6,9, . . .

}
.

Thus the class [0] consists of all the multiples of 3. (Or, said differently,
[0] consists of all integers that have a remainder of 0 when divided by 3).
Note that [0] = [3] = [6] = [9], etc. The number 1 does not show up in the
set [0] so let’s next look at the equivalence class [1]:

[1]= {
x ∈Z : x ≡ 1(mod 3)

}= {
x ∈Z : 3 | (x−1)

}= {
. . . ,−5,−2,1,4,7,10, . . .

}
.

The equivalence class [1] consists of all integers that give a remainder of
1 when divided by 3. The number 2 is in neither of the sets [0] or [1], so
we next look at the equivalence class [2]:

[2]= {
x ∈Z : x ≡ 2(mod 3)

}= {
x ∈Z : 3 | (x−2)

}= {
. . . ,−4,−1,2,5,8,11, . . .

}
.

The equivalence class [2] consists of all integers that give a remainder of
2 when divided by 3. Observe that any integer is in one of the sets [0], [1]
or [2], so we have listed all of the equivalence classes. Thus ≡ (mod 3) has
exactly three equivalence classes, as described above.

Similarly, you can show that the equivalence relation ≡ (mod n) has n
equivalence classes [0], [1], [2], . . . , [n−1].
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Exercises for Section 11.2

1. Let A = {
1,2,3,4,5,6

}
, and consider the following equivalence relation on A:

R = {
(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,3), (3,2), (4,5), (5,4), (4,6), (6,4), (5,6), (6,5)

}
List the equivalence classes of R.

2. Let A = {
a,b, c,d, e

}
. Suppose R is an equivalence relation on A. Suppose R has

two equivalence classes. Also aRd, bRc and eRd. Write out R as a set.
3. Let A = {

a,b, c,d, e
}
. Suppose R is an equivalence relation on A. Suppose R has

three equivalence classes. Also aRd and bRc. Write out R as a set.
4. Let A = {

a,b, c,d, e
}
. Suppose R is an equivalence relation on A. Suppose also

that aRd and bRc, eRa and cRe. How many equivalence classes does R have?
5. There are two different equivalence relations on the set A = {

a,b
}
. Describe

them. Diagrams will suffice.
6. There are five different equivalence relations on the set A = {

a,b, c
}
. Describe

them all. Diagrams will suffice.
7. Define a relation R on Z as xR y if and only if 3x−5y is even. Prove R is an

equivalence relation. Describe its equivalence classes.
8. Define a relation R on Z as xR y if and only if x2 + y2 is even. Prove R is an

equivalence relation. Describe its equivalence classes.
9. Define a relation R on Z as xR y if and only if 4 |(x+3y). Prove R is an equivalence

relation. Describe its equivalence classes.
10. Suppose R and S are two equivalence relations on a set A. Prove that R∩S

is also an equivalence relation. (For an example of this, look at Figure 11.2.
Observe that for the equivalence relations R2,R3 and R4, we have R2∩R3 = R4.)

11. Prove or disprove: If R is an equivalence relation on an infinite set A, then R
has infinitely many equivalence classes.

12. Prove or disprove: If R and S are two equivalence relations on a set A, then
R∪S is also an equivalence relation on A.

13. Suppose R is an equivalence relation on a finite set A, and every equivalence
class has the same cardinality m. Express |R| in terms of m and |A|.

14. Suppose R is a reflexive and symmetric relation on a finite set A. Define
a relation S on A by declaring xS y if and only if for some n ∈ N there are
elements x1, x2, . . . , xn ∈ A satisfying xRx1, x1Rx2, x2Rx3, x3Rx4, . . . , xn−1Rxn, and
xnR y. Show that S is an equivalence relation and R ⊆ S. Prove that S is the
unique smallest equivalence relation on A containing R.

15. Suppose R is an equivalence relation on a set A, with four equivalence classes.
How many different equivalence relations S on A are there for which R ⊆ S?
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11.3 Equivalence Classes and Partitions
This section collects several properties of equivalence classes.

Our first result proves that [a]= [b] if and only if aRb. This is useful
because it assures us that whenever we are in a situation where [a]= [b],
we also have aRb, and vice versa. Being able to switch back and forth
between these two pieces of information can be helpful in a variety of
situations, and you may find yourself using this result a lot. Be sure to
notice that the proof uses all three properties (reflexive, symmetric and
transitive) of equivalence relations. Notice also that we have to use some
Chapter 8 techniques in dealing with the sets [a] and [b].

Theorem 11.1 Suppose R is an equivalence relation on a set A. Suppose
also that a,b ∈ A. Then [a]= [b] if and only if aRb.

Proof. Suppose [a]= [b]. Note that aRa by the reflexive property of R, so
a ∈ {

x ∈ A : xRa
} = [a] = [b] = {

x ∈ A : xRb
}
. But a belonging to

{
x ∈ A : xRb

}
means aRb. This completes the first part of the if-and-only-if proof.

Conversely, suppose aRb. We need to show [a]= [b]. We will do this by
showing [a]⊆ [b] and [b]⊆ [a].

First we show [a]⊆ [b]. Suppose c ∈ [a]. As c ∈ [a]= {
x ∈ A : xRa

}
, we get

cRa. Now we have cRa and aRb, so cRb because R is transitive. But cRb
implies c ∈ {

x ∈ A : xRb
}= [b]. This demonstrates that c ∈ [a] implies c ∈ [b],

so [a]⊆ [b].
Next we show [b]⊆ [a]. Suppose c ∈ [b]. As c ∈ [b]= {

x ∈ A : xRb
}
, we get

cRb. Remember that we are assuming aRb, so bRa because R is symmetric.
Now we have cRb and bRa, so cRa because R is transitive. But cRa implies
c ∈ {

x ∈ A : xRa
}= [a]. This demonstrates that c ∈ [b] implies c ∈ [a]; hence

[b]⊆ [a].
The previous two paragraphs imply that [a]= [b]. ■

To illustrate Theorem 11.1, recall how we worked out the equivalence
classes of ≡ (mod 3) at the end of Section 11.2. We observed that

[−3]= [9]= {
. . . ,−3,0,3,6,9, . . .

}
.

Note that [−3]= [9] and −3≡ 9 (mod 3), just as Theorem 11.1 predicts. The
theorem assures us that this will work for any equivalence relation. In the
future you may find yourself using the result of Theorem 11.1 often. Over
time it may become natural and familiar; you will use it automatically,
without even thinking of it as a theorem.
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Our next topic addresses the fact that an equivalence relation on a set
A divides A into various equivalence classes. There is a special word for
this kind of situation. We address it now, as you are likely to encounter it
in subsequent mathematics classes.

Definition 11.5 A partition of a set A is a set of non-empty subsets of
A, such that the union of all the subsets equals A, and the intersection of
any two different subsets is ;.

Example 11.13 Let A = {
a,b, c,d

}
. One partition of A is

{{
a,b

}
,
{
c
}
,
{
d
}}
.

This is a set of three subsets
{
a,b

}
,

{
c
}
and

{
d
}
of A. The union of the

three subsets equals A; the intersection of any two subsets is ;.
Other partitions of A are{{

a,b
}
,
{
c,d

}}
,

{{
a, c

}
,
{
b
}
,
{
d
}}

,
{{

a
}
,
{
b
}
,
{
c
}{

d
}}

,
{{

a,b, c,d
}}

,

to name a few. Intuitively, a partition is just a dividing up of A into pieces.

Example 11.14 Consider the equivalence relations in Figure 11.2. Each
of these is a relation on the set A = {−1,1,2,3,4

}
. The equivalence classes

of each relation are listed on the right side of the figure. Observe that,
in each case, the set of equivalence classes forms a partition of A. For
example, the relation R1 yields the partition

{{−1
}
,
{
1
}
,
{
2
}
,
{
3
}
,
{
4
}}

of A.
Likewise the equivalence classes of R2 form the partition

{{−1,1,3
}
,
{
2,4

}}
.

Example 11.15 Recall that we worked out the equivalence classes of the
equivalence relation ≡ (mod 3) on the set Z. These equivalence classes
give the following partition of Z:{{

. . . ,−3,0,3,6,9, . . .
}
,
{
. . . ,−2,1,4,7,10, . . .

}
,
{
. . . ,−1,2,5,8,11, . . .

}}
.

We can write it more compactly as
{
[0], [1], [2]

}
.

Our examples and experience suggest that the equivalence classes of
an equivalence relation on a set form a partition of that set. This is indeed
the case, and we now prove it.

Theorem 11.2 Suppose R is an equivalence relation on a set A. Then
the set

{
[a] : a ∈ A

}
of equivalence classes of R forms a partition of A.

Proof. To show that
{
[a] : a ∈ A

}
is a partition of A we need to show two

things: We need to show that the union of all the sets [a] equals A, and
we need to show that if [a] 6= [b], then [a]∩ [b]=;.
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Notationally, the union of all the sets [a] is ⋃
a∈A[a], so we need to prove⋃

a∈A[a]= A. Suppose x ∈⋃
a∈A[a]. This means x ∈ [a] for some a ∈ A. Since

[a] ⊆ A, it then follows that x ∈ A. Thus ⋃
a∈A[a] ⊆ A. On the other hand,

suppose x ∈ A. As x ∈ [x], we know x ∈ [a] for some a ∈ A (namely a = x).
Therefore x ∈⋃

a∈A[a], and this shows A ⊆⋃
a∈A[a]. Since ⋃

a∈A[a] ⊆ A and
A ⊆⋃

a∈A[a], it follows that ⋃
a∈A[a]= A.

Next we need to show that if [a] 6= [b] then [a]∩ [b] = ;. Let’s use
contrapositive proof. Suppose it’s not the case that [a]∩ [b]=;, so there is
some element c with c ∈ [a]∩[b]. Thus c ∈ [a] and c ∈ [b]. Now, c ∈ [a] means
cRa, and then aRc since R is symmetric. Also c ∈ [b] means cRb. Now
we have aRc and cRb, so aRb (because R is transitive). By Theorem 11.1,
aRb implies [a]= [b]. Thus [a] 6= [b] is not true.

We’ve now shown that the union of all the equivalence classes is A,
and the intersection of two different equivalence classes is ;. Therefore
the set of equivalence classes is a partition of A. ■

Theorem 11.2 says the equivalence classes of any equivalence relation
on a set A form a partition of A. Conversely, any partition of A describes
an equivalence relation R where xR y if and only if x and y belong to the
same set in the partition. (See Exercise 4 for this section, below.) Thus
equivalence relations and partitions are really just two different ways of
looking at the same thing. In your future mathematical studies, you may
find yourself easily switching between these two points of view.

Exercises for Section 11.3

1. List all the partitions of the set A = {
a,b

}
. Compare your answer to the answer

to Exercise 5 of Section 11.2.
2. List all the partitions of the set A = {

a,b, c
}
. Compare your answer to the

answer to Exercise 6 of Section 11.2.
3. Describe the partition of Z resulting from the equivalence relation ≡ (mod 4).
4. Suppose P is a partition of a set A. Define a relation R on A by declaring xR y

if and only if x, y ∈ X for some X ∈ P. Prove R is an equivalence relation on A.
Then prove that P is the set of equivalence classes of R.

5. Consider the partition P = {{
. . . ,−4,−2,0,2,4, . . .

}
,
{
. . . ,−5,−3,−1,1,3,5, . . .

}}
of Z.

Let R be the equivalence relation whose equivalence classes are the two ele-
ments of P. What familiar equivalence relation is R?
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11.4 The Integers Modulo n

Example 11.8 proved that for a given n ∈ N, the relation ≡ (mod n) is
reflexive, symmetric and transitive, so it is an equivalence relation. This
is a particularly significant equivalence relation in mathematics, and in
the present section we deduce some of its properties.

To make matters simpler, let’s pick a concrete n, say n = 5. Let’s begin
by looking at the equivalence classes of the relation ≡ (mod 5). There are
five equivalence classes, as follows:

[0] = {
x ∈Z : x ≡ 0 (mod 5))

} = {
x ∈Z : 5 | (x−0)

} = {
. . . ,−10,−5,0,5,10,15, . . .

}
,

[1] = {
x ∈Z : x ≡ 1 (mod 5))

} = {
x ∈Z : 5 | (x−1)

} = {
. . . , −9,−4,1,6,11,16, . . .

}
,

[2] = {
x ∈Z : x ≡ 2 (mod 5))

} = {
x ∈Z : 5 | (x−2)

} = {
. . . , −8,−3,2,7,12,17, . . .

}
,

[3] = {
x ∈Z : x ≡ 3 (mod 5))

} = {
x ∈Z : 5 | (x−3)

} = {
. . . , −7,−2,3,8,13,18, . . .

}
,

[4] = {
x ∈Z : x ≡ 4 (mod 5))

} = {
x ∈Z : 5 | (x−4)

} = {
. . . , −6,−1,4,9,14,19, . . .

}
.

Notice how these equivalence classes form a partition of the set Z.
We label the five equivalence classes as [0], [1], [2], [3] and [4], but you
know of course that there are other ways to label them. For example,
[0] = [5] = [10] = [15], and so on; and [1] = [6] = [−4], etc. Still, for this
discussion we denote the five classes as [0], [1], [2], [3] and [4].

These five classes form a set, which we shall denote as Z5. Thus

Z5 =
{
[0], [1], [2], [3], [4]

}
is a set of five sets. The interesting thing about Z5 is that even though its
elements are sets (and not numbers), it is possible to add and multiply
them. In fact, we can define the following rules that tell how elements of
Z5 can be added and multiplied.

[a]+ [b] = [a+b]

[a] · [b] = [a ·b ]

For example, [2]+ [1] = [2+1] = [3], and [2] · [2] = [2 ·2] = [4]. We stress
that in doing this we are adding and multiplying sets (more precisely
equivalence classes), not numbers. We added (or multiplied) two elements
of Z5 and obtained another element of Z5.

Here is a trickier example. Observe that [2]+ [3] = [5]. This time we
added elements [2], [3] ∈Z5, and got the element [5] ∈Z5. That was easy,
except where is our answer [5] in the set Z5 = {

[0], [1], [2], [3], [4]
}
? Since

[5]= [0], it is more appropriate to write [2]+ [3]= [0].
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In a similar vein, [2] · [3]= [6] would be written as [2] · [3]= [1] because
[6]= [1]. Test your skill with this by verifying the following addition and
multiplication tables for Z5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

· [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

We call the set Z5 =
{
[0], [1], [2], [3], [4]

}
the integers modulo 5. As our

tables suggest, Z5 is more than just a set: It is a little number system
with its own addition and multiplication. In this way it is like the familiar
set Z which also comes equipped with an addition and a multiplication.

Of course, there is nothing special about the number 5. We can also
define Zn for any natural number n. Here is the definition:

Definition 11.6 Let n ∈N. The equivalence classes of the equivalence
relation ≡ (mod n) are [0], [1], [2], . . . , [n−1]. The integers modulo n is the
set Zn = {

[0], [1], [2], . . . , [n−1]
}
. Elements of Zn can be added by the rule

[a]+ [b]= [a+b] and multiplied by the rule [a] · [b]= [ab].

Given a natural number n, the set Zn is a number system containing n
elements. It has many of the algebraic properties that Z,R and Q possess.
For example, it is probably obvious to you already that elements of Zn obey
the commutative laws [a]+ [b]= [b]+ [a] and [a] · [b]= [b] · [a]. You can also
verify the distributive law [a] · ([b]+ [c])= [a] · [b]+ [a] · [c], as follows:

[a] · ([b]+ [c]) = [a] · [b+ c]

= [a(b+ c)]

= [ab+ac]

= [ab]+ [ac]

= [a] · [b]+ [a] · [c].

The integers modulo n are significant because they more closely fit certain
applications than do other number systems such as Z or R. If you go on to
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take a course in abstract algebra, then you will work extensively with Zn

as well as other, more exotic, number systems. (In such a course you will
also use all of the proof techniques that we have discussed, as well as the
ideas of equivalence relations.)

To close this section we take up an issue that may have bothered
you earlier. It has to do with our definitions of addition [a]+ [b] = [a+ b]
and multiplication [a] · [b] = [ab]. These definitions define addition and
multiplication of equivalence classes in terms of representatives a and b
in the equivalence classes. Since there are many different ways to choose
such representatives, we may well wonder if addition and multiplication
are consistently defined. For example, suppose two people, Alice and Bob,
want to multiply the elements [2] and [3] in Z5. Alice does the calculation
as [2] · [3] = [6] = [1], so her final answer is [1]. Bob does it differently.
Since [2]= [7] and [3]= [8], he works out [2] ·[3] as [7] ·[8]= [56]. Since 56≡ 1
(mod 5), Bob’s answer is [56]= [1], and that agrees with Alice’s answer. Will
their answers always agree or did they just get lucky (with the arithmetic)?

The fact is that no matter how they do the multiplication in Zn, their
answers will agree. To see why, suppose Alice and Bob want to multiply
the elements [a], [b] ∈Zn, and suppose [a]= [a′] and [b]= [b′]. Alice and Bob
do the multiplication as follows:

Alice: [a] · [b]= [ab],
Bob: [a′] · [b′]= [a′b′].

We need to show that their answers agree, that is, we need to show
[ab]= [a′b′]. Since [a]= [a′], we know by Theorem 11.1 that a ≡ a′ (mod n).
Thus n | (a−a′), so a−a′ = nk for some integer k. Likewise, as [b]= [b′], we
know b ≡ b′ (mod n), or n | (b− b′), so b− b′ = n` for some integer `. Thus
we get a = a′+nk and b = b′+n`. Therefore:

ab = (a′+nk)(b′+n`)

= a′b′+a′n`+nkb′+n2k`,

hence ab−a′b′ = n(a′`+kb′+nk`).

This shows n | (ab−a′b′), so ab ≡ a′b′ (mod n), and from that we conclude
[ab]= [a′b′]. Consequently Alice and Bob really do get the same answer, so
we can be assured that the definition of multiplication in Zn is consistent.

Exercise 8 below asks you to show that addition in Zn is similarly
consistent.
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Exercises for Section 11.4

1. Write the addition and multiplication tables for Z2.
2. Write the addition and multiplication tables for Z3.
3. Write the addition and multiplication tables for Z4.
4. Write the addition and multiplication tables for Z6.
5. Suppose [a], [b] ∈Z5 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0]

or [b]= [0]?
6. Suppose [a], [b] ∈Z6 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0]

or [b]= [0]?
7. Do the following calculations in Z9, in each case expressing your answer as [a]

with 0≤ a ≤ 8.
(a) [8]+ [8] (b) [24]+ [11] (c) [21] · [15] (d) [8] · [8]

8. Suppose [a], [b] ∈ Zn, and [a] = [a′] and [b] = [b′]. Alice adds [a] and [b] as
[a]+ [b]= [a+b]. Bob adds them as [a′]+ [b′]= [a′+b′]. Show that their answers
[a+b] and [a′+b′] are the same.

11.5 Relations Between Sets
In the beginning of this chapter, we defined a relation on a set A to
be a subset R ⊆ A× A. This created a framework that could model any
situation in which elements of A are compared to themselves. In this
setting, the statement xR y has elements x and y from A on either side
of the R because R compares elements from A. But there are other
relational symbols that don’t work this way. Consider ∈. The statement
5 ∈Z expresses a relationship between 5 and Z (namely that the element 5
is in the set Z) but 5 and Z are not in any way naturally regarded as both
elements of some set A. To overcome this difficulty, we generalize the idea
of a relation on A to a relation from A to B.
Definition 11.7 A relation from a set A to a set B is a subset R ⊆ A×B.
We often abbreviate the statement (x, y) ∈ R as xR y. The statement (x, y) ∉ R
is abbreviated as x 6R y.
Example 11.16 Suppose A = {

1,2
}
and B =P(A)= {;,

{
1
}
,
{
2
}
,
{
1,2

}}
. Then

R = {
(1,

{
1
}
), (2,

{
2
}
), (1,

{
1,2

}
), (2,

{
1,2

}
)
}⊆ A×B is a relation from A to B. Note

that we have 1R
{
1
}
, 2R

{
2
}
, 1R

{
1,2

}
and 2R

{
1,2

}
. The relation R is the

familiar relation ∈ for the set A, that is, xR X means exactly the same
thing as x ∈ X .
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Diagrams for relations from A to B differ from diagrams for relations
on A. Since there are two sets A and B in a relation from A to B, we have
to draw labeled nodes for each of the two sets. Then we draw arrows from x
to y whenever xR y. The following figure illustrates this for Example 11.16.

;{
1
}{

2
}{

1,2
}

1
2

A B

Figure 11.3. A relation from A to B

The ideas from this chapter show that any relation (whether it is a
familiar one like ≥, ≤, =, |, ∈ or ⊆, or a more exotic one) is really just a
set. Therefore the theory of relations is a part of the theory of sets. In
the next chapter, we will see that this idea touches on another important
mathematical construction, namely functions. We will define a function to
be a special kind of relation from one set to another, and in this context
we will see that any function is really just a set.



CHAPTER 12

Functions

You know from calculus that functions play a fundamental role in math-
ematics. You likely view a function as a kind of formula that describes

a relationship between two (or more) quantities. You certainly understand
and appreciate the fact that relationships between quantities are impor-
tant in all scientific disciplines, so you do not need to be convinced that
functions are important. Still, you may not be aware of the full significance
of functions. Functions are more than merely descriptions of numeric
relationships. In a more general sense, functions can compare and relate
different kinds of mathematical structures. You will see this as your
understanding of mathematics deepens. In preparation of this deepening,
we will now explore a more general and versatile view of functions.

The concept of a relation between sets (Definition 11.7) plays a big role
here, so you may want to quickly review it.

12.1 Functions
Let’s start on familiar ground. Consider the function f (x)= x2 from R to R.
Its graph is the set of points R = {

(x, x2) : x ∈R} ⊆ R×R.

R

R

(x, x2)

x

Figure 12.1. A familiar function

Having read Chapter 11, you may see f in a new light. Its graph
R ⊆ R×R is a relation on the set R. In fact, as we shall see, functions
are just special kinds of relations. Before stating the exact definition, we
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look at another example. Consider the function f (n)= |n|+2 that converts
integers n into natural numbers |n|+2. Its graph is R = {

(n, |n|+2) : n ∈Z}
⊆ Z×N.

N

Z−4 −3 −2 −1 0 1 2 3 4

1

2

3

4

5

6

Figure 12.2. The function f :Z→N, where f (n)= |n|+2

Figure 12.2 shows the graph R as darkened dots in the grid of points Z×N.
Notice that in this example R is not a relation on a single set. The set of
input values Z is different from the set N of output values, so the graph
R ⊆Z×N is a relation from Z to N.

This example illustrates three things. First, a function can be viewed
as sending elements from one set A to another set B. (In the case of f ,
A =Z and B =N.) Second, such a function can be regarded as a relation
from A to B. Third, for every input value n, there is exactly one output
value f (n). In your high school algebra course, this was expressed by the
vertical line test: Any vertical line intersects a function’s graph at most
once. It means that for any input value x, the graph contains exactly one
point of form (x, f (x)). Our main definition, given below, incorporates all of
these ideas.

Definition 12.1 Suppose A and B are sets. A function f from A to B
(denoted as f : A → B) is a relation f ⊆ A×B from A to B, satisfying the
property that for each a ∈ A the relation f contains exactly one ordered
pair of form (a,b). The statement (a,b) ∈ f is abbreviated f (a)= b.

Example 12.1 Consider the function f graphed in Figure 12.2. According
to Definition 12.1, we regard f as the set of points in its graph, that is,
f = {

(n, |n|+2) : n ∈Z} ⊆ Z×N. This is a relation from Z to N, and indeed
given any a ∈Z the set f contains exactly one ordered pair (a, |a|+2) whose
first coordinate is a. Since (1,3) ∈ f , we write f (1)= 3; and since (−3,5) ∈ f
we write f (−3)= 5, etc. In general, (a,b) ∈ f means that f sends the input
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value a to the output value b, and we express this as f (a)= b. This function
can be expressed by a formula: For each input value n, the output value
is |n|+2, so we may write f (n) = |n|+2. All this agrees with the way we
thought of functions in algebra and calculus; the only difference is that
now we also think of a function as a relation.

Definition 12.2 For a function f : A → B, the set A is called the domain
of f . (Think of the domain as the set of possible “input values” for f .) The
set B is called the codomain of f . The range of f is the set

{
f (a) : a ∈ A

} ={
b : (a,b) ∈ f

}
. (Think of the range as the set of all possible “output values”

for f . Think of the codomain as a sort of “target” for the outputs.)

Continuing Example 12.1, the domain of f is Z and its codomain is
N. Its range is

{
f (a) : a ∈Z}= {|a|+2 : a ∈Z}= {

2,3,4,5, . . .
}
. Notice that the

range is a subset of the codomain, but it does not (in this case) equal the
codomain.

In our examples so far, the domains and codomains are sets of numbers,
but this needn’t be the case in general, as the next example indicates.

Example 12.2 Let A = {
p, q, r, s

}
and B = {

0,1,2
}
, and

f = {
(p,0), (q,1), (r,2), (s,2)

}⊆ A×B.

This is a function f : A → B because each element of A occurs exactly once
as a first coordinate of an ordered pair in f . We have f (p) = 0, f (q) = 1,
f (r)= 2 and f (s)= 2. The domain of f is

{
p, q, r, s

}
, and the codomain and

range are both
{
0,1,2

}
.

(p,0)

(p,1)

(p,2)

(q,0)

(q,1)

(q,2)

(r,0)

(r,1)

(r,2)

(s,0)

(s,1)

(s,2)

0

1

2

p q r s A

B

(a)

0

1

2p

q

r

s

(b)

A B

Figure 12.3. Two ways of drawing the function f = {
(p,0), (q,1), (r,2), (s,2)

}
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If A and B are not both sets of numbers it can be difficult to draw
a graph of f : A → B in the traditional sense. Figure 12.3(a) shows an
attempt at a graph of f from Example 12.2. The sets A and B are aligned
roughly as x- and y-axes, and the Cartesian product A ×B is filled in
accordingly. The subset f ⊆ A×B is indicated with dashed lines, and this
can be regarded as a “graph” of f . A more natural visual description of f
is shown in 12.3(b). The sets A and B are drawn side-by-side, and arrows
point from a to b whenever f (a)= b.

In general, if f : A → B is the kind of function you may have encountered
in algebra or calculus, then conventional graphing techniques offer the
best visual description of it. On the other hand, if A and B are finite or if
we are thinking of them as generic sets, then describing f with arrows is
often a more appropriate way of visualizing it.

We emphasize that, according to Definition 12.1, a function is really
just a special kind of set. Any function f : A → B is a subset of A×B. By
contrast, your calculus text probably defined a function as a certain kind of
“rule.” While that intuitive outlook is adequate for the first few semesters
of calculus, it does not hold up well to the rigorous mathematical standards
necessary for further progress. The problem is that words like “rule” are
too vague. Defining a function as a set removes the ambiguity. It makes a
function into a concrete mathematical object.

Still, in practice we tend to think of functions as rules. Given f :Z→N

where f (x)= |x|+2, we think of this as a rule that associates any number
n ∈ Z to the number |n| +2 in N, rather than a set containing ordered
pairs (n, |n|+2). It is only when we have to understand or interpret the
theoretical nature of functions (as we do in this text) that Definition 12.1
comes to bear. The definition is a foundation that gives us license to think
about functions in a more informal way.

The next example brings up a point about notation. Consider a function
such as f : Z2 → Z, whose domain is a Cartesian product. This function
takes as input an ordered pair (m,n) ∈Z2 and sends it to a number f ((m,n)) ∈
Z. To simplify the notation, it is common to write f (m,n) instead of f ((m,n)),
even though this is like writing f x instead of f (x). We also remark that
although we’ve been using the letters f , g and h to denote functions, any
other reasonable symbol could be used. Greek letters such as ϕ and θ are
common.

Example 12.3 Say a function ϕ :Z2 →Z is defined as ϕ(m,n) = 6m−9n.
Note that as a set, this function is ϕ= {(

(m,n),6m−9n
)

: (m,n) ∈Z2}⊆Z2×Z.
What is the range of ϕ?
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To answer this, first observe that for any (m,n) ∈Z2, the value f (m,n)=
6m−9n = 3(2m−3n) is a multiple of 3. Thus every number in the range is
a multiple of 3, so the range is a subset of the set of all multiples of 3. On
the other hand if b = 3k is a multiple of 3 we have ϕ(−k,−k)= 6(−k)−9(−k)=
3k = b, which means any multiple of 3 is in the range of ϕ. Therefore the
range of ϕ is the set

{
3k : k ∈Z}

of all multiples of 3.

To conclude this section, let’s use Definition 12.1 to help us understand
what it means for two functions f : A → B and g : C → D to be equal.
According to our definition, functions f and g are subsets f ⊆ A×B and
g ⊆ C×D. It makes sense to say that f and g are equal if f = g, that is, if
they are equal as sets.

Thus the two functions f = {
(1,a), (2,a), (3,b)

}
and g = {

(3,b), (2,a), (1,a)
}

are equal because the sets f and g are equal. Notice that the domain of
both functions is A = {

1,2,3
}
, the set of first elements x in the ordered pairs

(x, y) ∈ f = g. In general, equal functions must have equal domains.
Observe also that the equality f = g means f (x)= g(x) for every x ∈ A.

We repackage these ideas in the following definition.

Definition 12.3 Two functions f : A → B and g : A → D are equal if
f (x)= g(x) for every x ∈ A.

Observe that f and g can have different codomains and still be equal.
Consider the functions f :Z→N and g :Z→Z defined as f (x)= |x|+2 and
g(x)= |x|+2. Even though their codomains are different, the functions are
equal because f (x)= g(x) for every x in the domain.

Exercises for Section 12.1

1. Suppose A = {
0,1,2,3,4

}
, B = {

2,3,4,5
}
and f = {

(0,3), (1,3), (2,4), (3,2), (4,2)
}
. State

the domain and range of f . Find f (2) and f (1).
2. Suppose A = {

a,b, c,d
}
, B = {

2,3,4,5,6
}
and f = {

(a,2), (b,3), (c,4), (d,5)
}
. State the

domain and range of f . Find f (b) and f (d).
3. There are four different functions f :

{
a,b

} → {
0,1

}
. List them all. Diagrams

will suffice.
4. There are eight different functions f :

{
a,b, c

}→ {
0,1

}
. List them all. Diagrams

will suffice.
5. Give an example of a relation from

{
a,b, c,d

}
to

{
d, e

}
that is not a function.

6. Suppose f :Z→Z is defined as f = {
(x,4x+5) : x ∈Z}

. State the domain, codomain
and range of f . Find f (10).
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7. Consider the set f = {
(x, y) ∈ Z×Z : 3x+ y = 4

}
. Is this a function from Z to Z?

Explain.
8. Consider the set f = {

(x, y) ∈ Z×Z : x+3y = 4
}
. Is this a function from Z to Z?

Explain.
9. Consider the set f = {

(x2, x) : x ∈R}
. Is this a function from R to R? Explain.

10. Consider the set f = {
(x3, x) : x ∈R}

. Is this a function from R to R? Explain.
11. Is the set θ = {

(X , |X |) : X ⊆Z5
}
a function? If so, what is its domain and range?

12. Is the set θ = {(
(x, y), (3y,2x, x+ y)

)
: x, y ∈R}

a function? If so, what is its domain,
codomain and range?

12.2 Injective and Surjective Functions
You may recall from algebra and calculus that a function may be one-
to-one and onto, and these properties are related to whether or not the
function is invertible. We now review these important ideas. In advanced
mathematics, the word injective is often used instead of one-to-one, and
surjective is used instead of onto. Here are the exact definitions:

Definition 12.4 A function f : A → B is:
1. injective (or one-to-one) if for every x, y ∈ A, x 6= y implies f (x) 6= f (y);
2. surjective (or onto) if for every b ∈ B there is an a ∈ A with f (a)= b;
3. bijective if f is both injective and surjective.

Below is a visual description of Definition 12.4. In essence, injective
means that unequal elements in A always get sent to unequal elements in
B. Surjective means that every element of B has an arrow pointing to it,
that is, it equals f (a) for some a in the domain of f .

A

A

A

A

B

B

B

B

b ba

x x

y y
Injective means that for any
two x, y ∈ A, this happens... ...and not this:

Surjective means that for
any b ∈ B... ...this happens:
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For more concrete examples, consider the following functions from R

to R. The function f (x)= x2 is not injective because −2 6= 2, but f (−2)= f (2).
Nor is it surjective, for if b = −1 (or if b is any negative number), then
there is no a ∈R with f (a)= b. On the other hand, g(x)= x3 is both injective
and surjective, so it is also bijective.

There are four possible injective/surjective combinations that a function
may possess. This is illustrated in the following figure showing four
functions from A to B. Functions in the first column are injective, those
in the second column are not injective. Functions in the first row are
surjective, those in the second row are not.

A

A

A

A

B

B

B

B

a

a

a

a

b

b

b

b

c c

c

1

1

1

1

2

2

2

2
3 3

3
(bijective)

Injective Not injective

Surjective

Not surjective

We note in passing that, according to the definitions, a function is
surjective if and only if its codomain equals its range.

Often it is necessary to prove that a particular function f : A → B
is injective. For this we must prove that for any two elements x, y ∈ A,
the conditional statement (x 6= y) ⇒ (

f (x) 6= f (y)
)
is true. The two main

approaches for this are summarized below.

How to show a function f : A → B is injective:

Direct approach:
Suppose x, y ∈ A and x 6= y.

...
Therefore f (x) 6= f (y).

Contrapositive approach:
Suppose x, y ∈ A and f (x)= f (y).

...
Therefore x = y.

Of these two approaches, the contrapositive is often the easiest to use,
especially if f is defined by an algebraic formula. This is because the
contrapositive approach starts with the equation f (x)= f (y) and proceeds
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to the equation x = y. In algebra, as you know, it is usually easier to work
with equations than inequalities.

To prove that a function is not injective, you must disprove the statement
(x 6= y)⇒ (

f (x) 6= f (y)
)
. For this it suffices to find example of two elements

x, y ∈ A for which x 6= y and f (x)= f (y).
Next we examine how to prove that f : A → B is surjective. According

to Definition 12.4, we must prove the statement ∀b ∈ B,∃a ∈ A, f (a)= b. In
words, we must show that for any b ∈ B, there is at least one a ∈ A (which
may depend on b) having the property that f (a)= b. Here is an outline.

How to show a function f : A → B is surjective:

Suppose b ∈ B.
[Prove there exists a ∈ A for which f (a)= b.]

In the second step, we have to prove the existence of an a for which
f (a)= b. For this, just finding an example of such an a would suffice. (How
to find such an example depends on how f is defined. If f is given as a
formula, we may be able to find a by solving the equation f (a) = b for a.
Sometimes you can find a by just plain common sense.) To show f is not
surjective, we must prove the negation of ∀b ∈ B,∃a ∈ A, f (a) = b, that is,
we must prove ∃b ∈ B,∀a ∈ A, f (a) 6= b.

The following examples illustrate these ideas. (For the first example,
note that the set R−{

0
}
is R with the number 0 removed.)

Example 12.4 Show that the function f :R−{
0
}→R defined as f (x)= 1

x +1
is injective but not surjective.

We will use the contrapositive approach to show that f is injective.
Suppose x, y ∈R−{

0
}
and f (x)= f (y). This means 1

x +1= 1
y +1. Subtracting

1 from both sides and inverting produces x = y. Therefore f is injective.
Function f is not surjective because there exists an element b = 1 ∈R

for which f (x)= 1
x +1 6= 1 for every x ∈R−{

0
}
.

Example 12.5 Show that the function g : Z×Z→ Z×Z defined by the
formula g(m,n)= (m+n,m+2n), is both injective and surjective.

We will use the contrapositive approach to show that g is injective.
Thus we need to show that g(m,n)= g(k,`) implies (m,n)= (k,`). Suppose
(m,n), (k,`) ∈ Z×Z and g(m,n)= g(k,`). Then (m+n,m+2n)= (k+`,k+2`). It
follows that m+n = k+` and m+2n = k+2`. Subtracting the first equation
from the second gives n = `. Next, subtract n = ` from m+n = k+` to get
m = k. Since m = k and n = `, it follows that (m,n) = (k,`). Therefore g is
injective.
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To see that g is surjective, consider an arbitrary element (b, c) ∈Z×Z.
We need to show that there is some (x, y) ∈Z×Z for which g(x, y)= (b, c). To
find (x, y), note that g(x, y)= (b, c) means (x+ y, x+2y)= (b, c). This leads to
the following system of equations:

x + y = b
x + 2y = c.

Solving gives x = 2b− c and y = c− b. Then (x, y) = (2b− c, c− b). We now
have g(2b− c, c−b)= (b, c), and it follows that g is surjective.

Example 12.6 Consider function h :Z×Z→Q defined as h(m,n)= m
|n|+1

.
Determine whether this is injective and whether it is surjective.

This function is not injective because of the unequal elements (1,2) and
(1,−2) in Z×Z for which h(1,2)= h(1,−2)= 1

3 . However, h is surjective: Take
any element b ∈Q. Then b = c

d for some c,d ∈Z. Notice we may assume d is
positive by making c negative, if necessary. Then h(c,d−1)= c

|d−1|+1 = c
d = b.

Exercises for Section 12.2

1. Let A = {
1,2,3,4

}
and B = {

a,b, c
}
. Give an example of a function f : A → B that

is neither injective nor surjective.
2. Consider the logarithm function ln : (0,∞)→R. Decide whether this function is

injective and whether it is surjective.
3. Consider the cosine function cos :R→R. Decide whether this function is injective

and whether it is surjective. What if it had been defined as cos :R→ [−1,1]?
4. A function f : Z→ Z×Z is defined as f (n) = (2n,n+ 3). Verify whether this

function is injective and whether it is surjective.
5. A function f :Z→Z is defined as f (n)= 2n+1. Verify whether this function is

injective and whether it is surjective.
6. A function f : Z×Z→ Z is defined as f (m,n) = 3n−4m. Verify whether this

function is injective and whether it is surjective.
7. A function f : Z×Z→ Z is defined as f (m,n) = 2n−4m. Verify whether this

function is injective and whether it is surjective.
8. A function f :Z×Z→Z×Z is defined as f (m,n)= (m+n,2m+n). Verify whether

this function is injective and whether it is surjective.

9. Prove that the function f :R−{
2
}→R−{

5
}
defined by f (x)= 5x+1

x−2
is bijective.

10. Prove the function f :R−{
1
}→R−{

1
}
defined by f (x)=

(
x+1
x−1

)3
is bijective.

11. Consider the function θ :
{
0,1

}×N→Z defined as θ(a,b)= (−1)ab. Is θ injective?
Is it surjective? Bijective? Explain.
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12. Consider the function θ :
{
0,1

}×N→Z defined as θ(a,b)= a−2ab+b. Is θ injective?
Is it surjective? Bijective? Explain.

13. Consider the function f :R2 →R2 defined by the formula f (x, y)= (xy, x3). Is f
injective? Is it surjective? Bijective? Explain.

14. Consider the function θ : P(Z)→P(Z) defined as θ(X )= X . Is θ injective? Is it
surjective? Bijective? Explain.

15. This question concerns functions f :
{
A,B,C,D,E,F,G

}→ {
1,2,3,4,5,6,7

}
. How

many such functions are there? How many of these functions are injective?
How many are surjective? How many are bijective?

16. This question concerns functions f :
{
A,B,C,D,E

}→ {
1,2,3,4,5,6,7

}
. How many

such functions are there? How many of these functions are injective? How
many are surjective? How many are bijective?

17. This question concerns functions f :
{
A,B,C,D,E,F,G

}→ {
1,2

}
. How many such

functions are there? How many of these functions are injective? How many
are surjective? How many are bijective?

18. Prove that the function f :N→Z defined as f (n)= (−1)n(2n−1)+1
4

is bijective.

12.3 The Pigeonhole Principle
Here is a simple but useful idea. Imagine there is a set A of pigeons and
a set B of pigeon-holes, and all the pigeons fly into the pigeon-holes. You
can think of this as describing a function f : A → B, where pigeon X flies
into pigeon-hole f (X ). Figure 12.4 illustrates this.

Pigeons Pigeon-holes

(a)

f
Pigeons Pigeon-holes

(b)

f

Figure 12.4. The pigeonhole principle

In Figure 12.4(a) there are more pigeons than pigeon-holes, and it
is obvious that in such a case at least two pigeons have to fly into the
same pigeon-hole, meaning that f is not injective. In Figure 12.4(b) there
are fewer pigeons than pigeon-holes, so clearly at least one pigeon-hole
remains empty, meaning that f is not surjective.
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Although the underlying idea expressed by these figures has little to
do with pigeons, it is nonetheless called the pigeonhole principle:
The Pigeonhole Principle
Suppose A and B are finite sets and f : A → B is any function. Then:
1. If |A| > |B|, then f is not injective.
2. If |A| < |B|, then f is not surjective.

Though the pigeonhole principle is obvious, it can be used to prove
some things that are not so obvious.
Example 12.7 Prove the following proposition.
Proposition If A is any set of 10 integers between 1 and 100, then there
exist two different subsets X ⊆ A and Y ⊆ A for which the sum of elements
in X equals the sum of elements in Y .

To illustrate what this proposition is saying, consider the random set

A = {
5,7,12,11,17,50,51,80,90,100

}
of 10 integers between 1 and 100. Notice that A has subsets X = {

5,80
}
and

Y = {
7,11,17,50

}
for which the sum of the elements in X equals the sum of

those in Y . If we tried to “mess up” A by changing the 5 to a 6, we get

A = {
6,7,12,11,17,50,51,80,90,100

}
which has subsets X = {

7,12,17,50
}
and Y = {

6,80
}
both of whose elements

add up to the same number (86). The proposition asserts that this is always
possible, no matter what A is. Here is a proof:

Proof. Suppose A ⊆ {
1,2,3,4, . . . ,99,100

}
and |A| = 10, as stated. Notice that

if X ⊆ A, then X has no more than 10 elements, each between 1 and 100,
and therefore the sum of all the elements of X is less than 100 ·10= 1000.
Consider the function

f : P(A)→ {
0,1,2,3,4, . . . ,1000

}
where f (X ) is the sum of the elements in X . (Examples: f

({
3,7,50

})= 60;
f
({

1,70,80,95
}) = 246.) As |P(A)| = 210 = 1024 > 1001 = ∣∣{0,1,2,3, . . . ,1000

}∣∣,
it follows from the pigeonhole principle that f is not injective. Therefore
there are two unequal sets X ,Y ∈ P(A) for which f (X ) = f (Y ). In other
words, there are subsets X ⊆ A and Y ⊆ A for which the sum of elements
in X equals the sum of elements in Y . ■
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Example 12.8 Prove the following proposition.

Proposition There are at least two Texans with the same number of
hairs on their heads.

Proof. We will use two facts. First, the population of Texas is more than
twenty million. Second, it is a biological fact that every human head
has fewer than one million hairs. Let A be the set of all Texans, and
let B = {

0,1,2,3,4, . . . ,1000000
}
. Let f : A → B be the function for which f (x)

equals the number of hairs on the head of x. Since |A| > |B|, the pigeonhole
principle asserts that f is not injective. Thus there are two Texans x and
y for whom f (x)= f (y), meaning that they have the same number of hairs
on their heads. ■

Proofs that use the pigeonhole principle tend to be inherently non-
constructive, in the sense discussed in Section 7.4. For example, the above
proof does not explicitly give us of two Texans with the same number of
hairs on their heads; it only shows that two such people exist. If we were
to make a constructive proof, we could find examples of two bald Texans.
Then they have the same number of head hairs, namely zero.

Exercises for Section 12.3
1. Prove that if six numbers are chosen at random, then at least two of them will

have the same remainder when divided by 5.

2. Prove that if a is a natural number, then there exist two unequal natural
numbers k and ` for which ak −a` is divisible by 10.

3. Prove that if six natural numbers are chosen at random, then the sum or
difference of two of them is divisible by 9.

4. Consider a square whose side-length is one unit. Select any five points from
inside this square. Prove that at least two of these points are within

p
2

2 units
of each other.

5. Prove that any set of seven distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

6. Given a sphere S, a great circle of S is the intersection of S with a plane
through its center. Every great circle divides S into two parts. A hemisphere
is the union of the great circle and one of these two parts. Prove that if five
points are placed arbitrarily on S, then there is a hemisphere that contains
four of them.

7. Prove or disprove: Any subset X ⊆ {
1,2,3, . . . ,2n

}
with |X | > n contains two

(unequal) elements a,b ∈ X for which a | b or b | a.
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12.4 Composition
You should be familiar with the notion of function composition from algebra
and calculus. Still, it is worthwhile to revisit it now with our more
sophisticated ideas about functions.

Definition 12.5 Suppose f : A → B and g : B → C are functions with the
property that the codomain of f equals the domain of g. The composition
of f with g is another function, denoted as g◦ f and defined as follows: If
x ∈ A, then g◦f (x)= g( f (x)). Therefore g◦f sends elements of A to elements
of C, so g◦ f : A → C.

The following figure illustrates the definition. Here f : A → B, g : B → C,
and g◦ f : A → C. We have, for example, g◦ f (0)= g( f (0))= g(2)= 4. Be very
careful with the order of the symbols. Even though g comes first in the
symbol g◦f , we work out g◦f (x) as g( f (x)), with f acting on x first, followed
by g acting on f (x).

A

A

C

CB

3
2
1
0

3
2
1
0

7
6
5
4

7
6
5
4

3
2
1

f g

g ◦ f

Figure 12.5. Composition of two functions

Notice that the composition g ◦ f also makes sense if the range of f
is a subset of the domain of g. You should take note of this fact, but to
keep matters simple we will continue to emphasize situations where the
codomain of f equals the domain of g.

Example 12.9 Suppose A = {
a,b, c

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B

be the function f = {
(a,0), (b,1), (c,0)

}
, and let g : B → C be the function

g = {
(0,3), (1,1)

}
. Then g ◦ f = {

(a,3), (b,1), (c,3)
}
.

Example 12.10 Suppose A = {
a,b, c

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B

be the function f = {
(a,0), (b,1), (c,0)

}
, and let g : C → B be the function

g = {
(1,0), (2,1), (3,1)

}
. In this situation the composition g ◦ f is not defined

because the codomain B of f is not the same set as the domain C of g.
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Remember: In order for g◦ f to make sense, the codomain of f must equal
the domain of g. (Or at least be a subset of it.)

Example 12.11 Let f :R→R be defined as f (x) = x2 + x, and g :R→R be
defined as g(x) = x+1. Then g ◦ f : R→ R is the function defined by the
formula g ◦ f (x)= g( f (x))= g(x2 + x)= x2 + x+1.

Since the domains and codomains of g and f are the same, we can in
this case do a composition in the other order. Note that f ◦ g :R→R is the
function defined as f ◦ g (x)= f (g(x))= f (x+1)= (x+1)2 + (x+1)= x2 +3x+2.

This example illustrates that even when g◦ f and f ◦ g are both defined,
they are not necessarily equal. We can express this fact by saying function
composition is not commutative.

We close this section by proving several facts about function composition
that you are likely to encounter in your future study of mathematics. First,
we note that, although it is not commutative, function composition is
associative.

Theorem 12.1 Composition of functions is associative. That is if f : A → B,
g : B → C and h : C → D, then (h◦ g)◦ f = h◦ (g ◦ f ).

Proof. Suppose f , g,h are as stated. It follows from Definition 12.5 that
both (h◦ g)◦ f and h◦ (g ◦ f ) are functions from A to D. To show that they
are equal, we just need to show(

(h◦ g)◦ f
)
(x)=

(
h◦ (g ◦ f )

)
(x)

for every x ∈ A. Note that Definition 12.5 yields(
(h◦ g)◦ f

)
(x)= (h◦ g)( f (x))= h(g( f (x)).

Also (
h◦ (g ◦ f )

)
(x)= h(g ◦ f (x))= h(g( f (x))).

Thus (
(h◦ g)◦ f

)
(x)=

(
h◦ (g ◦ f )

)
(x),

as both sides equal h(g( f (x))). ■

Theorem 12.2 Suppose f : A → B and g : B → C. If both f and g are
injective, then g◦ f is injective. If both f and g are surjective, then g◦ f is
surjective.
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Proof. First suppose both f and g are injective. To see that g◦ f is injective,
we must show that g◦ f (x)= g◦ f (y) implies x = y. Suppose g◦ f (x)= g◦ f (y).
This means g( f (x)) = g( f (y)). It follows that f (x) = f (y). (For otherwise g
wouldn’t be injective.) But since f (x)= f (y) and f is injective, it must be
that x = y. Therefore g ◦ f is injective.

Next suppose both f and g are surjective. To see that g◦ f is surjective,
we must show that for any element c ∈ C, there is a corresponding element
a ∈ A for which g ◦ f (a) = c. Thus consider an arbitrary c ∈ C. Because g
is surjective, there is an element b ∈ B for which g(b) = c. And because
f is surjective, there is an element a ∈ A for which f (a) = b. Therefore
g( f (a))= g(b)= c, which means g ◦ f (a)= c. Thus g ◦ f is surjective. ■

Exercises for Section 12.4

1. Suppose A = {
5,6,8

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B be the function f ={

(5,1), (6,0), (8,1)
}
, and g : B → C be g = {

(0,1), (1,1)
}
. Find g ◦ f .

2. Suppose A = {
1,2,3,4

}
, B = {

0,1,2
}
, C = {

1,2,3
}
. Let f : A → B be

f = {
(1,0), (2,1), (3,2), (4,0)

}
,

and g : B → C be g = {
(0,1), (1,1), (2,3)

}
. Find g ◦ f .

3. Suppose A = {
1,2,3

}
. Let f : A → A be the function f = {

(1,2), (2,2), (3,1)
}
, and let

g : A → A be the function g = {
(1,3), (2,1), (3,2)

}
. Find g ◦ f and f ◦ g.

4. Suppose A = {
a,b, c

}
. Let f : A → A be the function f = {

(a, c), (b, c), (c, c)
}
, and let

g : A → A be the function g = {
(a,a), (b,b), (c,a)

}
. Find g ◦ f and f ◦ g.

5. Consider the functions f , g : R→ R defined as f (x) = 3px+1 and g(x) = x3. Find
the formulas for g ◦ f and f ◦ g.

6. Consider the functions f , g :R→R defined as f (x)= 1
x2+1 and g(x)= 3x+2. Find

the formulas for g ◦ f and f ◦ g.
7. Consider the functions f , g : Z×Z → Z×Z defined as f (m,n) = (mn,m2) and

g(m,n)= (m+1,m+n). Find the formulas for g ◦ f and f ◦ g.
8. Consider the functions f , g : Z×Z→ Z×Z defined as f (m,n) = (3m−4n,2m+n)

and g(m,n)= (5m+n,m). Find the formulas for g ◦ f and f ◦ g.
9. Consider the functions f :Z×Z→Z defined as f (m,n)= m+n and g :Z→Z×Z

defined as g(m)= (m,m). Find the formulas for g ◦ f and f ◦ g.
10. Consider the function f :R2 →R2 defined by the formula f (x, y)= (xy, x3). Find

a formula for f ◦ f .
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12.5 Inverse Functions
You may recall from calculus that if a function f is injective and surjective,
then it has an inverse function f −1 that “undoes” the effect of f in the
sense that f −1( f (x))= x for every x in the domain. (For example, if f (x)= x3,
then f −1(x) = 3

p
x.) We now review these ideas. Our approach uses two

ingredients, outlined in the following definitions.

Definition 12.6 Given a set A, the identity function on A is the func-
tion iA : A → A defined as iA(x)= x for every x ∈ A.

Example: If A = {
1,2,3

}
, then iA = {

(1,1), (2,2), (3,3)
}
. Also iZ = {

(n,n) : n ∈Z}
.

The identity function on a set is the function that sends any element of
the set to itself.

Notice that for any set A, the identity function iA is bijective: It is
injective because iA(x)= iA(y) immediately reduces to x = y. It is surjective
because if we take any element b in the codomain A, then b is also in the
domain A, and iA(b)= b.

Definition 12.7 Given a relation R from A to B, the inverse relation
of R is the relation from B to A defined as R−1 = {

(y, x) : (x, y) ∈ R
}
. In other

words, the inverse of R is the relation R−1 obtained by interchanging the
elements in every ordered pair in R.

For example, let A = {
a,b, c

}
and B = {

1,2,3
}
, and suppose f is the

relation f = {
(a,2), (b,3), (c,1)

}
from A to B. Then f −1 = {

(2,a), (3,b), (1, c)
}

and this is a relation from B to A. Notice that f is actually a function
from A to B, and f −1 is a function from B to A. These two relations are
drawn below. Notice the drawing for relation f −1 is just the drawing for f
with arrows reversed.

A AB B

c
b
a

c
b
a

3
2
1

3
2
1

f = {
(a,2), (b,3), (c,1)

}
f −1 = {

(2,a), (3,b), (1, c)
}

For another example, let A and B be the same sets as above, but consider
the relation g = {

(a,2), (b,3), (c,3)
}
from A to B. Then g−1 = {

(2,a), (3,b), (3, c)
}

is a relation from B to A. These two relations are sketched below.
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A AB B

c
b
a

c
b
a

3
2
1

3
2
1

g = {
(a,2), (b,3), (c,3)

}
g−1 = {

(2,a), (3,b), (3, c)
}

This time, even though the relation g is a function, its inverse g−1 is
not a function because the element 3 occurs twice as a first coordinate of
an ordered pair in g−1.

In the above examples, relations f and g are both functions, and f −1 is
a function and g−1 is not. This raises a question: What properties does f
have and g lack that makes f −1 a function and g−1 not a function? The
answer is not hard to see. Function g is not injective because g(b)= g(c)= 3,
and thus (b,3) and (c,3) are both in g. This causes a problem with g−1

because it means (3,b) and (3, c) are both in g−1, so g−1 can’t be a function.
Thus, in order for g−1 to be a function, it would be necessary that g be
injective.

But that is not enough. Function g also fails to be surjective because
no element of A is sent to the element 1 ∈ B. This means g−1 contains no
ordered pair whose first coordinate is 1, so it can’t be a function from B to
A. If g−1 were to be a function it would be necessary that g be surjective.

The previous two paragraphs suggest that if g is a function, then it
must be bijective in order for its inverse relation g−1 to be a function.
Indeed, this is easy to verify. Conversely, if a function is bijective, then its
inverse relation is easily seen to be a function. We summarize this in the
following theorem.

Theorem 12.3 Let f : A → B be a function. Then f is bijective if and only
if the inverse relation f −1 is a function from B to A.

Suppose f : A → B is bijective, so according to the theorem f −1 is a
function. Observe that the relation f contains all the pairs (x, f (x)) for x ∈ A,
so f −1 contains all the pairs ( f (x), x). But ( f (x), x) ∈ f −1 means f −1( f (x))= x.
Therefore f −1◦ f (x)= x for every x ∈ A. From this we get f −1◦ f = iA. Similar
reasoning produces f ◦ f −1 = iB. This leads to the following definitions.

Definition 12.8 If f : A → B is bijective then its inverse is the function
f −1 : B → A. Functions f and f −1 obey the equations f −1 ◦ f = iA and
f ◦ f −1 = iB.
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You probably recall from algebra and calculus at least one technique
for computing the inverse of a bijective function f : to find f −1, start with
the equation y= f (x). Then interchange variables to get x = f (y). Solving
this equation for y (if possible) produces y= f −1(x). The next two examples
illustrate this.

Example 12.12 The function f :R→R defined as f (x)= x3 +1 is bijective.
Find its inverse.

We begin by writing y = x3 +1. Now interchange variables to obtain
x = y3 +1. Solving for y produces y= 3px−1. Thus

f −1(x)= 3px−1.

(You can check your answer by computing

f −1( f (x))= 3
√

f (x)−1= 3
√

x3 +1−1= x.

Therefore f −1( f (x))= x. Any answer other than x indicates a mistake.)

We close with one final example. Example 12.5 showed that the function
g :Z×Z→Z×Z defined by the formula g(m,n)= (m+n,m+2n) is bijective.
Let’s find its inverse. The approach outlined above should work, but we
need to be careful to keep track of coordinates in Z×Z. We begin by
writing (x, y)= g(m,n), then interchanging the variables (x, y) and (m,n) to
get (m,n)= g(x, y). This gives

(m,n)= (x+ y, x+2y),

from which we get the following system of equations:

x + y = m
x + 2y = n.

Solving this system using techniques from algebra with which you are
familiar, we get

x = 2m−n
y = n−m.

Then (x, y)= (2m−n,n−m), so g−1(m,n)= (2m−n,n−m).
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We can check our work by confirming that g−1(g(m,n))= (m,n). Doing
the math,

g−1(g(m,n)) = g−1(m+n,m+2n)

= (
2(m+n)− (m+2n), (m+2n)− (m+n)

)
= (m,n).

Exercises for Section 12.5

1. Check that the function f : Z→ Z defined by f (n) = 6− n is bijective. Then
compute f −1.

2. In Exercise 9 of Section 12.2 you proved that f : R− {
2
} → R− {

5
}
defined by

f (x)= 5x+1
x−2

is bijective. Now find its inverse.

3. Let B = {
2n : n ∈ Z} = {

. . . , 1
4 , 1

2 ,1,2,4,8, . . .
}
. Show that the function f : Z→ B

defined as f (n)= 2n is bijective. Then find f −1.
4. The function f :R→ (0,∞) defined as f (x)= ex3+1 is bijective. Find its inverse.
5. The function f :R→R defined as f (x)=πx− e is bijective. Find its inverse.
6. The function f :Z×Z→Z×Z defined by the formula f (m,n)= (5m+4n,4m+3n)

is bijective. Find its inverse.
7. Show that the function f :R2 →R2 defined by the formula f (x, y)= ((x2 +1)y, x3)

is bijective. Then find its inverse.
8. Is the function θ : P(Z)→P(Z) defined as θ(X )= X bijective? If so, what is its

inverse?
9. Consider the function f : R×N→N×R defined as f (x, y) = (y,3xy). Check that

this is bijective; find its inverse.

10. Consider f :N→Z defined as f (n)= (−1)n(2n−1)+1
4

. This function is bijective
by Exercise 18 in Section 12.2. Find its inverse.

12.6 Image and Preimage
It is time to take up a matter of notation that you will encounter in future
mathematics classes. Suppose we have a function f : A → B. If X ⊆ A, the
expression f (X ) has a special meaning. It stands for the set

{
f (x) : x ∈ X

}
.

Similarly, if Y ⊆ B then f −1(Y ) has a meaning even if f is not invertible.
The expression f −1(Y ) stands for the set

{
x ∈ A : f (x) ∈ Y

}
. Here are the

precise definitions.
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Definition 12.9 Suppose f : A → B is a function.
1. If X ⊆ A, the image of X is the set f (X )= {

f (x) : x ∈ X
}⊆ B.

2. If Y ⊆ B, the preimage of Y is the set f −1(Y )= {
x ∈ A : f (x) ∈Y

}⊆ A.

In words, the image f (X ) of X is the set of all things in B that f sends
elements of X to. (Roughly speaking, you might think of f (X ) as a kind of
distorted “copy” or “image” of X in B.) The preimage f −1(Y ) of Y is the set
of all things in A that f sends into Y .

Maybe you have already encountered these ideas in linear algebra, in
a setting involving a linear transformation T : V →W between two vector
spaces. If X ⊆V is a subspace of V , then its image T(X ) is a subspace of W.
If Y ⊆W is a subspace of W, then its preimage T−1(Y ) is a subspace of V .
(If this does not sound familiar, then ignore it.)

Example 12.13 Let f :
{
s, t,u,v,w, x, y, z

}→ {
0,1,2,3,4,5,6,7,8,9

}
, where

f = {
(s,4), (t,8), (u,8), (v,1), (w,2), (x,4), (y,6), (z,4)

}
.

Notice that f is neither injective nor surjective, so it certainly is not
invertible. Be sure you understand the following statements.
1. f

({
s, t,u, z

})= {
8,4

}
2. f

({
s, x, z

})= {
4
}

3. f
({

s,v,w, y
})= {

1,2,4,6
}

4. f −1({
4
})= {

s, x, z
}

5. f −1({
4,9

})= {
s, x, z

}
6. f −1({

9
})=;

7. f −1({
1,4,8

})= {
s, t,u,v, x, z

}
It is important to realize that the X and Y in Definition 12.9 are

subsets (not elements!) of A and B. Note that in the above example we
had f −1({

4
})= {

s, x, z
}
, while f −1(4) has absolutely no meaning because the

inverse function f −1 does not exist. Likewise, there is a subtle difference
between f

({
s
})= {

4
}
and f (s)= 4. Be careful.

Example 12.14 Consider the function f : R → R defined as f (x) = x2.
Note that f

({
0,1,2

})= {
0,1,4

}
and f −1({

0,1,4
})= {−2,−1,0,1,2

}
. This shows

f −1( f (X )) 6= X in general.
Using the same f , now check your understanding of the following

statements involving images and preimages of intervals: f ([−2,3]) = [0,9],
and f −1([0,9])= [−3,3]. Also f (R)= [0,∞) and f −1([−2,−1])=;.
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If you continue with mathematics you are likely to encounter the
following results. For now, you are asked to prove them in the exercises.

Theorem 12.4 Suppose f : A → B is a function. Let W , X ⊆ A, and Y , Z ⊆ B.
Then:
1. f (W ∩ X )⊆ f (W)∩ f (X )
2. f (W ∪ X )= f (W)∪ f (X )
3. f −1(Y ∩Z)= f −1(Y )∩ f −1(Z)
4. f −1(Y ∪Z)= f −1(Y )∪ f −1(Z)
5. X ⊆ f −1( f (X ))
6. f ( f −1(Y ))⊆Y .

Exercises for Section 12.6

1. Consider the function f : R→ R defined as f (x) = x2 + 3. Find f ([−3,5]) and
f −1([12,19]).

2. Consider the function f :
{
1,2,3,4,5,6,7

}→ {
0,1,2,3,4,5,6,7,8,9

}
given as

f = {
(1,3), (2,8), (3,3), (4,1), (5,2), (6,4), (7,6)

}
.

Find: f
({

1,2,3
})
, f

({
4,5,6,7

})
, f (;), f −1({

0,5,9
})

and f −1({
0,3,5,9

})
.

3. This problem concerns functions f :
{
1,2,3,4,5,6,7

} → {
0,1,2,3,4

}
. How many

such functions have the property that
∣∣ f −1({

3
})∣∣= 3?

4. This problem concerns functions f :
{
1,2,3,4,5,6,7,8

} → {
0,1,2,3,4,5,6

}
. How

many such functions have the property that
∣∣ f −1({

2
})∣∣= 4?

5. Consider a function f : A → B and a subset X ⊆ A. We observed in Section 12.6
that f −1( f (X )) 6= X in general. However X ⊆ f −1( f (X )) is always true. Prove this.

6. Given a function f : A → B and a subset Y ⊆ B, is f ( f −1(Y )) = Y always true?
Prove or give a counterexample.

7. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∩ X )⊆ f (W)∩ f (X ).
8. Given a function f : A → B and subsets W , X ⊆ A, then f (W ∩ X )= f (W)∩ f (X ) is

false in general. Produce a counterexample.
9. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∪ X )= f (W)∪ f (X ).

10. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∩Z)= f −1(Y )∩ f −1(Z).
11. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∪Z)= f −1(Y )∪ f −1(Z).
12. Consider f : A → B. Prove that f is injective if and only if X = f −1( f (X )) for all

X ⊆ A. Prove that f is surjective if and only if f ( f −1(Y ))=Y for all Y ⊆ B.
13. Let f : A → B be a function, and X ⊆ A. Prove or disprove: f

(
f −1( f (X ))

)= f (X ).
14. Let f : A → B be a function, and Y ⊆ B. Prove or disprove: f −1(

f ( f −1(Y ))
)= f −1(Y ).



CHAPTER 13

Cardinality of Sets

This chapter is all about cardinality of sets. At first this looks like a
very simple concept. To find the cardinality of a set, just count its

elements. If A = {
a,b, c,d

}
, then |A| = 4; if B = {

n ∈ Z : −5 ≤ n ≤ 5
}
, then

|B| = 11. In this case |A| < |B|. What could be simpler than that?
Actually, the idea of cardinality becomes quite subtle when the sets

are infinite. The main point of this chapter is to explain how there are
numerous different kinds of infinity, and some infinities are bigger than
others. Two sets A and B can both have infinite cardinality, yet |A| < |B|.
13.1 Sets with Equal Cardinalities
We begin with a discussion of what it means for two sets to have the
same cardinality. Up until this point we’ve said |A| = |B| if A and B have
the same number of elements: Count the elements of A, then count the
elements of B. If you get the same number, then |A| = |B|.

Although this is a fine strategy if the sets are finite (and not too big!),
it doesn’t apply to infinite sets because we’d never be done counting their
elements. We need a new approach that applies to both finite and infinite
sets. Here it is:

Definition 13.1 Two sets A and B have the same cardinality, written
|A| = |B|, if there exists a bijective function f : A → B. If no such bijective
function exists, then the sets have unequal cardinalities, that is, |A| 6= |B|.

e
d
c
b
a

4
3
2
1
0

A B
f

The above picture illustrates our definition. There is a bijective function
f : A → B, so |A| = |B|. The function f matches up A with B. Think of f as
describing how to overlay A onto B so that they fit together perfectly.
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On the other hand, if A and B are as indicated in either of the following
figures, then there can be no bijection f : A → B. (The best we can do is a
function that is either injective or surjective, but not both). Therefore the
definition says |A| 6= |B| in these cases.

d
c
b
a

4
3
2
1
0

A B
f

d
c
b
a

e
3
2
1
0

A B
f

Example 13.1 The sets A = {
n ∈ Z : 0 ≤ n ≤ 5

}
and B = {

n ∈ Z : −5 ≤ n ≤ 0
}

have the same cardinality because there is a bijective function f : A → B
given by the rule f (n)=−n.

Several comments are in order. First, if |A| = |B|, there can be lots of
bijective functions from A to B. We only need to find one of them in order to
conclude |A| = |B|. Second, as bijective functions play such a big role here,
we use the word bijection to mean bijective function. Thus the function
f (n)=−n from Example 13.1 is a bijection. Also, an injective function is
called an injection and a surjective function is called a surjection.

We emphasize and reiterate that Definition 13.1 applies to finite as
well as infinite sets. If A and B are infinite, then |A| = |B| provided there
exists a bijection f : A → B. If no such bijection exists, then |A| 6= |B|.
Example 13.2 This example shows that |N| = |Z|. To see why this is true,
notice that the following table describes a bijection f :N→Z.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

f (n) 0 1 −1 2 −2 3 −3 4 −4 5 −5 6 −6 7 −7 . . .

Notice that f is described in such a way that it is both injective and
surjective. Every integer appears exactly once on the infinitely long second
row. Thus, according to the table, given any b ∈Z there is some natural
number n with f (n)= b, so f is surjective. It is injective because the way
the table is constructed forces f (m) 6= f (n) whenever m 6= n. Because of this
bijection f :N→Z, we must conclude from Definition 13.1 that |N| = |Z|.

Example 13.2 may seem slightly unsettling. On one hand it makes
sense that |N| = |Z| because N and Z are both infinite, so their cardinalities
are both “infinity.” On the other hand, Z may seem twice as large as
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N because Z has all the negative integers as well as the positive ones.
Definition 13.1 settles the issue. Because the bijection f :N→Z matches
up N with Z, it follows that |N| = |Z|. We summarize this with a theorem.
Theorem 13.1 There exists a bijection f :N→Z. Therefore |N| = |Z|.

The fact that N and Z have the same cardinality might prompt us
compare the cardinalities of other infinite sets. How, for example, do N
and R compare? Let’s turn our attention to this.

In fact, |N| 6= |R|. This was first recognized by Georg Cantor (1845–1918),
who devised an ingenious argument to show that there are no surjective
functions f :N→R. (This in turn implies that there can be no bijections
f :N→R, so |N| 6= |R| by Definition 13.1.)

We now describe Cantor’s argument for why there are no surjections
f :N→R. We will reason informally, rather than writing out an exact proof.
Take any arbitrary function f :N→R. Here’s why f can’t be surjective:

Imagine making a table for f , where values of n in N are in the left-
hand column and the corresponding values f (n) are on the right. The
first few entries might look something as follows. In this table, the real
numbers f (n) are written with all their decimal places trailing off to the
right. Thus, even though f (1) happens to be the real number 0.4, we write
it as 0.40000000 . . . ., etc.

n f (n)

1 0 . 4 0 0 0 0 0 0 0 0 0 0 0 0 0. . .
2 8 . 5 0 0 6 0 7 0 8 6 6 6 9 0 0. . .
3 7 . 5 0 5 0 0 9 4 0 0 4 4 1 0 1. . .
4 5 . 5 0 7 0 4 0 0 8 0 4 8 0 5 0. . .
5 6 . 9 0 0 2 6 0 0 0 0 0 0 5 0 6. . .
6 6 . 8 2 8 0 9 5 8 2 0 5 0 0 2 0. . .
7 6 . 5 0 5 0 5 5 5 0 6 5 5 8 0 8. . .
8 8 . 7 2 0 8 0 6 4 0 0 0 0 4 4 8. . .
9 0 . 5 5 0 0 0 0 8 8 8 8 0 0 7 7. . .

10 0 . 5 0 0 2 0 7 2 2 0 7 8 0 5 1. . .
11 2 . 9 0 0 0 0 8 8 0 0 0 0 9 0 0. . .
12 6 . 5 0 2 8 0 0 0 8 0 0 9 6 7 1. . .
13 8 . 8 9 0 0 8 0 2 4 0 0 8 0 5 0. . .
14 8 . 5 0 0 0 8 7 4 2 0 8 0 2 2 6. . .

...
...
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There is a diagonal shaded band in the table. For each n ∈N, this band
covers the nth decimal place of f (n):

The 1st decimal place of f (1) is the 1st entry on the diagonal.
The 2nd decimal place of f (2) is the 2nd entry on the diagonal.
The 3rd decimal place of f (3) is the 3rd entry on the diagonal.
The 4th decimal place of f (4) is the 4th entry on the diagonal, etc.

The diagonal helps us construct a number b ∈R that is unequal to any f (n).
Just let the nth decimal place of b differ from the nth entry of the diagonal.
Then the nth decimal place of b differs from the nth decimal place of f (n).
In order to be definite, define b to be the positive number less than 1 whose
nth decimal place is 0 if the nth decimal place of f (n) is not 0, and whose
nth decimal place is 1 if the nth decimal place of f (n) equals 0. Thus, for
the function f illustrated in the above table, we have

b = 0.01010001001000 . . .

and b has been defined so that, for any n ∈ N, its nth decimal place is
unequal to the nth decimal place of f (n). Therefore f (n) 6= b for every
natural number n, meaning f is not surjective.

Since this argument applies to any function f :N→R (not just the one
in the above example) we conclude that there exist no bijections f :N→R,
so |N| 6= |R| by Definition 13.1. We summarize this as a theorem.

Theorem 13.2 There exists no bijection f :N→R. Therefore |N| 6= |R|.

This is our first indication of how there are different kinds of infinities.
Both N and R are infinite sets, yet |N| 6= |R|. We will continue to develop
this theme throughout this chapter. The next example shows that the
intervals (0,∞) and (0,1) on R have the same cardinality.

∞

1


1

x

P

0−1

f (x)

Figure 13.1. A bijection f : (0,∞)→ (0,1)
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Example 13.3 Show that |(0,∞)| = |(0,1)|.
To accomplish this, we need to show that there is a bijection f : (0,∞)→ (0,1).
We describe this function geometrically. Consider the interval (0,∞) as the
positive x-axis of R2. Let the interval (0,1) be on the y-axis as illustrated
in Figure 13.1, so that (0,∞) and (0,1) are perpendicular to each other.

The figure also shows a point P = (−1,1). Define f (x) to be the point on
(0,1) where the line from P to x ∈ (0,∞) intersects the y-axis. By similar
triangles, we have

1
x+1

= f (x)
x

,

and therefore
f (x)= x

x+1
.

If it is not clear from the figure that f : (0,∞)→ (0,1) is bijective, then you
can verify it using the techniques from Section 12.2. (Exercise 16, below.)

It is important to note that equality of cardinalities is an equivalence
relation on sets: it is reflexive, symmetric and transitive. Let us confirm
this. Given a set A, the identity function A → A is a bijection, so |A| = |A|.
(This is the reflexive property.) For the symmetric property, if |A| = |B|,
then there is a bijection f : A → B, and its inverse is a bijection f −1 : B → A,
so |B| = |A|. For transitivity, suppose |A| = |B| and |B| = |C|. Then there
are bijections f : A → B and g : B → C. The composition g ◦ f : A → C is a
bijection (Theorem 12.2), so |A| = |C|.

The transitive property can be useful. If, in trying to show two sets A
and C have the same cardinality, we can produce a third set B for which
|A| = |B| and |B| = |C|, then transitivity assures us that indeed |A| = |C|.
The next example uses this idea.

Example 13.4 Show that |R| = |(0,1)|.
Because of the bijection g :R→ (0,∞) where g(x)= 2x, we have |R| = |(0,∞)|.
Also, Example 13.3 shows that |(0,∞)| = |(0,1)|. Therefore |R| = |(0,1)|.

So far in this chapter we have declared that two sets have “the same
cardinality” if there is a bijection between them. They have “different
cardinalities” if there exists no bijection between them. Using this idea,
we showed that |Z| = |N| 6= |R| = |(0,∞)| = |(0,1)|. So, we have a means of
determining when two sets have the same or different cardinalities. But
we have neatly avoided saying exactly what cardinality is. For example,
we can say that |Z| = |N|, but what exactly is |Z|, or |N|? What exactly are
these things that are equal? Certainly not numbers, for they are too big.
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And saying they are “infinity” is not accurate, because we now know that
there are different types of infinity. So just what kind of mathematical
entity is |Z|? In general, given a set X , exactly what is its cardinality |X |?

This is a lot like asking what a number is. A number, say 5, is an
abstraction, not a physical thing. Early in life we instinctively grouped
together certain sets of things (five apples, five oranges, etc.) and conceived
of 5 as the thing common to all such sets. In a very real sense, the number
5 is an abstraction of the fact that any two of these sets can be matched
up via a bijection. That is, it can be identified with a certain equivalence
class of sets under the "has the same cardinality as" relation. (Recall that
this is an equivalence relation.) This is easy to grasp because our sense of
numeric quantity is so innate. But in exactly the same way we can say
that the cardinality of a set X is what is common to all sets that can be
matched to X via a bijection. This may be harder to grasp, but it is really
no different from the idea of the magnitude of a (finite) number.

In fact, we could be concrete and define |X | to be the equivalence class of
all sets whose cardinality is the same as that of X . This has the advantage
of giving an explicit meaning to |X |. But there is no harm in taking the
intuitive approach and just interpreting the cardinality |X | of a set X to
be a measure the “size” of X . The point of this section is that we have a
means of deciding whether two sets have the same size or different sizes.

Exercises for Section 13.1
A. Show that the two given sets have equal cardinality by describing a bijection

from one to the other. Describe your bijection with a formula (not as a table).
1. R and (0,∞)

2. R and (
p

2,∞)

3. R and (0,1)

4. The set of even integers and
the set of odd integers

5. A = {
3k : k ∈Z}

and B = {
7k : k ∈Z}

6. N and S = {p
2

n : n ∈N}
7. Z and S = {

. . . , 1
8 , 1

4 , 1
2 ,1,2,4,8,16, . . .

}
8. Z and S = {

x ∈R : sin x = 1
}

9.
{
0,1

}×N and N
10.

{
0,1

}×N and Z
11. [0,1] and (0,1)

12. N and Z (Suggestion: use Exercise 18 of Section 12.2.)
13. P(N) and P(Z) (Suggestion: use Exercise 12, above.)
14. N×N and

{
(n,m) ∈N×N : n ≤ m

}
B. Answer the following questions concerning bijections from this section.

15. Find a formula for the bijection f in Example 13.2 (page 218).
16. Verify that the function f in Example 13.3 is a bijection.
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13.2 Countable and Uncountable Sets
Let’s summarize the main points from the previous section.
1. |A| = |B| if and only if there exists a bijection A → B.
2. |N| = |Z| because there exists a bijection N→Z.
3. |N| 6= |R| because there exists no bijection N→R.

Thus, even though N, Z and R are all infinite sets, their cardinalities
are not all the same. The sets N and Z have the same cardinality, but
R’s cardinality is different from that of both the other sets. This means
infinite sets can have different sizes. We now make some definitions to
put words and symbols to this phenomenon.

In a certain sense you can count the elements of N; you can count its
elements off as 1,2,3,4, . . ., but you’d have to continue this process forever
to count the whole set. Thus we will call N a countably infinite set, and
the same term is used for any set whose cardinality equals that of N.

Definition 13.2 Suppose A is a set. Then A is countably infinite if
|N| = |A|, that is, if there exists a bijection N→ A. The set A is uncountable
if A is infinite and |N| 6= |A|, that is, if A is infinite and there exists no
bijection N→ A.

Thus Z is countably infinite but R is uncountable. This section deals
mainly with countably infinite sets. Uncountable sets are treated later.

If A is countably infinite, then |N| = |A|, so there is a bijection f :N→ A.
You can think of f as “counting” the elements of A. The first element of A
is f (1), followed by f (2), then f (3) and so on. It makes sense to think of a
countably infinite set as the smallest type of infinite set, because if the
counting process stopped, the set would be finite, not infinite; a countably
infinite set has the fewest elements that a set can have and still be infinite.
It is common to reserve the special symbol ℵ0 to stand for the cardinality
of countably infinite sets.

Definition 13.3 The cardinality of the natural numbers is denoted as ℵ0.
That is, |N| = ℵ0. Thus any countably infinite set has cardinality ℵ0.

(The symbol ℵ is the first letter in the Hebrew alphabet, and is pronounced
“aleph.” The symbol ℵ0 is pronounced “aleph naught.”) The summary of
facts at the beginning of this section shows |Z| = ℵ0 and |R| 6= ℵ0.

Example 13.5 Let E = {
2k : k ∈Z}

be the set of even integers. The function
f :Z→ E defined as f (n) = 2n is easily seen to be a bijection, so we have
|Z| = |E|. Thus, as |N| = |Z| = |E|, the set E is countably infinite and |E| = ℵ0.
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Here is a significant fact: The elements of any countably infinite set A
can be written in an infinitely long list a1,a2,a3,a4, . . . that begins with some
element a1 ∈ A and includes every element of A. For example, the set E in
the above example can be written in list form as 0,2,−2,4,−4,6,−6,8,−8, . . .
The reason that this can be done is as follows. Since A is countably infinite,
Definition 13.2 says there is a bijection f :N→ A. This allows us to list
out the set A as an infinite list f (1), f (2), f (3), f (4), . . . Conversely, if the
elements of A can be written in list form as a1,a2,a3, . . ., then the function
f :N→ A defined as f (n)= an is a bijection, so A is countably infinite. We
summarize this as follows.
Theorem 13.3 A set A is countably infinite if and only if its elements
can be arranged in an infinite list a1,a2,a3,a4, . . .

As an example of how this theorem might be used, let P denote the set
of all prime numbers. Since we can list its elements as 2,3,5,7,11,13, . . ., it
follows that the set P is countably infinite.

As another consequence of Theorem 13.3, note that we can interpret the
fact that the set R is not countably infinite as meaning that it is impossible
to write out all the elements of R in an infinite list. (After all, we tried to
do that in the table on page 219, and failed!)

This raises a question. Is it also impossible to write out all the elements
of Q in an infinite list? In other words, is the set Q of rational numbers
countably infinite or uncountable? If you start plotting the rational num-
bers on the number line, they seem to mostly fill up R. Sure, some numbers
such as

p
2, π and e will not be plotted, but the dots representing rational

numbers seem to predominate. We might thus expect Q to be uncountable.
However, it is a surprising fact that Q is countable. The proof presented
below arranges all the rational numbers in an infinitely long list.
Theorem 13.4 The set Q of rational numbers is countably infinite.

Proof. To prove this, we just need to show how to write the set Q in list
form. Begin by arranging all rational numbers in an infinite array. This is
done by making the following chart. The top row has a list of all integers,
beginning with 0, then alternating signs as they increase. Each column
headed by an integer k contains all the fractions (in reduced form) with
numerator k. For example, the column headed by 2 contains the fractions
2
1 , 2

3 , 2
5 , 2

7 , . . ., and so on. It does not contain 2
2 ,

2
4 ,

2
6 , etc., because those are

not reduced, and in fact their reduced forms appear in the column headed
by 1. You should examine this table and convince yourself that it contains
all rational numbers in Q.
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−4
7

5
4

−5
4 · · ·

1
5

−1
5

2
9

−2
9

3
7

−3
7

4
9

−4
9

5
6

−5
6 · · ·

1
6

−1
6

2
11

−2
11

3
8

−3
8

4
11

−4
11

5
7

−5
7 · · ·

1
7

−1
7

2
13

−2
13

3
10

−3
10

4
13

−4
13

5
8

−5
8 · · ·

...
...

...
...

...
...

...
...

...
...

. . .

Next, draw an infinite path in this array, beginning at 0
1 and snaking

back and forth as indicated below. Every rational number is on this path.

0 1 −1 2 −2 3 −3 4 −4 5 −5 · · ·

0
1

1
1

−1
1

2
1

−2
1

3
1

−3
1

4
1

−4
1

5
1

−5
1 · · ·

1
2

−1
2

2
3

−2
3

3
2

−3
2

4
3

−4
3

5
2

−5
2 · · ·

1
3

−1
3

2
5

−2
5

3
4

−3
4

4
5

−4
5

5
3

−5
3 · · ·

1
4

−1
4

2
7

−2
7

3
5

−3
5

4
7

−4
7

5
4

−5
4 · · ·

1
5

−1
5

2
9

−2
9

3
7

−3
7

4
9

−4
9

5
6

−5
6 · · ·

1
6

−1
6

2
11

−2
11

3
8

−3
8

4
11

−4
11

5
7

−5
7 · · ·

1
7

−1
7

2
13

−2
13

3
10

−3
10

4
13

−4
13

5
8

−5
8 · · ·

1
8

−1
8

2
15

−2
15

3
11

−3
11

4
15

−4
15

5
9

−5
9 · · ·

1
9

−1
9

2
17

−2
17

3
13

−3
13

4
17

−4
17

5
11

−5
11 · · ·

...
...

...
...

...
...

...
...

...
...

. . .
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Beginning at 0
1 and following the path, we get an infinite list of all

rational numbers:

0, 1,
1
2

, −1
2

, −1, 2,
2
3

,
2
5

, −1
3

,
1
3

,
1
4

, −1
4

,
2
7

, −2
7

, −2
5

, −2
3

, −2
3

, −2, 3,
3
2

, . . .

By Theorem 13.3, it follows that Q is countably infinite, that is, |Q| = |N|. ■

It is also true that the Cartesian product of two countably infinite sets
is itself countably infinite, as our next theorem states.

Theorem 13.5 If A and B are both countably infinite, then so is A×B.

Proof. Suppose A and B are both countably infinite. By Theorem 13.3, we
know we can write A and B in list form as

A = {
a1,a2,a3,a4, . . .

}
,

B = {
b1,b2,b3,b4, . . .

}
.

Figure 13.2 shows how to form an infinite path winding through all of A×B.
Therefore A×B can be written in list form, so it is countably infinite. ■

(a1,b1)

(a1,b2)

(a1,b3)

(a1,b4)

(a1,b5)

(a1,b6)

(a1,b7)

(a2,b1)

(a2,b2)

(a2,b3)

(a2,b4)

(a2,b5)

(a2,b6)

(a2,b7)

(a3,b1)

(a3,b2)

(a3,b3)

(a3,b4)

(a3,b5)

(a3,b6)

(a3,b7)

(a4,b1)

(a4,b2)

(a4,b3)

(a4,b4)

(a4,b5)

(a4,b6)

(a4,b7)

(a5,b1)

(a5,b2)

(a5,b3)

(a5,b4)

(a5,b5)

(a5,b6)

(a5,b7)

(a6,b1)

(a6,b2)

(a6,b3)

(a6,b4)

(a6,b5)

(a6,b6)

(a6,b7)

(a7,b1)

(a7,b2)

(a7,b3)

(a7,b4)

(a7,b5)

(a7,b6)

(a7,b7)

a1 a2 a3 a4 a5 a6 a7

b1

b2

b3

b4

b5

b6

b7

...
...

...
...

...
...

...
...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A

B

Figure 13.2. A product of two countably infinite sets is countably infinite
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As an example of a consequence of this theorem, notice that since Q is
countably infinite, the set Q×Q is also countably infinite.

Recall that the word “corollary” means a result that follows easily from
some other result. We have the following corollary of Theorem 13.5.

Corollary 13.1 Given n countably infinite sets A1, A2, A3, . . . , An, with
n ≥ 2, the Cartesian product A1×A2×A3×·· ·×An is also countably infinite.

Proof. The proof is by induction on n. For the basis step, notice that when
n = 2 the statement asserts that for countably infinite sets A1 and A2, the
product A1 × A2 is countably infinite, and this is true by Theorem 13.5.

Assume that for k ≥ 2, any product A1 × A2 × A3 ×·· · ×Ak of countably
infinite sets is countably infinite. Consider a product A1×A2×A3×·· ·×Ak+1

of k+1 countably infinite sets. It is easily confirmed that the function

f : A1 × A2 × A3 ×·· ·× Ak × Ak+1 −→ (A1 × A2 × A3 ×·· ·× Ak)× Ak+1

f (x1, x2, . . . , xk, xk+1) = (
(x1, x2, . . . , xk), xk+1

)
is bijective, so |A1×A2×A3×·· ·×Ak×Ak+1| = |(A1×A2×A3×·· ·×Ak)×Ak+1|.
By the induction hypothesis, (A1 × A2 × A3 ×·· ·× Ak)× Ak+1 is a product of
two countably infinite sets, so it is countably infinite by Theorem 13.5. As
noted above, A1×A2×A3×·· ·×Ak×Ak+1 has the same cardinality, so it too
is countably infinite. ■

Theorem 13.6 If A and B are both countably infinite, then A ∪B is
countably infinite.

Proof. Suppose A and B are both countably infinite. By Theorem 13.3, we
know we can write A and B in list form as

A = {
a1,a2,a3,a4, . . .

}
,

B = {
b1,b2,b3,b4, . . .

}
.

We can “shuffle” A and B into one infinite list for A∪B as follows.

A∪B = {
a1,b1,a2,b2,a3,b3,a4,b4, . . .

}
.

(We agree not to list an element twice if it belongs to both A and B.)
Therefore, by Theorem 13.3, it follows that A∪B is countably infinite. ■
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Exercises for Section 13.2
1. Prove that the set A = {

ln(n) : n ∈N}⊆R is countably infinite.
2. Prove that the set A = {

(m,n) ∈N×N : m ≤ n
}
is countably infinite.

3. Prove that the set A = {
(5n,−3n) : n ∈Z}

is countably infinite.
4. Prove that the set of all irrational numbers is uncountable. (Suggestion:

Consider proof by contradiction using Theorems 13.4 and 13.6.)
5. Prove or disprove: There exists a countably infinite subset of the set of irrational

numbers.
6. Prove or disprove: There exists a bijective function f :Q→R.
7. Prove or disprove: The set Q100 is countably infinite.
8. Prove or disprove: The set Z×Q is countably infinite.
9. Prove or disprove: The set

{
0,1

}×N is countably infinite.
10. Prove or disprove: The set A = {p

2
n : n ∈N}

countably infinite.
11. Describe a partition of N that divides N into eight countably infinite subsets.
12. Describe a partition of N that divides N into ℵ0 countably infinite subsets.
13. Prove or disprove: If A = {X ⊆N : X is finite}, then |A| = ℵ0.
14. Suppose A = {

(m,n) ∈N×R : n =πm
}
. Is it true that |N| = |A|?

15. Theorem 13.5 implies that N×N is countably infinite. Construct an alternate
proof of this fact by showing that the function ϕ :N×N→N defined as ϕ(m,n)=
2n−1(2m−1) is bijective.

13.3 Comparing Cardinalities
At this point we know that there are at least two different kinds of infinity.
On one hand, there are countably infinite sets such as N, of cardinality ℵ0.
Then there is the uncountable set R. Are there other kinds of infinity
beyond these two kinds? The answer is “yes,” but to see why we first need
to introduce some new definitions and theorems.

Our first task will be to formulate a definition for what we mean by
|A| < |B|. Of course if A and B are finite we know exactly what this means:
|A| < |B| means that when the elements of A and B are counted, A is found
to have fewer elements than B. But this process breaks down if A or B is
infinite, for then the elements can’t be counted.

The language of functions helps us overcome this difficulty. Notice
that for finite sets A and B it is intuitively clear that |A| < |B| if and only
if there exists an injective function f : A → B but there are no surjective
functions f : A → B. The following diagram illustrates this:
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d
c
b
a

4
3
2
1
0

A B
f

We will use this idea to define what is meant by |A| < |B| and |A| ≤ |B|. For
emphasis, the following definition also restates what is meant by |A| = |B|.
Definition 13.4 Suppose A and B are sets.
(1) |A| = |B| means there is a bijection A → B.
(2) |A| < |B| means there is an injection A → B, but no surjection A → B.
(3) |A| ≤ |B| means |A| < |B| or |A| = |B|.

For example, consider N and R. The function f :N→R defined as f (n)= n
is clearly injective, but it is not surjective because given the element 1

2 ∈R,
we have f (n) 6= 1

2 for every n ∈ N. In fact, Theorem 13.2 of Section 13.1
asserts that there is no surjection N→R. Definition 13.4 yields

|N| < |R|. (13.1)

Said differently, ℵ0 < |R|.
Is there a set X for which |R| < |X |? The answer is “yes,” and the next

theorem explains why. It implies |R| < |P(R)|. (Recall that P(A) denotes
the power set of A.)
Theorem 13.7 If A is any set, then |A| < |P(A)|.
Proof. Before beginning the proof, we remark that this statement is obvious
if A is finite, for then |A| < 2|A| = |P(A)|. But our proof must apply to all
sets A, both finite and infinite, so it must use Definition 13.4.

We prove the theorem with direct proof. Let A be an arbitrary set.
According to Definition 13.4, to prove |A| < |P(A)| we must show that there
is an injection f : A →P(A), but no surjection f : A →P(A).

To see that there is an injection f : A → P(A), define f by the rule
f (x) = {

x
}
. In words, f sends any element x of A to the one-element set{

x
} ∈P(A). Then f : A →P(A) is injective, as follows. Suppose f (x)= f (y).

Then
{
x
}= {

y
}
. Now, the only way that

{
x
}
and

{
y
}
can be equal is if x = y,

so it follows that x = y. Thus f is injective.
Next we need to show that there exists no surjection f : A → P(A).

Suppose for the sake of contradiction that there does exist a surjection
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f : A →P(A). Notice that for any element x ∈ A, we have f (x) ∈P(A), so
f (x) is a subset of A. Thus f is a function that sends elements of A to
subsets of A. It follows that for any x ∈ A, either x is an element of the
subset f (x) or it is not. Using this idea, define the following subset B of A:

B = {
x ∈ A : x ∉ f (x)

}⊆ A.

Now since B ⊆ A we have B ∈P(A), and since f is surjective there is an
a ∈ A for which f (a)= B. Now, either a ∈ B or a ∉ B. We will consider these
two cases separately, and show that each leads to a contradiction.
Case 1. If a ∈ B, then the definition of B implies a ∉ f (a), and since f (a)= B
we have a ∉ B, which is a contradiction.
Case 2. If a ∉ B, then the definition of B implies a ∈ f (a), and since f (a)= B
we have a ∈ B, again a contradiction.

Since the assumption that there is a surjection f : A →P(A) leads to a
contradiction, we conclude that there are no such surjective functions.

In conclusion, we have seen that there exists an injection A →P(A) but
no surjection A →P(A), so Definition 13.4 implies that |A| < |P(A)|. ■

Beginning with the set A =N and applying Theorem 13.7 over and over
again, we get the following chain of infinite cardinalities.

ℵ0 = |N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · · (13.2)

Thus there is an infinite sequence of different types of infinity, starting
with ℵ0 and becoming ever larger. The set N is countable, and all the sets
P(N), P(P(N)), etc., are uncountable.

In the next section we will prove that |P(N)| = |R|. Thus |N| and |R|
are the first two entries in the chain (13.2) above. They are are just two
relatively tame infinities in a long list of other wild and exotic infinities.

Unless you plan on studying advanced set theory or the foundations
of mathematics, you are unlikely to ever encounter any types of infinity
beyond ℵ0 and |R|. Still you will in future mathematics courses need to
distinguish between countably infinite and uncountable sets, so we close
with two final theorems that can help you do this.

Theorem 13.8 An infinite subset of a countably infinite set is countably
infinite.

Proof. Suppose A is an infinite subset of the countably infinite set B.
Because B is countably infinite, its elements can be written in a list
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b1,b2,b3,b4, . . . Then we can also write A’s elements in list form by proceed-
ing through the elements of B, in order, and selecting those that belong to
A. Thus A can be written in list form, and since A is infinite, its list will
be infinite. Consequently A is countably infinite. ■

Theorem 13.9 If U ⊆ A, and U is uncountable, then A is uncountable.

Proof. Suppose for the sake of contradiction that U ⊆ A, and U is uncount-
able but A is not uncountable. Then since U ⊆ A and U is infinite, then A
must be infinite too. Since A is infinite, and not uncountable, it must be
countably infinite. Then U is an infinite subset of a countably infinite set
A, so U is countably infinite by Theorem 13.8. Thus U is both uncountable
and countably infinite, a contradiction. ■

Theorems 13.8 and 13.9 can be useful when we need to decide whether
a set is countably infinite or uncountable. They sometimes allow us to
decide its cardinality by comparing it to a set whose cardinality is known.

For example, suppose we want to decide whether or not the set A =R2

is uncountable. Since the x-axis U = {
(x,0) : x ∈ R} ⊆ R2 has the same

cardinality as R, it is uncountable. Theorem 13.9 implies that R2 is
uncountable. Other examples can be found in the exercises.

Exercises for Section 13.3

1. Suppose B is an uncountable set and A is a set. Given that there is a surjective
function f : A → B, what can be said about the cardinality of A?

2. Prove that the set C of complex numbers is uncountable.
3. Prove or disprove: If A is uncountable, then |A| = |R|.
4. Prove or disprove: If A ⊆ B ⊆ C and A and C are countably infinite, then B is

countably infinite.
5. Prove or disprove: The set

{
0,1

}×R is uncountable.
6. Prove or disprove: Every infinite set is a subset of a countably infinite set.
7. Prove or disprove: If A ⊆ B and A is countably infinite and B is uncountable,

then B− A is uncountable.
8. Prove or disprove: The set

{
(a1,a2,a3, . . .) : ai ∈Z} of infinite sequences of integers

is countably infinite.
9. Prove that if A and B are finite sets with |A| = |B|, then any injection f : A → B

is also a surjection. Show this is not necessarily true if A and B are not finite.
10. Prove that if A and B are finite sets with |A| = |B|, then any surjection f : A → B

is also an injection. Show this is not necessarily true if A and B are not finite.
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13.4 The Cantor-Bernstein-Schröeder Theorem
An often used property of numbers is that if a ≤ b and b ≤ a, then a = b. It
is reasonable to ask if the same property applies to cardinality. If |A| ≤ |B|
and |B| ≤ |A|, is it true that |A| = |B|? This is in fact true, and this section’s
goal is to prove it. This will yield an alternate (and highly effective) method
of proving that two sets have the same cardianlity.

Recall (Definition 13.4) that |A| ≤ |B| means that |A| < |B| or |A| = |B|. If
|A| < |B| then (by Definition 13.4) there is an injection A → B. On the other
hand, if |A| = |B|, then there is a bijection (hence also an injection) A → B.
Thus |A| ≤ |B| implies that there is an injection f : A → B.

Likewise, |B| ≤ |A| implies that there is an injection g : B → A.
Our aim is to show that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. In

other words, we aim to show that if there are injections f : A → B and
g : B → A, then there is a bijection h : A → B. The proof of this fact, though
not particularly difficult, is not entirely trivial, either. The fact that f and
g guarantee that such an h exists is called the the Cantor-Bernstein-
Schröeder theorem. This theorem is very useful for proving two sets A
and B have the same cardinality: it says that instead of finding a bijection
A → B, it suffices to find injections A → B and B → A. This is useful because
injections are often easier to find than bijections.

We will prove the Cantor-Bernstein-Schröeder theorem, but before
doing so let’s work through an informal visual argument that will guide
us through (and illustrate) the proof.

Suppose there are injections f : A → B and g : B → A. We want to use
them to produce a bijection h : A → B. Sets A and B are sketched below.
For clarity, each has the shape of the letter that denotes it, and to help
distinguish them the set A is shaded.

A B

Figure 13.3. The sets A and B

The injections f : A → B and g : B → A are illustrated in Figure 13.4.
Think of f as putting a “copy” f (A)= {

f (x) : x ∈ A
}
of A into B, as illustrated.

This copy, the range of f , does not fill up all of B (unless f happens to be
surjective). Likewise, g puts a “copy” g(B) of B into A. Because they are
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not necessarily bijective, neither f nor g is guaranteed to have an inverse.
But the map g : B → g(B) from B to g(B)= {g(x) : x ∈ B} is bijective, so there
is an inverse g−1 : g(B)→ B. (We will need this inverse soon.)

f g

g−1

Figure 13.4. The injections f : A → B and g : B → A

Consider the chain of injections illustrated in Figure 13.5. On the left,
g puts a copy of B into A. Then f puts a copy of A (containing the copy of
B) into B. Next, g puts a copy of this B-containing-A-containing-B into A,
and so on, always alternating g and f .

g g g
f f f · · ·

Figure 13.5. An infinite chain of injections

The first time A occurs in this sequence, it has a shaded region A−g(B).
In the second occurrence of A, the shaded region is (A−g(B))∪(g◦ f )(A−g(B)).
In the third occurrence of A, the shaded region is

(A− g(B)) ∪ (g ◦ f )(A− g(B)) ∪ (g ◦ f ◦ g ◦ f )(A− g(B)).

To tame the notation, let’s say (g ◦ f )2 = (g ◦ f ) ◦ (g ◦ f ), and (g ◦ f )3 =
(g◦ f )◦(g◦ f )◦(g◦ f ), and so on. Let’s also agree that (g◦ f )0 = ιA, that is, it is
the identity function on A. Then the shaded region of the nth occurrence
of A in the sequence is

n−1⋃
k=0

(g ◦ f )k(A− g(B)).

This process divides A into gray and white regions: the gray region is

G =
∞⋃

k=0
(g ◦ f )k(A− g(B)),



234 Cardinality of Sets

and the white region is A−G. (See Figure 13.6.)
Figure 13.6 suggests our desired bijection h : A → B. The injection f

sends the gray areas on the left bijectively to the gray areas on the right.
The injection g−1 : g(B) → B sends the white areas on the left bijectively
to the white areas on the right. We can thus define h : A → B so that
h(x)= f (x) if x is a gray point, and h(x)= g−1(x) if x is a white point.

f

g−1

f

g−1

...

A B

Figure 13.6. The bijection h : A → B

This informal argument suggests that given injections f : A → B and
g : B → A, there is a bijection h : A → B. But it is not a proof. We now
present this as a theorem and tighten up our reasoning in a careful proof,
with the above diagrams and ideas as a guide.

Theorem 13.10 (The Cantor-Bernstein-Schröeder Theorem)
If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. In other words, if there are injections
f : A → B and g : B → A, then there is a bijection h : A → B.

Proof. (Direct) Suppose there are injections f : A → B and g : B → A. Then,
in particular, g : B → g(B) is a bijection from B onto the range of g, so it
has an inverse g−1 : g(B) → B. (Note that g : B → A itself has no inverse
g−1 : A → B unless g is surjective.) Consider the subset

G =
∞⋃

k=0
(g ◦ f )k(A− g(B))⊆ A.
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Let W = A−G, so A =G∪W is partitioned into two sets G (think gray) and
W (think white). Define a function h : A → B as

h(x)=
{

f (x) if x ∈G
g−1(x) if x ∈W .

Notice that this makes sense: if x ∈W, then x ∉G, so x ∉ A− g(B)⊆G, hence
x ∈ g(B), so g−1(x) is defined.

To finish the proof, we must show that h is both injective and surjective.
For injective, we assume h(x)= h(y), and deduce x = y. There are three

cases to consider. First, if x and y are both in G, then h(x) = h(y) means
f (x)= f (y), so x = y because f is injective. Second, if x and y are both in W,
then h(x)= h(y) means g−1(x)= g−1(y), and applying g to both sides gives
x = y. In the third case, one of x and y is in G and the other is in W.
Say x ∈ G and y ∈ W. The definition of G gives x = (g ◦ f )k(z) for some
k ≥ 0 and z ∈ A − g(B). Note h(x) = h(y) now implies f (x) = g−1(y), that is,
f ((g ◦ f )k(z))= g−1(y). Applying g to both sides gives (g ◦ f )k+1(z)= y, which
means y ∈G. But this is impossible, as y ∈W. Thus this third case cannot
happen. But in the first two cases h(x)= h(y) implies x = y, so h is injective.

To see that h is surjective, take any b ∈ B. We will find an x ∈ A with
h(x)= b. Note that g(b) ∈ A, so either g(b) ∈W or g(b) ∈G. In the first case,
h(g(b))= g−1(g(b))= b, so we have an x = g(b) ∈ A for which h(x)= b. In the
second case, g(b) ∈G. The definition of G shows

g(b)= (g ◦ f )k(z)

for some k > 0, and z ∈ A− g(B). Thus

g(b)= (g ◦ f )◦ (g ◦ f )k−1(z).

Rewriting this,
g(b)= g

(
f
(
(g ◦ f )k−1(z)

))
.

Because g is injective, this implies

b = f
(
(g ◦ f )k−1(z)

)
.

Let x = (g ◦ f )k−1(z), so x ∈G by definition of G. Observe that h(x) = f (x) =
f
(
(g ◦ f )k−1(z)

)= b. We have now seen that for any b ∈ B, there is an x ∈ A
for which h(x)= b. Thus h is surjective.

Since h : A → B is both injective and surjective, it is also bijective. ■
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Here are some examples illustrating how the Cantor-Bernstein-Schröeder
theorem can be used. This includes a proof that |R| = |P(N)|.

Example 13.6 The intervals [0,1) and (0,1) in R have equal cardinalities.

Surely this fact is plausible, for the two intervals are identical except for
the endpoint 0. Yet concocting a bijection [0,1)→ (0,1) is tricky. (Though
not particularly difficult: see the solution of Exercise 11 of Section 13.1.)

For a simpler approach, note that f (x)= 1
4+1

2 x is an injection [0,1)→ (0,1).
Also, g(x)= x is an injection (0,1)→ [0,1). The Cantor-Bernstein-Schröeder
theorem guarantees a bijection h : [0,1)→ (0,1), so |[0,1)| = |(0,1)|.

Theorem 13.11 The sets R and P(N) have the same cardinality.

Proof. Example 13.4 shows that |R| = |(0,1)|, and Example 13.6 shows
|(0,1)| = |[0,1)|. Thus |R| = |[0,1)|, so to prove the theorem we just need to
show that |[0,1)| = |P(N)|. By the Cantor-Bernstein-Schröeder theorem, it
suffices to find injections f : [0,1)→P(N) and g : P(N)→ [0,1).

To define f : [0,1)→P(N), we use the fact that any number in [0,1) has
a unique decimal representation 0.b1b2b3b4 . . ., where each bi one of the
digits 0,1,2, . . . ,9, and there is not a repeating sequence of 9’s at the end.
(Recall that, e.g., 0.359999= 0.360, etc.) Define f : [0,1)→P(N) as

f
(
0.b1b2b3b4 . . .

)= {
10b1, 102b2, 103b3, . . .

}
.

For example, f (0.121212) = {
10,200,1000,20000,100000, . . .

}
, and f (0.05) ={

0,500
}
. Also f (0.5) = f (0.50) = {

0,50
}
. To see that f is injective, take two

unequal numbers 0.b1b2b3b4 . . . and 0.d1d2d3d4 . . . in [0,1). Then bi 6= di for
some index i. Hence bi10i ∈ f (0.b1b2b3b4 . . .) but bi10i ∉ f (0.d1d2d3d4 . . .), so
f (0.b1b2b3b4 . . .) 6= f (0.d1d2d3d4 . . .). Consequently f is injective.

Next, define g : P(N)→ [0,1), where g(X )= 0.b1b2b3b4 . . . is the number
for which bi = 1 if i ∈ X and bi = 0 if i ∉ X . For example, g

({
1,3

})= 0.101000,
and g

({
2,4,6,8, . . .

}) = 0.01010101. Also g(;) = 0 and g(N) = 0.1111. To see
that g is injective, suppose X 6= Y . Then there is at least one integer i
that belongs to one of X or Y , but not the other. Consequently g(X ) 6= g(Y )
because they differ in the ith decimal place. This shows g is injective.

From the injections f : [0,1) → P(N) and g : P(N) → [0,1), the Cantor-
Bernstein-Schröeder theorem guarantees a bijection h : [0,1)→P(N). Hence
|[0,1)| = |P(N)|. As |R| = |[0,1)|, we conclude |R| = |P(N)|. ■



The Cantor-Bernstein-Schröeder Theorem 237

We know that |R| 6= |N|. But we just proved |R| = |P(N)|. This suggests
that the cardinality of R is not “too far” from |N| = ℵ0. We close with a few
informal remarks on this mysterious relationship between ℵ0 and |R|.

We established earlier in this chapter that ℵ0 < |R|. For nearly a century
after Cantor formulated his theories on infinite sets, mathematicians
struggled with the question of whether or not there exists a set A for which

ℵ0 < |A| < |R|.

It was commonly suspected that no such set exists, but no one was able
to prove or disprove this. The assertion that no such A exists came to be
called the continuum hypothesis.

Theorem 13.11 states that |R| = |P(N)|. Placing this in the context of
the chain (13.2) on page 230, we have the following relationships.

ℵ0 |R|

= =

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·

From this, we can see that the continuum hypothesis asserts that no set
has a cardinality between that of N and its power set.

Although this may seem intuitively plausible, it eluded proof since
Cantor first posed it in the 1880s. In fact, the real state of affairs is
almost paradoxical. In 1931, the logician Kurt Gödel proved that for any
sufficiently strong and consistent axiomatic system, there exist statements
which can neither be proved nor disproved within the system.

Later he proved that the negation of the continuum hypothesis cannot
be proved within the standard axioms of set theory (i.e., the Zermelo-
Fraenkel axioms, mentioned in Section 1.10). This meant that either the
continuum hypothesis is false and cannot be proven false, or it is true.

In 1964, Paul Cohen discovered another startling truth: Given the laws
of logic and the axioms of set theory, no proof can deduce the continuum
hypothesis. In essence he proved that the continuum hypothesis cannot be
proved.

Taken together, Gödel and Cohens’ results mean that the standard
axioms of mathematics cannot “decide” whether the continuum hypothesis
is true or false; that no logical conflict can arise from either asserting or
denying the continuum hypothesis. We are free to either accept it as true
or accept it as false, and the two choices lead to different—but equally
consistent—versions of set theory.
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On the face of it, this seems to undermine the foundation of logic, and
everything we have done in this book. The continuum hypothesis should
be a statement – it should be either true or false. How could it be both?

Here is an analogy that may help make sense of this. Consider the
number systems Zn. What if we asked whether [2]= [0] is true or false? Of
course the answer depends on n. The expression [2]= [0] is true in Z2 and
false in Z3. Moreover, if we assert that [2] = [0] is true, we are logically
forced to the conclusion that this is taking place in the system Z2. If we
assert that [2]= [0] is false, then we are dealing with some other Zn. The
fact that [2] = [0] can be either true or false does not necessarily mean
that there is some inherent inconsistency within the individual number
systems Zn. The equation [2]= [0] is a true statement in the “universe” of
Z2 and a false statement in the universe of (say) Z3.

It is the same with the continuum hypothesis. Saying it’s true leads to
one system of set theory. Saying it’s false leads to some other system of set
theory. Gödel and Cohens’ discoveries mean that these two types of set
theory, although different, are equally consistent and valid mathematical
universes.

So what should you believe? Fortunately, it does not make much
difference, because most important mathematical results do not hinge on
the continuum hypothesis. (They are true in both universes.) Unless you
undertake a deep study of the foundations of mathematics, you will be fine
accepting the continuum hypothesis as true. Most mathematicians are
agnostics on this issue, but they tend to prefer the version of set theory in
which the continuum hypothesis holds.

The situation with the continuum hypothesis is a testament to the
immense complexity of mathematics. It is a reminder of the importance
of rigor and careful, systematic methods of reasoning that begin with the
ideas introduced in this book.

Exercises for Section 13.4
1. Show that if A ⊆ B and there is an injection g : B → A, then |A| = |B|.
2. Show that |R2| = |R|. Suggestion: Begin by showing |(0,1)× (0,1)| = |(0,1)|.
3. Let F be the set of all functions N→ {

0,1
}
. Show that |R| = |F |.

4. Let F be the set of all functions R→ {
0,1

}
. Show that |R| < |F |.

5. Consider the subset B = {
(x, y) : x2 + y2 ≤ 1

}⊆R2. Show that |B| = |R2|.
6. Show that |P(N×N)| = |P(N)|.
7. Prove or disprove: If there is a injection f : A → B and a surjection g : A → B,

then there is a bijection h : A → B.



Conclusion

If you have internalized the ideas in this book, then you have a set
of rhetorical tools for deciphering and communicating mathematics.

These tools are indispensable at any level. But of course it takes more
than mere tools to build something. Planning, creativity, inspiration, skill,
talent, intuition, passion and persistence are also vitally important. It
is safe to say that if you have come this far, then you probably possess a
sufficient measure of these traits.

The quest to understand mathematics has no end, but you are well
equipped for the journey. It is my hope that the things you have learned
from this book will lead you to a higher plane of understanding, creativity
and expression.

Good luck and best wishes.

R.H.



Solutions

Chapter 1 Exercises
Section 1.1
1. {5x−1 : x ∈Z}= {. . .−11,−6,−1,4,9,14,19,24,29, . . .}
3. {x ∈Z :−2≤ x < 7}= {−2,−1,0,1,2,3,4,5,6}
5.

{
x ∈R : x2 = 3

}= {−p3,
p

3
}

7.
{
x ∈R : x2 +5x =−6

}= {−2,−3}
9. {x ∈R : sinπx = 0}= {. . . ,−2,−1,0,1,2,3,4, . . .}=Z

11. {x ∈Z : |x| < 5}= {−4,−3,−2,−1,0,1,2,3,4}
13. {x ∈Z : |6x| < 5}= {0}
15. {5a+2b : a,b ∈Z}= {. . . ,−2,−1,0,1,2,3, . . .}=Z
17. {2,4,8,16,32,64 . . .}= {2x : x ∈N}
19. {. . . ,−6,−3,0,3,6,9,12,15, . . .}= {3x : x ∈Z}
21. {0,1,4,9,16,25,36, . . .}= {

x2 : x ∈Z}
23. {3,4,5,6,7,8}= {x ∈Z : 3≤ x ≤ 8}= {x ∈N : 3≤ x ≤ 8}
25.

{
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8, . . .
}= {2n : n ∈Z}

27.
{
. . . ,−π,−π

2 ,0, π2 ,π, 3π
2 ,2π, 5π

2 , . . .
}= {

kπ
2 : k ∈Z

}
29. |{{1} , {2, {3,4}} ,;}| = 3
31. |{{{1} , {2, {3,4}} ,;}}| = 1

33. |{x ∈Z : |x| < 10}| = 19
35. |{x ∈Z : x2 < 10

}| = 7
37. |{x ∈N : x2 < 0

}| = 0

39. {(x, y) : x ∈ [1,2], y ∈ [1,2]}

−3 −2 −1 1 2 3

−2

−1

1

2

41. {(x, y) : x ∈ [−1,1], y= 1}

−3 −2 −1 1 2 3

−2

−1

1

2

43. {(x, y) : |x| = 2, y ∈ [0,1]}

−3 −2 −1 1 2 3

−2

−1

1

2

45.
{
(x, y) : x, y ∈R, x2 + y2 = 1

}

−3 −2 −1 1 2 3

−2

−1

1

2
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47.
{
(x, y) : x, y ∈R, y≥ x2 −1

}

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

49. {(x, x+ y) : x ∈R, y ∈Z}

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

51. {(x, y) ∈R2 : (y− x)(y+ x)= 0}

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Section 1.2

1. Suppose A = {1,2,3,4} and B = {a, c}.
(a) A×B = {(1,a), (1, c), (2,a), (2, c), (3,a), (3, c), (4,a), (4, c)}

(b) B× A = {(a,1), (a,2), (a,3), (a,4), (c,1), (c,2), (c,3), (c,4)}

(c) A× A = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4),
(3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}

(d) B×B = {(a,a), (a, c), (c,a), (c, c)}

(e) ;×B = {(a,b) : a ∈;,b ∈ B}=; (There are no ordered pairs (a,b) with a ∈;.)
(f) (A×B)×B =

{((1,a),a), ((1, c),a), ((2,a),a), ((2, c),a), ((3,a),a), ((3, c),a), ((4,a),a), ((4, c),a),
((1,a), c), ((1, c), c), ((2,a), c), ((2, c), c), ((3,a), c), ((3, c), c), ((4,a), c), ((4, c), c)}

(g) A× (B×B)={
(1, (a,a)), (1, (a, c)), (1, (c,a)), (1, (c, c)),
(2, (a,a)), (2, (a, c)), (2, (c,a)), (2, (c, c)),
(3, (a,a)), (3, (a, c)), (3, (c,a)), (3, (c, c)),
(4, (a,a)), (4, (a, c)), (4, (c,a)), (4, (c, c))

}
(h) B3 = {(a,a,a), (a,a, c), (a, c,a), (a, c, c), (c,a,a), (c,a, c), (c, c,a), (c, c, c)}

3.
{
x ∈R : x2 = 2

}× {a, c, e}= {
(−p2,a), (

p
2,a), (−p2, c), (

p
2, c), (−p2, e), (

p
2, e)

}
5.

{
x ∈R : x2 = 2

}× {x ∈R : |x| = 2}= {
(−p2,−2), (

p
2,2), (−p2,2), (

p
2,−2)

}
7. {;}× {0,;}× {0,1}= {(;,0,0), (;,0,1), (;,;,0), (;,;,1)}
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Sketch the following Cartesian products on the x-y plane.
9. {1,2,3}× {−1,0,1}

−3 −2 −1 1 2 3

−2

−1

1

2

11. [0,1]× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

13. {1,1.5,2}× [1,2]

−3 −2 −1 1 2 3

−2

−1

1

2

15. {1}× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

17. N×Z

−3 −2 −1 1 2 3

−2

−1

1

2

19. [0,1]× [0,1]× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

Section 1.3
A. List all the subsets of the following sets.

1. The subsets of {1,2,3,4} are: {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4},
{3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}.

3. The subsets of {{R}} are: {} and {{R}}.
5. The subsets of {;} are {} and {;}.
7. The subsets of {R, {Q,N}} are {}, {R},{{Q,N}}, {R, {Q,N}}.

B. Write out the following sets by listing their elements between braces.
9.

{
X : X ⊆ {3,2,a} and |X | = 2

} = {{3,2} , {3,a} , {2,a}}

11.
{
X : X ⊆ {3,2,a} and |X | = 4

} = {}=;

C. Decide if the following statements are true or false.
13. R3 ⊆R3 is true because any set is a subset of itself.
15.

{
(x, y) : x−1= 0

}⊆ {
(x, y) : x2 − x = 0

}
. This is true. (The even-numbered ones

are both false. You have to explain why.)
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Section 1.4
A. Find the indicated sets.

1. P({{a,b} , {c}})= {;, {{a,b}} , {{c}} , {{a,b} , {c}}}

3. P({{;} ,5})= {;, {{;}} , {5} , {{;} ,5}}

5. P(P({2}))= {;, {;} , {{2}} , {;, {2}}}

7. P({a,b})×P({0,1})={
(;,;), (;, {0}), (;, {1}), (;, {0,1}),

({a} ,;), ({a} , {0}), ({a} , {1}), ({a} , {0,1}),
({b} ,;), ({b} , {0}), ({b} , {1}), ({b} , {0,1}),

({a,b} ,;), ({a,b} , {0}), ({a,b} , {1}), ({a,b} , {0,1})
}

9. P({a,b}× {0})= {;, {(a,0)} , {(b,0)} , {(a,0), (b,0)}}

11. {X ⊆P({1,2,3}) : |X | ≤ 1}=
{;, {;} , {{1}} , {{2}} , {{3}} , {{1,2}} , {{1,3}} , {{2,3}} , {{1,2,3}}}

B. Suppose that |A| = m and |B| = n. Find the following cardinalities.

13. |P(P(P(A)))| = 2
(
2(2m )

)
15. |P(A×B)| = 2mn

17. |{X ∈P(A) : |X | ≤ 1}| = m+1

19. |P(P(P(A×;)))| = |P(P(P(;)))| = 4

Section 1.5

1. Suppose A = {4,3,6,7,1,9}, B = {5,6,8,4} and C = {5,8,4} . Find:
(a) A∪B = {1,3,4,5,6,7,8,9}
(b) A∩B = {4,6}
(c) A−B = {3,7,1,9}
(d) A−C = {3,6,7,1,9}
(e) B− A = {5,8}

(f) A∩C = {4}

(g) B∩C = {5,8,4}

(h) B∪C = {5,6,8,4}

(i) C−B = ;

3. Suppose A = {0,1} and B = {1,2}. Find:
(a) (A×B)∩ (B×B)= {(1,1), (1,2)}

(b) (A×B)∪ (B×B)= {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}

(c) (A×B)− (B×B)= {(0,1), (0,2)}

(d) (A∩B)× A = {(1,0), (1,1)}

(e) (A×B)∩B = ;

(f) P(A)∩P(B)= {;, {1}}

(g) P(A)−P(B)= {{0} , {0,1}}

(h) P(A∩B)= {{} , {1}}

(i)
{;, {(0,1)}, {(0,2)}, {(1,1)}, {(1,2)}, {(0,1), (0,2)}, {(0,1), (1,1)}, {(0,1), (1,2)}, {(0,2), (1,1)},

{(0,2), (1,2)}, {(1,1), (1,2)}, {(0,2), (1,1), (1,2)}, {(0,1), (1,1), (1,2)}, {(0,1), (0,2), (1,2)},
{(0,1), (0,2), (1,1)}, {(0,1), (0,2), (1,1), (1,2)}

}
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5. Sketch the sets X = [1,3]×[1,3] and Y = [2,4]×[2,4] on the plane R2. On separate
drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X . (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets
like [1,3]× [1,3] in the Section 1.2.)

Y

X

X ∪Y

X ∩Y X −Y

Y − X

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

7. Sketch the sets X = {
(x, y) ∈R2 : x2 + y2 ≤ 1

}
and Y = {

(x, y) ∈R2 : x ≥ 0
}
on R2. On

separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .

X
Y X ∪Y X ∩Y X −Y Y − X

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

9. The first statement is true. (A picture should convince you; draw one if
necessary.) The second statement is false: Notice for instance that (0.5,0.5) is
in the right-hand set, but not the left-hand set.

Section 1.6

1. Suppose A = {4,3,6,7,1,9} and B = {5,6,8,4} have universal set U = {n ∈Z : 0≤ n ≤ 10}.
(a) A = {0,2,5,8,10}
(b) B = {0,1,2,3,7,9,10}
(c) A∩ A = ;
(d) A∪ A = {0,1,2,3,4,5,6,7,8,9,10}=U
(e) A− A = A

(f) A−B = {4,6}

(g) A−B = {5,8}

(h) A∩B = {5,8}

(i) A∩B = {0,1,2,3,4,6,7,9,10}

3. Sketch the set X = [1,3]× [1,2] on the plane R2. On separate drawings, shade in
the sets X , and X ∩ ([0,2]× [0,3]).

X

X

X ∩ ([0,2]× [0,3])
−1 1 2 3
−1

1

2

3

−1 1 2 3
−1

1

2

3

−1 1 2 3
−1

1

2

3

5. Sketch the set X = {
(x, y) ∈R2 : 1≤ x2 + y2 ≤ 4

}
on the plane R2. On a separate

drawing, shade in the set X .
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X
X

1 2 3

1
2
3

1 2 3

1
2
3

Solution of 1.6, #5.

A

A (shaded)
U

Solution of 1.7, #1.

Section 1.7
1. Draw a Venn diagram for A. (Solution above right)
3. Draw a Venn diagram for (A−B)∩C.

Scratch work is shown on the right. The
set A−B is indicated with vertical shading.
The set C is indicated with horizontal shad-
ing. The intersection of A−B and C is thus
the overlapping region that is shaded with
both vertical and horizontal lines. The final
answer is drawn on the far right, where the
set (A−B)∩C is shaded in gray.

A AB B

C C

5. Draw Venn diagrams for A∪(B∩C) and (A∪B)∩(A∪C). Based on your drawings,
do you think A∪ (B∩C) = (A∪B)∩ (A∪C)?
If you do the drawings carefully, you will find
that your Venn diagrams are the same for both
A∪ (B∩C) and (A∪B)∩ (A∪C). Each looks as
illustrated on the right. Based on this, we are
inclined to say that the equation A∪ (B∩C) =
(A∪B)∩ (A∪C) holds for all sets A, B and C. A B

C

7. Suppose sets A and B are in a universal set U. Draw Venn diagrams for A∩B
and A∪B. Based on your drawings, do you think it’s true that A∩B = A∪B?
The diagrams for A∩B and A∪B look exactly
alike. In either case the diagram is the shaded
region illustrated on the right. Thus we would
expect that the equation A∩B = A∪B is true
for any sets A and B.

A B

U

9. Draw a Venn diagram for (A∩B)−C.

A B

C

11. The simplest answer is (B∩C)− A.
13. One answer is (A∪B∪C)− (A∩B∩C).
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Section 1.8

1. Suppose A1 = {a,b,d, e, g, f }, A2 = {a,b, c,d}, A3 = {b,d,a} and A4 = {a,b,h}.

(a)
4⋃

i=1
A i = {a,b, c,d, e, f , g,h} (b)

4⋂
i=1

A i = {a,b}

3. For each n ∈N, let An = {0,1,2,3, . . . ,n}.
(a)

⋃
i∈N

A i = {0}∪N (b)
⋂
i∈N

A i = {0,1}

5. (a)
⋃
i∈N

[i, i+1]=[1,∞) (b)
⋂
i∈N

[i, i+1]=;

7. (a)
⋃
i∈N

R× [i, i+1]= {(x, y) : x, y ∈R, y≥ 1} (b)
⋂
i∈N

R× [i, i+1]= ;

9. (a)
⋃

X∈P(N)
X = N (b)

⋂
X∈P(N)

X = ;

11. Yes, this is always true.
13. The first is true, the second is false.

Chapter 2 Exercises
Section 2.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false.

1. Every real number is an even integer. (Statement, False)

3. If x and y are real numbers and 5x = 5y, then x = y. (Statement, True)

5. Sets Z and N are infinite. (Statement, True)

7. The derivative of any polynomial of degree 5 is a polynomial of degree 6.
(Statement, False)

9. cos(x)=−1
This is not a statement. It is an open sentence because whether it’s true or
false depends on the value of x.

11. The integer x is a multiple of 7.
This is an open sentence, and not a statement.

13. Either x is a multiple of 7, or it is not.
This is a statement, for the sentence is true no matter what x is.

15. In the beginning God created the heaven and the earth.
This is a statement, for it is either definitely true or definitely false. There is
some controversy over whether it’s true or false, but no one claims that it is
neither true nor false.
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Section 2.2
Express each statement as one of the forms P ∧Q, P ∨Q, or ∼ P. Be sure to also
state exactly what statements P and Q stand for.
1. The number 8 is both even and a power of 2.

P ∧Q
P: 8 is even
Q: 8 is a power of 2
Note: Do not say “Q: a power of 2,” because that is not a statement.

3. x 6= y ∼ (x = y) (Also ∼ P where P : x = y.)
5. y≥ x ∼ (y< x) (Also ∼ P where P : y< x.)
7. The number x equals zero, but the number y does not.

P∧∼Q
P : x = 0
Q : y= 0

9. x ∈ A−B
(x ∈ A)∧∼ (x ∈ B)

11. A ∈ {
X ∈P(N) : |X | <∞}

(A ⊆N)∧ (|A| <∞).
13. Human beings want to be good, but not too good, and not all the time.

P∧∼Q∧∼ R
P : Human beings want to be good.
Q : Human beings want to be too good.
R : Human beings want to be good all the time.

Section 2.3
Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then Q.”
1. A matrix is invertible provided that its determinant is not zero.

Answer: If a matrix has a determinant not equal to zero, then it is invertible.
3. For a function to be integrable, it is necessary that it is continuous.

Answer: If function is integrable, then it is continuous.
5. An integer is divisible by 8 only if it is divisible by 4.

Answer: If an integer is divisible by 8, then it is divisible by 4.

7. A series converges whenever it converges absolutely.
Answer: If a series converges absolutely, then it converges.

9. A function is integrable provided the function is continuous.
Answer: If a function is continuous, then that function is integrable.

11. You fail only if you stop writing.
Answer: If you fail, then you have stopped writing.

13. Whenever people agree with me I feel I must be wrong.
Answer: If people agree with me, then I feel I must be wrong.
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Section 2.4

Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if Q.”
1. For a matrix to be invertible, it is necessary and sufficient that its determinant

is not zero.
Answer: A matrix is invertible if and only if its determinant is not zero.

3. If xy= 0 then x = 0 or y= 0, and conversely.
Answer: xy= 0 if and only if x = 0 or y= 0

5. For an occurrence to become an adventure, it is necessary and sufficient for
one to recount it.
Answer: An occurrence becomes an adventure if and only if one recounts it.

Section 2.5
1. Write a truth table for P ∨ (Q ⇒ R)

P Q R Q ⇒ R P ∨ (Q ⇒ R)

T T T T T
T T F F T
T F T T T
T F F T T
F T T T T
F T F F F
F F T T T
F F F T T

3. Write a truth table for ∼ (P ⇒Q)

P Q P ⇒Q ∼ (P ⇒Q)

T T T F
T F F T
F T T F
F F T F

5. Write a truth table for (P∧∼ P)∨Q

P Q (P∧∼ P) (P∧∼ P)∨Q

T T F T
T F F F
F T F T
F F F F

7. Write a truth table for (P∧∼ P)⇒Q

P Q (P∧∼ P) (P∧∼ P)⇒Q

T T F T
T F F T
F T F T
F F F T

9. Write a truth table for ∼ (∼ P∨∼Q).

P Q ∼ P ∼Q ∼ P∨∼Q ∼ (∼ P∨∼Q)

T T F F F T
T F F T T F
F T T F T F
F F T T T F
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11. Suppose P is false and that the statement (R ⇒ S)⇔ (P ∧Q) is true. Find the
truth values of R and S. (This can be done without a truth table.)
Answer: Since P is false, it follows that (P∧Q) is false also. But then in order
for (R ⇒ S)⇔ (P ∧Q) to be true, it must be that (R ⇒ S) is false. The only way
for (R ⇒ S) to be false is if R is true and S is false.

Section 2.6
A. Use truth tables to show that the following statements are logically equivalent.

1. P ∧ (Q∨R)= (P ∧Q)∨ (P ∧R)

P Q R Q∨R P ∧Q P ∧R P ∧ (Q∨R) (P ∧Q)∨ (P ∧R)

T T T T T T T T
T T F T T F T T
T F T T F T T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Thus since their columns agree, the two statements are logically equivalent.
3. P ⇒Q = (∼ P)∨Q

P Q ∼ P (∼ P)∨Q P ⇒Q

T T F T T
T F F F F
F T T T T
F F T T T

Thus since their columns agree, the two statements are logically equivalent.
5. ∼ (P ∨Q∨R) = (∼ P)∧ (∼Q)∧ (∼ R)

P Q R P ∨Q∨R ∼ P ∼Q ∼ R ∼ (P ∨Q∨R) (∼ P)∧ (∼Q)∧ (∼ R)

T T T T F F F F F
T T F T F F T F F
T F T T F T F F F
T F F T F T T F F
F T T T T F F F F
F T F T T F T F F
F F T T T T F F F
F F F F T T T T T

Thus since their columns agree, the two statements are logically equivalent.
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7. P ⇒Q = (P∧∼Q)⇒ (Q∧∼Q)

P Q ∼Q P∧∼Q Q∧∼Q (P∧∼Q)⇒ (Q∧∼Q) P ⇒Q

T T F F F T T
T F T T F F F
F T F F F T T
F F T F F T T

Thus since their columns agree, the two statements are logically equivalent.

B. Decide whether or not the following pairs of statements are logically equivalent.
9. By DeMorgan’s law, we have ∼ (∼ P∨ ∼ Q) =∼∼ P∧ ∼∼ Q = P ∧Q. Thus the

two statements are logically equivalent.
11. (∼ P)∧ (P ⇒Q) and ∼ (Q ⇒ P)

P Q ∼ P P ⇒Q Q ⇒ P (∼ P)∧ (P ⇒Q) ∼ (Q ⇒ P)

T T F T T F F
T F F F T F F
F T T T F T T
F F T T T T F

The columns for the two statements do not quite agree, thus the two state-
ments are not logically equivalent.

Section 2.7

Write the following as English sentences. Say whether the statements are true
or false.
1. ∀x ∈R, x2 > 0

Answer: For every real number x, x2 > 0.
Also: For every real number x, it follows that x2 > 0.
Also: The square of any real number is positive. (etc.)
This statement is FALSE. Reason: 0 is a real number, but it’s not true that
02 > 0.

3. ∃a ∈R,∀x ∈R,ax = x.
Answer: There exists a real number a for which ax = x for every real number x.
This statement is TRUE. Reason: Consider a = 1.

5. ∀n ∈N,∃X ∈P(N), |X | < n
Answer: For every natural number n, there is a subset X of N with |X | < n.
This statement is TRUE. Reason: Suppose n ∈N. Let X =;. Then |X | = 0< n.
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7. ∀X ⊆N,∃n ∈Z, |X | = n
Answer: For any subset X of N, there exists an integer n for which |X | = n.
This statement is FALSE. For example, the set X = {2,4,6,8, . . .} of all even
natural numbers is infinite, so there does not exist any integer n for which
|X | = n.

9. ∀n ∈Z,∃m ∈Z,m = n+5
Answer: For every integer n there is another integer m such that m = n+5.
This statement is TRUE.

Section 2.9

Translate each of the following sentences into symbolic logic.
1. If f is a polynomial and its degree is greater than 2, then f ′ is not constant.

Translation: (P ∧Q)⇒ R, where
P : f is a polynomial,
Q : f has degree greater than 2,
R : f ′ is not constant.

3. If x is prime then p
x is not a rational number.

Translation: P ⇒∼Q, where
P : x is prime,
Q :

p
x is a rational number.

5. For every positive number ε, there is a positive number δ for which |x−a| < δ
implies | f (x)− f (a)| < ε.
Translation: ∀ ε ∈R,ε> 0,∃ δ ∈R,δ> 0, (|x−a| < δ)⇒ (| f (x)− f (a)| < ε)

7. There exists a real number a for which a+ x = x for every real number x.
Translation: ∃a ∈R,∀x ∈R,a+ x = x

9. If x is a rational number and x 6= 0, then tan(x) is not a rational number.
Translation: ((x ∈Q)∧ (x 6= 0))⇒ (tan(x) ∉Q)

11. There is a Providence that protects idiots, drunkards, children and the United
States of America.
One translation is as follows. Let R be union of the set of idiots, the set of
drunkards, the set of children, and the set consisting of the USA. Let P be the
open sentence P(x): x is a Providence. Let S be the open sentence S(x, y): x
protects y. Then the translation is ∃x,∀ y ∈ R,P(x)∧S(x, y).
(Notice that, although this is mathematically correct, some humor has been
lost in the translation.)

13. Everything is funny as long as it is happening to somebody else.
Translation: ∀x, (∼ M(x)∧S(x))⇒ F(x),
where M(x): x is happening to me, S(x): x is happening to someone, and F(x) : x
is funny.
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Section 2.10

Negate the following sentences.

1. The number x is positive, but the number y is not positive.
The “but” can be interpreted as “and.” Using DeMorgan’s law, the negation is:
The number x is not positive or the number y is positive.

3. For every prime number p there, is another prime number q with q > p.
Negation: There is a prime number p such that for every prime number q,
q ≤ p.
Also: There exists a prime number p for which q ≤ p for every prime number q.
(etc.)

5. For every positive number ε there is a positive number M for which | f (x)−b| < ε
whenever x > M.
To negate this, it may be helpful to first write it in symbolic form. The statement
is ∀ε ∈ (0,∞),∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε).
Working out the negation, we have

∼ (∀ε ∈ (0,∞),∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε)) =
∃ε ∈ (0,∞),∼ (∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε)) =
∃ε ∈ (0,∞),∀M ∈ (0,∞),∼ (

(x > M)⇒ (| f (x)−b| < ε)).
Finally, using the idea from Example 2.14, we can negate the conditional
statement that appears here to get

∃ε ∈ (0,∞),∀M ∈ (0,∞),∃x, (x > M)∧∼ (| f (x)−b| < ε)).
Negation: There exists a positive number ε with the property that for every
positive number M, there is a number x for which x > M and | f (x)−b| ≥ ε.

7. I don’t eat anything that has a face.
Negation: I will eat some things that have a face.
(Note. If your answer was “I will eat anything that has a face.” then that is
wrong, both morally and mathematically.)

9. If sin(x)< 0, then it is not the case that 0≤ x ≤π.
Negation: There exists a number x for which sin(x)< 0 and 0≤ x ≤π.

11. You can fool all of the people all of the time.

There are several ways to negate this, including:
There is a person that you can’t fool all the time. or
There is a person x and a time y for which x is not fooled at time y.
(But Abraham Lincoln said it better.)
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Chapter 3 Exercises
Section 3.1

1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed.
(a) How many length-4 lists are there? Answer: 6 ·6 ·6 ·6= 1296.
(b) How many length-4 lists are there that begin with T?

Answer: 1 ·6 ·6 ·6= 216.
(c) How many length-4 lists are there that do not begin with T?

Answer: 5 ·6 ·6 ·6= 1080.

3. How many ways can you make a list of length 3 from symbols a,b,c,d,e,f if...
(a) ... repetition is allowed. Answer: 6 ·6 ·6= 216.
(b) ... repetition is not allowed. Answer: 6 ·5 ·4= 120.
(c) ... repetition is not allowed and the list must contain the letter a.

Answer: 5 ·4+5 ·4+5 ·4= 60.

(d) ... repetition is allowed and the list must contain the letter a.
Answer: 6 ·6 ·6−5 ·5 ·5= 91.

(Note: See Example 3.2 if a more detailed explanation is required.)

5. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all five cards are of the same color? (i.e.,
all black or all red.)
There are 26·25·24·23·22= 7,893,600 possible black-card line-ups and 26·25·24·23·
22= 7,893,600 possible red-card line-ups, so the answer is 7,893,600+7,893,600=
15,787,200.

7. This problems involves 8-digit binary strings such as 10011011 or 00001010.
(i.e., 8-digit numbers composed of 0’s and 1’s.)
(a) How many such strings are there? Answer: 2 ·2 ·2 ·2 ·2 ·2 ·2 ·2= 256.
(b) How many such strings end in 0? Answer: 2 ·2 ·2 ·2 ·2 ·2 ·2 ·1= 128.

(c) How many such strings have the property that their second and fourth
digits are 1’s? Answer: 2 ·1 ·2 ·1 ·2 ·2 ·2 ·2= 64.

(d) How many such strings are such that their second or fourth digits are 1’s?
Answer: These strings can be divided into three types. Type 1 consists of
those strings of form ∗1∗0∗∗∗∗, Type 2 consist of strings of form ∗0∗1∗∗∗∗,
and Type 3 consists of those of form ∗1∗1∗∗∗∗. By the multiplication
principle there are 26 = 64 strings of each type, so there are 3 ·64= 192
8-digit binary strings whose second or fourth digits are 1’s.

9. This problem concerns 4-letter codes that can be made from the letters of the
English Alphabet.
(a) How many such codes can be made? Answer: 26 ·26 ·26 ·26= 456976
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(b) How many such codes have no two consecutive letters the same?
We use the multiplication principle. There are 26 choices for the first letter.
The second letter can’t be the same as the first letter, so there are only 25
choices for it. The third letter can’t be the same as the second letter, so there
are only 25 choices for it. The fourth letter can’t be the same as the third letter,
so there are only 25 choices for it. Thus there are 26 ·25 ·25 ·25= 406,250
codes with no two consecutive letters the same.

11. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.
How many such lists are possible if repetition is not allowed and the list
contains two consecutive vowels?
Answer: There are just two vowels A and E to choose from. The lists we want
to make can be divided into five types. They have one of the forms VV∗∗∗∗,
or ∗VV∗∗∗, or ∗∗VV∗∗, or ∗∗∗VV∗, or ∗∗∗∗VV , where V indicates a
vowel and ∗ indicates a consonant. By the multiplication principle, there are
2 ·1 ·6 ·5 ·4 ·3= 720 lists of form VV ∗∗∗∗. In fact, that for the same reason there
are 720 lists of each form. Thus the answer to the question is 5 ·720= 3600

Section 3.2
1. Answer n = 14.

3. Answer: 5!= 120.

5. 120!
118! = 120·119·118!

118! = 120 ·119= 14,280.

7. Answer: 5!4!= 2880.
9. The case x = 1 is straightforward. For x = 2,3 and 4, use integration by parts.

For x =π, you are on your own.
Section 3.3
1. Suppose a set A has 37 elements. How many subsets of A have 10 elements?

How many subsets have 30 elements? How many have 0 elements?
Answers:

(37
10

)= 348,330,136;
(37
30

)= 10,295,472;
(37

0
)= 1.

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
The answer will be n, where

(n
3
) = 56. After some trial and error, you will

discover
(8
3
)= 56, so |X | = 8.

5. How many 16-digit binary strings contain exactly seven 1’s?
Answer: Make such a string as follows. Start with a list of 16 blank spots.
Choose 7 of the blank spots for the 1’s and put 0’s in the other spots. There
are

(16
7

)= 114,40 ways to do this.
7. |{X ∈P({0,1,2,3,4,5,6,7,8,9}) : |X | < 4}| = (10

0
)+ (10

1
)+ (10

2
)+ (10

3
)= 1+10+45+120=

176.
9. This problem concerns lists of length six made from the letters A,B,C,D,E,F,

without repetition. How many such lists have the property that the D occurs
before the A?
Answer: Make such a list as follows. Begin with six blank spaces and select
two of these spaces. Put the D in the first selected space and the A in the
second. There are

(6
2
) = 15 ways of doing this. For each of these 15 choices

there are 4!= 24 ways of filling in the remaining spaces. Thus the answer to
the question is 15×24= 360 such lists.
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11. How many 10-digit integers contain no 0’s and exactly three 6’s?
Answer: Make such a number as follows: Start with 10 blank spaces and choose
three of these spaces for the 6’s. There are

(10
3

)= 120 ways of doing this. For
each of these 120 choices we can fill in the remaining seven blanks with choices
from the digits 1,2,3,4,5,7,8,9, and there are 87 to do this. Thus the answer to
the question is

(10
3

) ·87 = 251,658,240.

13. Assume n,k ∈Z with 0≤ k ≤ n. Then
(n

k
)= n!

(n−k)!k! = n!
k!(n−k)! = n!

(n−(n−k))!(n−k)! =
( n
n−k

)
.

Section 3.4

1. Write out Row 11 of Pascal’s triangle.
Answer: 1 11 55 165 330 462 462 330 165 55 11 1

3. Use the binomial theorem to find the coefficient of x8 in (x+2)13.
Answer: According to the binomial theorem, the coefficient of x8 y5 in (x+ y)13

is
(13

8
)
x8 y5 = 1287x8 y5. Now plug in y= 2 to get the final answer of 41184x8.

5. Use the binomial theorem to show ∑n
k=0

(n
k
)= 2n. Hint: Observe that 2n = (1+1)n.

Now use the binomial theorem to work out (x+ y)n and plug in x = 1 and y= 1.
7. Use the binomial theorem to show ∑n

k=0 3k (n
k
)= 4n.

Hint: Observe that 4n = (1+3)n. Now look at the hint for the previous problem.
9. Use the binomial theorem to show

(n
0
)− (n

1
)+ (n

2
)− (n

3
)+ (n

4
)− (n

5
)+ . . .± (n

n
) = 0.

Hint: Observe that 0= 0n = (1+ (−1))n. Now use the binomial theorem.
11. Use the binomial theorem to show 9n =∑n

k=0(−1)k (n
k
)
10n−k.

Hint: Observe that 9n = (10+ (−1))n. Now use the binomial theorem.
13. Assume n ≥ 3. Then

(n
3
)= (n−1

3
)+(n−1

2
)= (n−2

3
)+(n−2

2
)+(n−1

2
)= ·· · = (2

2
)+(3

2
)+·· ·+(n−1

2
)
.

Section 3.5

1. At a certain university 523 of the seniors are history majors or math majors
(or both). There are 100 senior math majors, and 33 seniors are majoring in
both history and math. How many seniors are majoring in history?
Answer: Let A be the set of senior math majors and B be the set of senior
history majors. From |A ∪B| = |A| + |B| − |A ∩B| we get 523 = 100+ |B| −33, so
|B| = 523+33−100= 456. There are 456 history majors.

3. How many 4-digit positive integers are there that are even or contain no 0’s?
Answer: Let A be the set of 4-digit even positive integers, and let B be the
set of 4-digit positive integers that contain no 0’s. We seek |A ∪B|. By the
multiplication principle |A| = 9 ·10 ·10 ·5= 4500. (Note the first digit cannot be 0
and the last digit must be even.) Also |B| = 9·9·9·9= 6561. Further, A∩B consists
of all even 4-digit integers that have no 0’s. It follows that |A∩B| = 9·9·9·4= 2916.
Then the answer to our question is |A∪B| = |A|+|B|−|A∩B| = 4500+6561−2916=
8145.
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5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
Answer: Let A be the set of such strings that begin in 1. Let B be the set of such
strings that end in 1. Let C be the set of such strings that have exactly four 1’s.
Then the answer to our question is |A∪B∪C|. Using Equation (3.4) to compute
this number, we have |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| =
26 +26 + (7

4
)−25 − (6

3
)− (6

3
)+ (5

2
)= 64+64+35−32−20−20+10= 101.

7. This problem concerns 4-card hands dealt off of a standard 52-card deck. How
many 4-card hands are there for which all four cards are of the same suit or
all four cards are red?
Answer: Let A be the set of 4-card hands for which all four cards are of the
same suit. Let B be the set of 4-card hands for which all four cards are red.
Then A∩B is the set of 4-card hands for which the four cards are either all
hearts or all diamonds. The answer to our question is |A∪B| = |A|+|B|−|A∩B| =
4

(13
4

)+ (26
4

)−2
(13

4
)= 2

(13
4

)+ (26
4

)= 1430+14950= 16380.

9. A 4-letter list is made from the letters L,I,S,T,E,D according to the following
rule: Repetition is allowed, and the first two letters on the list are vowels or
the list ends in D.
Answer: Let A be the set of such lists for which the first two letters are
vowels, so |A| = 2 ·2 ·6 ·6= 144. Let B be the set of such lists that end in D, so
|B| = 6 ·6 ·6 ·1 = 216. Then A∩B is the set of such lists for which the first two
entries are vowels and the list ends in D. Thus |A∩B| = 2 ·2 ·6 ·1 = 24. The
answer to our question is |A∪B| = |A|+ |B|− |A∩B| = 144+216−24= 336.

Chapter 4 Exercises
1. If x is an even integer, then x2 is even.

Proof. Suppose x is even. Thus x = 2a for some a ∈Z.
Consequently x2 = (2a)2 = 4a2 = 2(2a2).
Therefore x2 = 2b, where b is the integer 2a2.
Thus x2 is even by definition of an even number. ■

3. If a is an odd integer, then a2 +3a+5 is odd.

Proof. Suppose a is odd.
Thus a = 2c+1 for some integer c, by definition of an odd number.
Then a2 +3a+5= (2c+1)2 +3(2c+1)+5= 4c2 +4c+1+6c+3+5= 4c2 +10c+9
= 4c2 +10c+8+1= 2(2c2 +5c+4)+1.
This shows a2 +3a+5= 2b+1, where b = 2c2 +5c+4 ∈Z.
Therefore a2 +3a+5 is odd. ■

5. Suppose x, y ∈Z. If x is even, then xy is even.

Proof. Suppose x, y ∈Z and x is even.
Then x = 2a for some integer a, by definition of an even number.
Thus xy= (2a)(y)= 2(ay).
Therefore xy= 2b where b is the integer ay, so xy is even. ■
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7. Suppose a,b ∈Z. If a | b, then a2 | b2.

Proof. Suppose a | b.
By definition of divisibility, this means b = ac for some integer c.
Squaring both sides of this equation produces b2 = a2c2.
Then b2 = a2d, where d = c2 ∈Z.
By definition of divisibility, this means a2 | b2. ■

9. Suppose a is an integer. If 7 | 4a, then 7 | a.

Proof. Suppose 7 | 4a.
By definition of divisibility, this means 4a = 7c for some integer c.
Since 4a = 2(2a) it follows that 4a is even, and since 4a = 7c, we know 7c is even.
But then c can’t be odd, because that would make 7c odd, not even.
Thus c is even, so c = 2d for some integer d.
Now go back to the equation 4a = 7c and plug in c = 2d. We get 4a = 14d.
Dividing both sides by 2 gives 2a = 7d.
Now, since 2a = 7d, it follows that 7d is even, and thus d cannot be odd.
Then d is even, so d = 2e for some integer e.
Plugging d = 2e back into 2a = 7d gives 2a = 14e.
Dividing both sides of 2a = 14e by 2 produces a = 7e.
Finally, the equation a = 7e means that 7 | a, by definition of divisibility. ■

11. Suppose a,b, c,d ∈Z. If a | b and c | d, then ac | bd.

Proof. Suppose a | b and c | d.
As a | b, the definition of divisibility means there is an integer x for which
b = ax.
As c | d, the definition of divisibility means there is an integer y for which
d = cy.
Since b = ax, we can multiply one side of d = cy by b and the other by ax.
This gives bd = axcy, or bd = (ac)(xy).
Since xy ∈Z, the definition of divisibility applied to bd = (ac)(xy) gives ac | bd. ■

13. Suppose x, y ∈R. If x2 +5y= y2 +5x, then x = y or x+ y= 5.

Proof. Suppose x2 +5y= y2 +5x.
Then x2 − y2 = 5x−5y, and factoring gives (x− y)(x+ y)= 5(x− y).
Now consider two cases.
Case 1. If x− y 6= 0 we can divide both sides of (x− y)(x+ y) = 5(x− y) by the
non-zero quantity x− y to get x+ y= 5.
Case 2. If x− y= 0, then x = y. (By adding y to both sides.)
Thus x = y or x+ y= 5. ■
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15. If n ∈Z, then n2 +3n+4 is even.

Proof. Suppose n ∈Z. We consider two cases.
Case 1. Suppose n is even. Then n = 2a for some a ∈Z.
Therefore n2 +3n+4= (2a)2 +3(2a)+4= 4a2 +6a+4= 2(2a2 +3a+2).
So n2 +3n+4= 2b where b = 2a2 +3a+2 ∈Z, so n2 +3n+4 is even.
Case 2. Suppose n is odd. Then n = 2a+1 for some a ∈Z.
Therefore n2+3n+4= (2a+1)2+3(2a+1)+4= 4a2+4a+1+6a+3+4= 4a2+10a+8
= 2(2a2+5a+4). So n2+3n+4= 2b where b = 2a2+5a+4 ∈Z, so n2+3n+4 is even.
In either case n2 +3n+4 is even. ■

17. If two integers have opposite parity, then their product is even.

Proof. Suppose a and b are two integers with opposite parity. Thus one is even
and the other is odd. Without loss of generality, suppose a is even and b is
odd. Therefore there are integers c and d for which a = 2c and b = 2d+1. Then
the product of a and b is ab = 2c(2d+1) = 2(2cd+ c). Therefore ab = 2k where
k = 2cd+ c ∈Z. Therefore the product ab is even. ■

19. Suppose a,b, c ∈Z. If a2 | b and b3 | c then a6 | c.

Proof. Since a2 | b we have b = ka2 for some k ∈Z. Since b3 | c we have c = hb3

for some h ∈Z. Thus c = h(ka2)3 = hk3a6. Hence a6 | c. ■

21. If p is prime and 0< k < p then p | (p
k
)
.

Proof. From the formula
(p

k
)= p!

(p−k)!k! , we get p! = (p
k
)
(p− k)!k!. Now, since the

prime number p is a factor of p! on the left, it must also be a factor of
(p

k
)
(p−k)!k!

on the right. Thus the prime number p appears in the prime factorization of(p
k
)
(p−k)!k!.

Now, k! is a product of numbers smaller than p, so its prime factorization
contains no p’s. Similarly the prime factorization of (p− k)! contains no p’s.
But we noted that the prime factorization of

(p
k
)
(p−k)!k! must contain a p, so it

follows that the prime factorization of
(p

k
)
contains a p. Thus

(p
k
)
is a multiple

of p, so p divides
(p

k
)
. ■

23. If n ∈N then
(2n

n
)
is even.

Proof. By definition,
(2n

n
)
is the number of n-element subsets of a set A with 2n

elements. For each subset X ⊆ A with |X | = n, the complement X is a different
set, but it also has 2n−n = n elements. Imagine listing out all the n-elements
subset of a set A. It could be done in such a way that the list has form

X1, X1, X2, X2, X3, X3, X4, X4, X5, X5 . . .

This list has an even number of items, for they are grouped in pairs. Thus
(2n

n
)

is even. ■
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25. If a,b, c ∈N and c ≤ b ≤ a then
(a
b
)(b

c
)= ( a

b−c
)(a−b+c

c
)
.

Proof. Assume a,b, c ∈ N with c ≤ b ≤ a. Then we have
(a
b
)(b

c
) = a!

(a−b)!b!
b!

(b−c)!c! =
a!

(a−b+c)!(a−b)!
(a−b+c)!
(b−c)!c! = a!

(b−c)!(a−b+c)!
(a−b+c)!
(a−b)!c! = ( a

b−c
)(a−b+c

c
)
. ■

27. Suppose a,b ∈N. If gcd(a,b)> 1, then b | a or b is not prime.

Proof. Suppose gcd(a,b) > 1. Let c = gcd(a,b) > 1. Then since c is a divisor of
both a and b, we have a = cx and b = cy for integers x and y. We divide into
two cases according to whether or not b is prime.
Case I. Suppose b is prime. Then the above equation b = cy with c > 1 forces
c = b and y = 1. Then a = cx becomes a = bx, which means b | a. We conclude
that the statement “b | a or b is not prime,” is true.
Case II. Suppose b is not prime. Then the statement “b | a or b is not prime,”
is automatically true. ■

Chapter 5 Exercises
1. Proposition Suppose n ∈Z. If n2 is even, then n is even.

Proof. (Contrapositive) Suppose n is not even. Then n is odd, so n = 2a+1 for
some integer a, by definition of an odd number. Thus n2 = (2a+1)2 = 4a2+4a+1=
2(2a2+2a)+1. Consequently n2 = 2b+1, where b is the integer 2a2+2a, so n2 is
odd. Therefore n2 is not even. ■

3. Proposition Suppose a,b ∈Z. If a2(b2 −2b) is odd, then a and b are odd.

Proof. (Contrapositive) Suppose it is not the case that a and b are odd. Then,
by DeMorgan’s law, at least one of a and b is even. Let us look at these cases
separately.
Case 1. Suppose a is even. Then a = 2c for some integer c. Thus a2(b2 −2b)
= (2c)2(b2 −2b)= 2(2c2(b2 −2b)), which is even.
Case 2. Suppose b is even. Then b = 2c for some integer c. Thus a2(b2 −2b)
= a2((2c)2 −2(2c))= 2(a2(2c2 −2c)), which is even.
(A third case involving a and b both even is unnecessary, for either of the two
cases above cover this case.) Thus in either case a2(b2 −2b) is even, so it is not
odd. ■

5. Proposition Suppose x ∈R. If x2 +5x < 0 then x < 0.

Proof. (Contrapositive) Suppose it is not the case that x < 0, so x ≥ 0. Then
neither x2 nor 5x is negative, so x2+5x ≥ 0. Thus it is not true that x2+5x < 0. ■
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7. Proposition Suppose a,b ∈Z. If both ab and a+b are even, then both a and
b are even.

Proof. (Contrapositive) Suppose it is not the case that both a and b are even.
Then at least one of them is odd. There are three cases to consider.
Case 1. Suppose a is even and b is odd. Then there are integers c and
d for which a = 2c and b = 2d +1. Then ab = 2c(2d +1), which is even; and
a+ b = 2c+2d+1 = 2(c+d)+1, which is odd. Thus it is not the case that both
ab and a+b are even.
Case 2. Suppose a is odd and b is even. Then there are integers c and d for
which a = 2c+1 and b = 2d. Then ab = (2c+1)(2d) = 2(d(2c+1)), which is even;
and a+ b = 2c+1+2d = 2(c+d)+1, which is odd. Thus it is not the case that
both ab and a+b are even.
Case 3. Suppose a is odd and b is odd. Then there are integers c and d for
which a = 2c+1 and b = 2d +1. Then ab = (2c+1)(2d +1) = 4cd +2c+2d +1 =
2(2cd+ c+d)+1, which is odd; and a+ b = 2c+1+2d+1 = 2(c+d+1), which is
even. Thus it is not the case that both ab and a+b are even.
These cases show that it is not the case that ab and a+b are both even. (Note
that unlike Exercise 3 above, we really did need all three cases here, for each
case involved specific parities for both a and b.) ■

9. Proposition Suppose n ∈Z. If 3 - n2, then 3 - n.

Proof. (Contrapositive) Suppose it is not the case that 3 - n, so 3 | n. This means
that n = 3a for some integer a. Consequently n2 = 9a2, from which we get
n2 = 3(3a2). This shows that there in an integer b = 3a2 for which n2 = 3b, which
means 3 | n2. Therefore it is not the case that 3 - n2. ■

11. Proposition Suppose x, y ∈Z. If x2(y+3) is even, then x is even or y is odd.

Proof. (Contrapositive) Suppose it is not the case that x is even or y is odd.
Using DeMorgan’s law, this means x is not even and y is not odd, which is to
say x is odd and y is even. Thus there are integers a and b for which x = 2a+1
and y = 2b. Consequently x2(y+ 3) = (2a+ 1)2(2b+ 3) = (4a2 + 4a+ 1)(2b+ 3) =
8a2b+8ab+2b+12a2 +12a+3= 8a2b+8ab+2b+12a2 +12a+2+1=
2(4a2b+4ab+b+6a2+6a+1)+1. This shows x2(y+3)= 2c+1 for c = 4a2b+4ab+
b+6a2 +6a+1 ∈Z. Consequently, x2(y+3) is not even. ■

13. Proposition Suppose x ∈R. If x5 +7x3 +5x ≥ x4 + x2 +8, then x ≥ 0.

Proof. (Contrapositive) Suppose it is not true that x ≥ 0. Then x < 0, that is
x is negative. Consequently, the expressions x5, 7x3 and 5x are all negative
(note the odd powers) so x5 +7x3 +5x < 0. Similarly the terms x4, x2, and 8
are all positive (note the even powers), so 0 < x4 + x2 +8. From this we get
x5 +7x3 +5x < x4 + x2 +8, so it is not true that x5 +7x3 +5x ≥ x4 + x2 +8. ■
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15. Proposition Suppose x ∈Z. If x3 −1 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd. Thus x is even, so x = 2a for some
integer a. Then x3 −1= (2a)3 −1 = 8a3 −1= 8a3 −2+1 = 2(4a3 −1)+1. Therefore
x3 −1= 2b+1 where b = 4a3 −1 ∈Z, so x3 −1 is odd. Thus x3 −1 is not even. ■

17. Proposition If n is odd, then 8 | (n2 −1).

Proof. (Direct) Suppose n is odd, so n = 2a+1 for some integer a. Then n2 −1=
(2a+1)2−1= 4a2+4a = 4(a2+a)= 4a(a+1). So far we have n2−1= 4a(a+1), but
we want a factor of 8, not 4. But notice that one of a or a+1 must be even, so
a(a+1) is even and hence a(a+1)= 2c for some integer c. Now we have n2 −1=
4a(a+1)= 4(2c)= 8c. But n2 −1= 8c means 8 | (n2 −1). ■

19. Proposition Let a,b ∈Z and n ∈N. If a ≡ b (mod n) and a ≡ c (mod n), then
c ≡ b (mod n).

Proof. (Direct) Suppose a ≡ b (mod n) and a ≡ c (mod n).
This means n | (a−b) and n | (a− c).
Thus there are integers d and e for which a−b = nd and a− c = ne.
Subtracting the second equation from the first gives c−b = nd−ne.
Thus c−b = n(d− e), so n | (c−b) by definition of divisibility.
Therefore c ≡ b (mod n) by definition of congruence modulo n. ■

21. Proposition Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a3 ≡ b3 (mod n).

Proof. (Direct) Suppose a ≡ b (mod n). This means n | (a− b), so there is an
integer c for which a−b = nc. Then:

a−b = nc

(a−b)(a2 +ab+b2) = nc(a2 +ab+b2)

a3 +a2b+ab2 −ba2 −ab2 −b3 = nc(a2 +ab+b2)

a3 −b3 = nc(a2 +ab+b2).

Since a2 +ab+ b2 ∈Z, the equation a3 − b3 = nc(a2 +ab+ b2) implies n | (a3 − b3),
and therefore a3 ≡ b3 (mod n). ■

23. Proposition Let a,b, c ∈Z and n ∈N. If a ≡ b (mod n), then ca ≡ cb (mod n).

Proof. (Direct) Suppose a ≡ b (mod n). This means n | (a− b), so there is an
integer d for which a−b = nd. Multiply both sides of this by c to get ac−bc = ndc.
Consequently, there is an integer e = dc for which ac− bc = ne, so n | (ac− bc)
and consequently ac ≡ bc (mod n). ■

25. If n ∈N and 2n −1 is prime, then n is prime.

Proof. Assume n is not prime. Write n = ab for some a,b > 1. Then 2n −1 =
2ab−1= (

2b−1
)(

2ab−b+2ab−2b+2ab−3b+·· ·+2ab−ab)
. Hence 2n−1 is composite. ■
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27. If a ≡ 0 (mod 4) or a ≡ 1 (mod 4) then
(a
2
)
is even.

Proof. We prove this directly. Assume a ≡ 0 (mod 4). Then
(a
2
) = a(a−1)

2 . Since
a = 4k for some k ∈N, we have

(a
2
)= 4k(4k−1)

2 = 2k(4k−1). Hence
(a
2
)
is even.

Now assume a ≡ 1 (mod 4). Then a = 4k+1 for some k ∈N. Hence
(a
2
)= (4k+1)(4k)

2 =
2k(4k+1). Hence,

(a
2
)
is even. This proves the result. ■

29. If integers a and b are not both zero, then gcd(a,b)= gcd(a−b,b).

Proof. (Direct) Suppose integers a and b are not both zero. Let d = gcd(a,b).
Because d is a divisor of both a and b, we have a = dx and b = d y for some
integers x and y. Then a− b = dx−d y = d(x− y), so it follows that d is also a
common divisor of a−b and b. Therefore it can’t be greater than the greatest
common divisor of a−b and b, which is to say gcd(a,b)= d ≤ gcd(a−b,b).

Now let e = gcd(a−b,b). Then e divides both a−b and b, that is, a−b = ex and
b = ey for integers x and y. Then a = (a−b)+b = ex+ ey= e(x+ y), so now we see
that e is a divisor of both a and b. Thus it is not more than their greatest
common divisor, that is, gcd(a−b,b)= e ≤ gcd(a,b).

The above two paragraphs have given gcd(a,b)≤ gcd(a−b,b) and gcd(a−b,b)≤
gcd(a,b). Thus gcd(a,b)= gcd(a−b,b).

■

31. Suppose the division algorithm applied to a and b yields a = qb+ r. Then
gcd(a,b)= gcd(r,b).

Proof. Suppose a = qb+ r. Let d = gcd(a,b), so d is a common divisor of a and b;
thus a = dx and b = d y for some integers x and y. Then dx = a = qb+ r = qdy+ r,
hence dx = qdy+ r, and so r = dx− qdy= d(x− qy). Thus d is a divisor of r (and
also of b), so gcd(a,b)= d ≤ gcd(r,b).

On the other hand, let e = gcd(r,b), so r = ex and b = ey for some integers x and
y. Then a = qb+ r = qey+ ex = e(qy+ x). Hence e is a divisor of a (and of course
also of b) so gcd(r,b)= e ≤ gcd(a,b).

We’ve now shown gcd(a,b)≤ gcd(r,b) and gcd(r,b)≤ gcd(a,b), so gcd(r,b)= gcd(a,b).
■

Chapter 6 Exercises
1. Suppose n is an integer. If n is odd, then n2 is odd.

Proof. Suppose for the sake of contradiction that n is odd and n2 is not odd.
Then n2 is even. Now, since n is odd, we have n = 2a+1 for some integer a.
Thus n2 = (2a+1)2 = 4a2 +4a+1= 2(2a2 +2a)+1. This shows n2 = 2b+1, where
b is the integer b = 2a2 +2a. Therefore we have n2 is odd and n2 is even, a
contradiction. ■
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3. Prove that 3p2 is irrational.

Proof. Suppose for the sake of contradiction that 3p2 is not irrational. Therefore
it is rational, so there exist integers a and b for which 3p2= a

b . Let us assume
that this fraction is reduced, so a and b are not both even. Now we have
3p2

3 = ( a
b
)3, which gives 2 = a3

b3 , or 2b3 = a3. From this we see that a3 is even,
from which we deduce that a is even. (For if a were odd, then a3 = (2c+1)3 =
8c3 +12c2 +6c+1= 2(4c3 +6c2 +3c)+1 would be odd, not even.) Since a is even,
it follows that a = 2d for some integer d. The equation 2b3 = a3 from above then
becomes 2b3 = (2d)3, or 2b3 = 8d3. Dividing by 2, we get b3 = 4d3, and it follows
that b3 is even. Thus b is even also. (Using the same argument we used when
a3 was even.) At this point we have discovered that both a and b are even,
contradicting the fact (observed above) that the a and b are not both even. ■
Here is an alternative proof.

Proof. Suppose for the sake of contradiction that 3p2 is not irrational. Therefore
there exist integers a and b for which 3p2= a

b . Cubing both sides, we get 2= a3

b3 .
From this, a3 = b3 +b3, which contradicts Fermat’s last theorem. ■

5. Prove that
p

3 is irrational.

Proof. Suppose for the sake of contradiction that
p

3 is not irrational. Therefore
it is rational, so there exist integers a and b for which

p
3= a

b . Let us assume
that this fraction is reduced, so a and b have no common factor. Notice thatp

3
2 = ( a

b
)2, so 3= a2

b2 , or 3b2 = a2. This means 3 | a2.
Now we are going to show that if a ∈Z and 3 | a2, then 3 | a. (This is a proof-
within-a-proof.) We will use contrapositive proof to prove this conditional
statement. Suppose 3 - a. Then there is a remainder of either 1 or 2 when 3 is
divided into a.
Case 1. There is a remainder of 1 when 3 is divided into a. Then a = 3m+1
for some integer m. Consequently, a2 = 9m2 +6m+1= 3(3m2 +2m)+1, and this
means 3 divides into a2 with a remainder of 1. Thus 3 - a2.
Case 2. There is a remainder of 2 when 3 is divided into a. Then a = 3m+2
for some integer m. Consequently, a2 = 9m2 + 12m+ 4 = 9m2 + 12m+ 3+ 1 =
3(3m2+4m+1)+1, and this means 3 divides into a2 with a remainder of 1. Thus
3 - a2.
In either case we have 3 - a2, so we’ve shown 3 - a implies 3 - a2. Therefore, if
3 | a2, then 3 | a.
Now go back to 3 | a2 in the first paragraph. This combined with the result of
the second paragraph implies 3 | a, so a = 3d for some integer d. Now also in the
first paragraph we had 3b2 = a2, which now becomes 3b2 = (3d)2 or 3b2 = 9d2, so
b2 = 3d2. But this means 3 | b2, and the second paragraph implies 3 | b. Thus
we have concluded that 3 | a and 3 | b, but this contradicts the fact that the
fraction a

b is reduced. ■
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7. If a,b ∈Z, then a2 −4b−3 6= 0.

Proof. Suppose for the sake of contradiction that a,b ∈Z but a2−4b−3= 0. Then
we have a2 = 4b+3= 2(2b+1)+1, which means a2 is odd. Therefore a is odd also,
so a = 2c+1 for some integer c. Plugging this back into a2 −4b−3= 0 gives us

(2c+1)2 −4b−3 = 0

4c2 +4c+1−4b−3 = 0

4c2 +4c−4b = 2

2c2 +2c−2b = 1

2(c2 + c−b) = 1.

From this last equation, we see that 1 is an even number, a contradiction. ■

9. Suppose a,b ∈ R and a 6= 0. If a is rational and ab is irrational, then b is
irrational.

Proof. Suppose for the sake of contradiction that a is rational and ab is irra-
tional and b is not irrational. Thus we have a and b rational, and ab irrational.
Since a and b are rational, we know there are integers c,d, e, f for which a = c

d
and b = e

f . Then ab = ce
d f , and since both ce and d f are integers, it follows

that ab is rational. But this is a contradiction because we started out with ab
irrational. ■

11. There exist no integers a and b for which 18a+6b = 1.

Proof. Suppose for the sake of contradiction that there do exist integers a
and b for which 18a+6b = 1. Then 1 = 2(9a+3b), which means 1 is even, a
contradiction. ■

13. For every x ∈ [π/2,π], sin x−cos x ≥ 1.

Proof. Suppose for the sake of contradiction that x ∈ [π/2,π], but sin x−cos x < 1.
Since x ∈ [π/2,π], we know sin x ≥ 0 and cos x ≤ 0, so sin x− cos x ≥ 0. Therefore
we have 0 ≤ sin x− cos x < 1. Now the square of any number between 0 and
1 is still a number between 0 and 1, so we have 0 ≤ (sin x− cos x)2 < 1, or 0 ≤
sin2 x−2sin xcos x+cos2 x < 1. Using the fact that sin2 x+cos2 x = 1, this becomes
0≤−2sin xcos x+1< 1. Subtracting 1, we obtain −2sin xcos x < 0. But above we
remarked that sin x ≥ 0 and cos x ≤ 0, and hence −2sin xcos x ≥ 0. We now have
the contradiction −2sin xcos x < 0 and −2sin xcos x ≥ 0. ■

15. If b ∈Z and b - k for every k ∈N, then b = 0.

Proof. Suppose for the sake of contradiction that b ∈Z and b - k for every k ∈N,
but b 6= 0.
Case 1. Suppose b > 0. Then b ∈N, so b|b, contradicting b - k for every k ∈N.
Case 2. Suppose b < 0. Then −b ∈N, so b|(−b), again a contradiction ■
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17. For every n ∈Z, 4 - (n2 +2).

Proof. Assume there exists n ∈Z with 4 | (n2+2). Then for some k ∈Z, 4k = n2+2
or 2k = n2 +2(1− k). If n is odd, this means 2k is odd, and we’ve reached a
contradiction. If n is even then n = 2 j and we get k = 2 j2 +1−k for some j ∈Z.
Hence 2(k− j2)= 1, so 1 is even, a contradiction. ■

Remark. It is fairly easy to see that two more than a perfect square is always
either 2 (mod 4) or 3 (mod 4). This would end the proof immediately.

19. The product of 5 consecutive integers is a multiple of 120.

Proof. Given any collection of 5 consecutive integers, at least one must be a
multiple of two, at least one must be a multiple of three, at least one must be
a multiple of four and at least one must be a multiple of 5. Hence the product
is a multiple of 5 ·4 ·3 ·2= 120. In particular, the product is a multiple of 60. ■

21. Hints for Exercises 20–23. For Exercises 20, first show that the equation
a2 + b2 = 3c2 has no solutions (other than the trivial solution (a,b, c) = (0,0,0))
in the integers. To do this, investigate the remainders of a sum of squares
(mod 4). After you’ve done this, prove that the only solution is indeed the trivial
solution.
Now, assume that the equation x2 + y2 −3= 0 has a rational solution. Use the
definition of rational numbers to yield a contradiction.

Chapter 7 Exercises
1. Suppose x ∈Z. Then x is even if and only if 3x+5 is odd.

Proof. We first use direct proof to show that if x is even, then 3x+5 is odd.
Suppose x is even. Then x = 2n for some integer n. Thus 3x+5 = 3(2n)+5 =
6n+5 = 6n+4+1 = 2(3n+2)+1. Thus 3x+5 is odd because it has form 2k+1,
where k = 3n+2 ∈Z.
Conversely, we need to show that if 3x+5 is odd, then x is even. We will
prove this using contrapositive proof. Suppose x is not even. Then x is odd, so
x = 2n+1 for some integer n. Thus 3x+5= 3(2n+1)+5= 6n+8= 2(3n+4). This
means says 3x+5 is twice the integer 3n+4, so 3x+5 is even, not odd. ■

3. Given an integer a, then a3 +a2 +a is even if and only if a is even.

Proof. First we will prove that if a3+a2+a is even then a is even. This is done
with contrapositive proof. Suppose a is not even. Then a is odd, so there is an
integer n for which a = 2n+1. Then

a3 +a2 +a = (2n+1)3 + (2n+1)2 + (2n+1)

= 8n3 +12n2 +6n+1+4n2 +4n+1+2n+1

= 8n3 +16n2 +12n+2+1

= 2(4n3 +8n2 +6n+1)+1.
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This expresses a3 +a2 +a as twice an integer plus 1, so a3 +a2 +a is odd, not
even. We have now shown that if a3 +a2 +a is even then a is even.

Conversely, we need to show that if a is even, then a3+a2+a is even. We will use
direct proof. Suppose a is even, so a = 2n for some integer n. Then a3 +a2 +a =
(2n)3 + (2n)2 +2n = 8n3 +4n2 +2n = 2(4n3 +2n2 +n). Therefore, a3 +a2 +a is even
because it’s twice an integer. ■

5. An integer a is odd if and only if a3 is odd.

Proof. Suppose that a is odd. Then a = 2n+1 for some integer n, and a3 =
(2n+1)3 = 8n3 +12n2 +6n+1= 2(4n3 +6n2 +3n)+1. This shows that a3 is twice
an integer, plus 1, so a3 is odd. Thus we’ve proved that if a is odd then a3 is
odd.

Conversely we need to show that if a3 is odd, then a is odd. For this we employ
contrapositive proof. Suppose a is not odd. Thus a is even, so a = 2n for some
integer n. Then a3 = (2n)3 = 8n3 = 2(4n3) is even (not odd). ■

7. Suppose x, y ∈R. Then (x+ y)2 = x2 + y2 if and only if x = 0 or y= 0.

Proof. First we prove with direct proof that if (x+ y)2 = x2 + y2, then x = 0 or
y= 0. Suppose (x+ y)2 = x2+ y2. From this we get x2+2xy+ y2 = x2+ y2, so 2xy= 0,
and hence xy= 0. Thus x = 0 or y= 0.

Conversely, we need to show that if x = 0 or y = 0, then (x+ y)2 = x2 + y2. This
will be done with cases.
Case 1. If x = 0 then (x+ y)2 = (0+ y)2 = y2 = 02 + y2 = x2 + y2.
Case 2. If y= 0 then (x+ y)2 = (x+0)2 = x2 = x2 +02 = x2 + y2.
Either way, we have (x+ y)2 = x2 + y2. ■

9. Suppose a ∈Z. Prove that 14 | a if and only if 7 | a and 2 | a.

Proof. First we prove that if 14 | a, then 7 | a and 2 | a. Direct proof is used.
Suppose 14 | a. This means a = 14m for some integer m. Therefore a = 7(2m),
which means 7 | a, and also a = 2(7m), which means 2 | a. Thus 7 | a and 2 | a.

Conversely, we need to prove that if 7 | a and 2 | a, then 14 | a. Once again direct
proof if used. Suppose 7 | a and 2 | a. Since 2 | a it follows that a = 2m for some
integer m, and that in turn implies that a is even. Since 7 | a it follows that
a = 7n for some integer n. Now, since a is known to be even, and a = 7n, it
follows that n is even (if it were odd, then a = 7n would be odd). Thus n = 2p for
an appropriate integer p, and plugging n = 2p back into a = 7n gives a = 7(2p),
so a = 14p. Therefore 14 | a. ■
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11. Suppose a,b ∈Z. Prove that (a−3)b2 is even if and only if a is odd or b is even.

Proof. First we will prove that if (a−3)b2 is even, then a is odd or b is even.
For this we use contrapositive proof. Suppose it is not the case that a is
odd or b is even. Then by DeMorgan’s law, a is even and b is odd. Thus
there are integers m and n for which a = 2m and b = 2n+ 1. Now observe
(a−3)b2 = (2m−3)(2n+1)2 = (2m−3)(4n2+4n+1)= 8mn2+8mn+2m−12n2−12n−3=
8mn2 +8mn+2m−12n2 −12n−4+1 = 2(4mn2 +4mn+m−6n2 −6n−2)+1. This
shows (a−3)b2 is odd, so it’s not even.

Conversely, we need to show that if a is odd or b is even, then (a−3)b2 is even.
For this we use direct proof, with cases.
Case 1. Suppose a is odd. Then a = 2m+1 for some integer m. Thus (a−3)b2 =
(2m+1−3)b2 = (2m−2)b2 = 2(m−1)b2. Thus in this case (a−3)b2 is even.
Case 2. Suppose b is even. Then b = 2n for some integer n. Thus (a−3)b2 =
(a−3)(2n)2 = (a−3)4n2 = 2(a−3)2n2 =. Thus in this case (a−3)b2 is even.
Therefore, in any event, (a−3)b2 is even. ■

13. Suppose a,b ∈Z. If a+b is odd, then a2 +b2 is odd.
Hint: Use direct proof. Suppose a+b is odd. Argue that this means a and b
have opposite parity. Then use cases.

15. Suppose a,b ∈Z. Prove that a+b is even if and only if a and b have the same
parity.

Proof. First we will show that if a+b is even, then a and b have the same parity.
For this we use contrapositive proof. Suppose it is not the case that a and b
have the same parity. Then one of a and b is even and the other is odd. Without
loss of generality, let’s say that a is even and b is odd. Thus there are integers
m and n for which a = 2m and b = 2n+1. Then a+b = 2m+2n+1= 2(m+n)+1,
so a+b is odd, not even.

Conversely, we need to show that if a and b have the same parity, then a+b is
even. For this, we use direct proof with cases. Suppose a and b have the same
parity.
Case 1. Both a and b are even. Then there are integers m and n for which
a = 2m and b = 2n, so a+b = 2m+2n = 2(m+n) is clearly even.
Case 2. Both a and b are odd. Then there are integers m and n for which
a = 2m+1 and b = 2n+1, so a+b = 2m+1+2n+1= 2(m+n+1) is clearly even.
Either way, a+b is even. This completes the proof. ■

17. There is a prime number between 90 and 100.

Proof. Simply observe that 97 is prime. ■
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19. If n ∈N, then 20 +21 +22 +23 +24 +·· ·+2n = 2n+1 −1.

Proof. We use direct proof. Suppose n ∈N. Let S be the number
S = 20 +21 +22 +23 +24 +·· ·+2n−1 +2n. (1)

In what follows, we will solve for S and show S = 2n+1 −1. Multiplying both
sides of (1) by 2 gives

2S = 21 +22 +23 +24 +25 +·· ·+2n +2n+1. (2)
Now subtract Equation (1) from Equation (2) to obtain 2S −S = −20 + 2n+1,
which simplifies to S = 2n+1 −1. Combining this with Equation (1) produces
20 +21 +22 +23 +24 +·· ·+2n = 2n+1 −1, so the proof is complete. ■

21. Every real solution of x3 + x+3= 0 is irrational.

Proof. Suppose for the sake of contradiction that this polynomial has a rational
solution a

b . We may assume that this fraction is fully reduced, so a and b are
not both even. We have

( a
b
)3 + a

b +3= 0. Clearing the denominator gives

a3 +ab2 +3b3 = 0.

Consider two cases: First, if both a and b are odd, the left-hand side is a sum
of three odds, which is odd, meaning 0 is odd, a contradiction. Second, if one
of a and b is odd and the other is even, then the middle term of a3 +ab2 +3b3

is even, while a3 and 3b2 have opposite parity. Then a3 +ab2 +3b3 is the sum
of two evens and an odd, which is odd, again contradicting the fact that 0 is
even. ■

23. Suppose a,b and c are integers. If a | b and a | (b2 − c), then a | c.

Proof. (Direct) Suppose a | b and a | (b2 − c). This means that b = ad and
b2 − c = ae for some integers d and e. Squaring the first equation produces
b2 = a2d2. Subtracting b2 − c = ae from b2 = a2d2 gives c = a2d2 −ae = a(ad2 − e).
As ad2 − e ∈Z, it follows that a | c. ■

25. If p > 1 is an integer and n - p for each integer n for which 2≤ n ≤pp, then p is
prime.

Proof. (Contrapositive) Suppose that p is not prime, so it factors as p = mn for
1< m,n < p.

Observe that it is not the case that both m >pp and n >pp, because if this were
true the inequalities would multiply to give mn >pppp = p, which contradicts
p = mn.

Therefore m ≤pp or n ≤pp. Without loss of generality, say n ≤pp. Then the
equation p = mn gives n | p, with 1< n ≤pp. Therefore it is not true that n - p
for each integer n for which 2≤ n ≤pp. ■
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27. Suppose a,b ∈Z. If a2 +b2 is a perfect square, then a and b are not both odd.

Proof. (Contradiction) Suppose a2+b2 is a perfect square, and a and b are both
odd. As a2+b2 is a perfect square, say c is the integer for which c2 = a2+b2. As
a and b are odd, we have a = 2m+1 and b = 2n+1 for integers m and n. Then

c2 = a2 +b2 = (2m+1)2 + (2n+1)2 = 4(m2 +n2 +mn)+2.

This is even, so c is even also; let c = 2k. Now the above equation results in
(2k)2 = 4(m2+n2+mn)+2, which simplifies to 2k2 = 2(m2+n2+mn)+1. Thus 2k2

is both even and odd, a contradiction. ■

29. If a | bc and gcd(a,b)= 1, then a | c.

Proof. (Direct) Suppose a | bc and gcd(a,b)= 1. The fact that a | bc means bc = az
for some integer z. The fact that gcd(a,b) = 1 means that ax+ by = 1 for some
integers x and y (by Proposition 7.1 on page 126). From this we get acx+bcy= c;
substituting bc = az yields acx+azy= c, that is, a(cx+zy)= c. Therefore a | c. ■

31. If n ∈Z, then gcd(n,n+1)= 1.

Proof. Suppose d is a positive integer that is a common divisor of n and n+1.
Then n = dx and n+1= d y for integers x and y. Then 1= (n+1)−n = dy−dx =
d(y− x). Now, 1 = d(y− x) is only possible if d = ±1 and y− x = ±1. Thus the
greatest common divisor of n and n+1 can be no greater than 1. But 1 does
divide both n and n+1, so gcd(n,n+1)= 1. ■

33. If n ∈Z, then gcd(2n+1,4n2 +1)= 1.

Proof. Note that 4n2 +1= (2n+1)(2n−1)+2. Therefore, it suffices to show that
gcd(2n+1, (2n+1)(2n−1)+2) = 1. Let d be a common positive divisor of both
2n+1 and (2n+1)(2n−1)+2, so 2n+1= dx and (2n+1)(2n−1)+2= dy for integers
x and y. Substituting the first equation into the second gives dx(2n−1)+2= d y,
so 2= d y−dx(2n−1)= d(y−2nx− x). This means d divides 2, so d equals 1 or
2. But the equation 2n+1= dx means d must be odd. Therefore d = 1, that is,
gcd(2n+1, (2n+1)(2n−1)+2)= 1. ■

35. Suppose a,b ∈N. Then a = gcd(a,b) if and only if a | b.

Proof. Suppose a = gcd(a,b). This means a is a divisor of both a and b. In
particular a | b.

Conversely, suppose a | b. Then a divides both a and b, so a ≤ gcd(a,b). On the
other hand, since gcd(a,b) divides a, we have a = gcd(a,b) · x for some integer x.
As all integers involved are positive, it follows that a ≥ gcd(a,b).

It has been established that a ≤ gcd(a,b) and a ≥ gcd(a,b). Thus a = gcd(a,b). ■
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Chapter 8 Exercises
1. Prove that {12n : n ∈Z}⊆ {2n : n ∈Z}∩ {3n : n ∈Z}.

Proof. Suppose a ∈ {12n : n ∈Z}. This means a = 12n for some n ∈Z. Therefore
a = 2(6n) and a = 3(4n). From a = 2(6n), it follows that a is multiple of 2, so
a ∈ {2n : n ∈Z}. From a = 3(4n), it follows that a is multiple of 3, so a ∈ {3n : n ∈Z}.
Thus by definition of the intersection of two sets, we have a ∈ {2n : n ∈Z}∩
{3n : n ∈Z}. Thus {12n : n ∈Z}⊆ {2n : n ∈Z}∩ {3n : n ∈Z}. ■

3. If k ∈Z, then {n ∈Z : n | k}⊆ {
n ∈Z : n | k2}

.

Proof. Suppose k ∈Z. We now need to show {n ∈Z : n | k} ⊆ {
n ∈Z : n | k2}

.
Suppose a ∈ {n ∈Z : n | k}. Then it follows that a | k, so there is an integer c for
which k = ac. Then k2 = a2c2. Therefore k2 = a(ac2), and from this the definition
of divisibility gives a | k2. But a | k2 means that a ∈ {

n ∈Z : n | k2}
. We have now

shown {n ∈Z : n | k} ⊆ {
n ∈Z : n | k2}

. ■

5. If p and q are integers, then {pn : n ∈N}∩ {qn : n ∈N} 6= ;.

Proof. Suppose p and q are integers. Consider the integer pq. Observe that
pq ∈ {pn : n ∈N} and pq ∈ {qn : n ∈N}, so pq ∈ {pn : n ∈N}∩ {qn : n ∈N}. Therefore
{pn : n ∈N}∩ {qn : n ∈N} 6= ;. ■

7. Suppose A,B and C are sets. If B ⊆ C, then A×B ⊆ A×C.

Proof. This is a conditional statement, and we’ll prove it with direct proof.
Suppose B ⊆ C. (Now we need to prove A×B ⊆ A×C.)

Suppose (a,b) ∈ A×B. Then by definition of the Cartesian product we have a ∈ A
and b ∈ B. But since b ∈ B and B ⊆ C, we have b ∈ C. Since a ∈ A and b ∈ C, it
follows that (a,b) ∈ A×C. Now we’ve shown (a,b) ∈ A×B implies (a,b) ∈ A×C, so
A×B ⊆ A×C.

In summary, we’ve shown that if B ⊆ C, then A×B ⊆ A×C. This completes the
proof. ■

9. If A,B and C are sets then A∩ (B∪C)= (A∩B)∪ (A∩C).

Proof. We use the distributive law P ∧ (Q∨R) = (P ∧Q)∨ (P ∧R) from page 50.

A∩ (B∪C) = {x : x ∈ A ∧ x ∈ B∪C} (def. of intersection)
= {x : x ∈ A ∧ (x ∈ B ∨ x ∈ C)} (def. of union)
= {

x :
(
x ∈ A ∧ x ∈ B

) ∨ (
x ∈ A ∧ x ∈ C

)}
(distributive law)

= {x : (x ∈ A∩B) ∨ (x ∈ A∩C)} (def. of intersection)
= (A∩B)∪ (A∩C) (def. of union)

The proof is complete. ■
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11. If A and B are sets in a universal set U, then A∪B = A∩B.

Proof. Just observe the following sequence of equalities.
A∪B =U − (A∪B) (def. of complement)

= {x : (x ∈U)∧ (x ∉ A∪B)} (def. of −)
= {x : (x ∈U)∧∼ (x ∈ A∪B)}
= {x : (x ∈U)∧∼ ((x ∈ A)∨ (x ∈ B))} (def. of ∪)
= {x : (x ∈U)∧ (∼ (x ∈ A)∧∼ (x ∈ B))} (DeMorgan)
= {x : (x ∈U)∧ (x ∉ A)∧ (x ∉ B)}
= {x : (x ∈U)∧ (x ∈U)∧ (x ∉ A)∧ (x ∉ B)} (x ∈U)= (x ∈U)∧ (x ∈U)
= {x : ((x ∈U)∧ (x ∉ A))∧ ((x ∈U)∧ (x ∉ B))} (regroup)
= {x : (x ∈U)∧ (x ∉ A)}∩ {x : (x ∈U)∧ (x ∉ B)} (def. of ∩)
= (U − A)∩ (U −B) (def. of −)
= A∩B (def. of complement)

The proof is complete. ■

13. If A,B and C are sets, then A− (B∪C)= (A−B)∩ (A−C).

Proof. Just observe the following sequence of equalities.
A− (B∪C) = {x : (x ∈ A)∧ (x ∉ B∪C)} (def. of −)

= {x : (x ∈ A)∧∼ (x ∈ B∪C)}
= {x : (x ∈ A)∧∼ ((x ∈ B)∨ (x ∈ C))} (def. of ∪)
= {x : (x ∈ A)∧ (∼ (x ∈ B)∧∼ (x ∈ C))} (DeMorgan)
= {x : (x ∈ A)∧ (x ∉ B)∧ (x ∉ C)}
= {x : (x ∈ A)∧ (x ∈ A)∧ (x ∉ B)∧ (x ∉ C)} (x ∈ A)= (x ∈ A)∧ (x ∈ A)
= {x : ((x ∈ A)∧ (x ∉ B))∧ ((x ∈ A)∧ (x ∉ C))} (regroup)
= {x : (x ∈ A)∧ (x ∉ B)}∩ {x : (x ∈ A)∧ (x ∉ C)} (def. of ∩)
= (A−B)∩ (A−C) (def. of −)

The proof is complete. ■

15. If A,B and C are sets, then (A∩B)−C = (A−C)∩ (B−C).

Proof. Just observe the following sequence of equalities.
(A∩B)−C = {x : (x ∈ A∩B)∧ (x ∉ C)} (def. of −)

= {x : (x ∈ A)∧ (x ∈ B)∧ (x ∉ C)} (def. of ∩)
= {x : (x ∈ A)∧ (x ∉ C)∧ (x ∈ B)∧ (x ∉ C)} (regroup)
= {x : ((x ∈ A)∧ (x ∉ C))∧ ((x ∈ B)∧ (x ∉ C))} (regroup)
= {x : (x ∈ A)∧ (x ∉ C)}∩ {x : (x ∈ B)∧ (x ∉ C)} (def. of ∩)
= (A−C)∩ (B−C) (def. of ∩)

The proof is complete. ■

17. If A,B and C are sets, then A× (B∩C)= (A×B)∩ (A×C).

Proof. See Example 8.12. ■
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19. Prove that {9n : n ∈Z}⊆ {3n : n ∈Z}, but {9n : n ∈Z} 6= {3n : n ∈Z}.

Proof. Suppose a ∈ {9n : n ∈Z}. This means a = 9n for some integer n ∈Z. Thus
a = 9n = (32)n = 32n. This shows a is an integer power of 3, so a ∈ {3n : n ∈Z}.
Therefore a ∈ {9n : n ∈Z} implies a ∈ {3n : n ∈Z}, so {9n : n ∈Z}⊆ {3n : n ∈Z}.

But notice {9n : n ∈Z} 6= {3n : n ∈Z} as 3 ∈ {3n : n ∈Z}, but 3 ∉ {9n : n ∈Z}. ■

21. Suppose A and B are sets. Prove A ⊆ B if and only if A−B =;.

Proof. First we will prove that if A ⊆ B, then A−B =;. Contrapositive proof is
used. Suppose that A−B 6= ;. Thus there is an element a ∈ A−B, which means
a ∈ A but a ∉ B. Since not every element of A is in B, we have A 6⊆ B.

Conversely, we will prove that if A−B =;, then A ⊆ B. Again, contrapositive
proof is used. Suppose A 6⊆ B. This means that it is not the case that every
element of A is an element of B, so there is an element a ∈ A with a ∉ B.
Therefore we have a ∈ A−B, so A−B 6= ;. ■

23. For each a ∈R, let Aa = {
(x,a(x2 −1)) ∈R2 : x ∈R}

. Prove that
⋂
a∈R

Aa = {(−1,0), (1,0))}.

Proof. First we will show that {(−1,0), (1,0))}⊆ ⋂
a∈R

Aa. Notice that for any a ∈R,
we have (−1,0) ∈ Aa because Aa contains the ordered pair (−1,a((−1)2−1)= (−1,0).
Similarly (1,0) ∈ Aa. Thus each element of {(−1,0), (1,0))} belongs to every set
Aa, so every element of

⋂
a∈R

Aa, so {(−1,0), (1,0))}⊆ ⋂
a∈R

Aa.

Now we will show
⋂
a∈R

Aa ⊆ {(−1,0), (1,0))}. Suppose (c,d) ∈ ⋂
a∈R

Aa. This means

(c,d) is in every set Aa. In particular (c,d) ∈ A0 =
{
(x,0(x2 −1)) : x ∈R}= {(x,0) : x ∈R}.

It follows that d = 0. Then also we have (c,d)= (c,0) ∈ A1 = {
(x,1(x2 −1)) : x ∈R}={

(x, x2 −1) : x ∈R}
. Therefore (c,0) has the form (c, c2 −1), that is (c,0)= (c, c2 −1).

From this we get c2 −1 = 0, so c = ±1. Therefore (c,d) = (1,0) or (c,d) = (−1,0),
so (c,d) ∈ {(−1,0), (1,0))}. This completes the demonstration that (c,d) ∈ ⋂

a∈R
Aa

implies (c,d) ∈ {(−1,0), (1,0))}, so it follows that
⋂
a∈R

Aa ⊆ {(−1,0), (1,0))}.

Now it’s been shown that {(−1,0), (1,0))}⊆ ⋂
a∈R

Aa and
⋂
a∈R

Aa ⊆ {(−1,0), (1,0))}, so it

follows that
⋂
a∈R

Aa = {(−1,0), (1,0))}. ■

25. Suppose A,B,C and D are sets. Prove that (A×B)∪ (C×D)⊆ (A∪C)× (B∪D).

Proof. Suppose (a,b) ∈ (A×B)∪ (C×D).
By definition of union, this means (a,b) ∈ (A×B) or (a,b) ∈ (C×D).
We examine these two cases individually.
Case 1. Suppose (a,b) ∈ (A×B). By definition of ×, it follows that a ∈ A and
b ∈ B. From this, it follows from the definition of ∪ that a ∈ A∪C and b ∈ B∪D.
Again from the definition of ×, we get (a,b) ∈ (A∪C)× (B∪D).
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Case 2. Suppose (a,b) ∈ (C×D). By definition of ×, it follows that a ∈ C and
b ∈ D. From this, it follows from the definition of ∪ that a ∈ A∪C and b ∈ B∪D.
Again from the definition of ×, we get (a,b) ∈ (A∪C)× (B∪D).
In either case, we obtained (a,b) ∈ (A∪C)× (B∪D),
so we’ve proved that (a,b) ∈ (A×B)∪ (C×D) implies (a,b) ∈ (A∪C)× (B∪D).
Therefore (A×B)∪ (C×D)⊆ (A∪C)× (B∪D). ■

27. Prove {12a+4b : a,b ∈Z}= {4c : c ∈Z}.

Proof. First we show {12a+4b : a,b ∈Z}⊆ {4c : c ∈Z}. Suppose x ∈ {12a+4b : a,b ∈Z}.
Then x = 12a+4b for some integers a and b. From this we get x = 4(3a+b), so
x = 4c where c is the integer 3a+b. Consequently x ∈ {4c : c ∈Z}. This establishes
that {12a+4b : a,b ∈Z}⊆ {4c : c ∈Z}.
Next we show {4c : c ∈Z}⊆ {12a+4b : a,b ∈Z}. Suppose x ∈ {4c : c ∈Z}. Then x = 4c
for some c ∈ Z. Thus x = (12+4(−2))c = 12c+4(−2c), and since c and −2c are
integers we have x ∈ {12a+4b : a,b ∈Z}.
This proves that {12a+4b : a,b ∈Z}= {4c : c ∈Z}. ■

29. Suppose A 6= ;. Prove that A×B ⊆ A×C, if and only if B ⊆ C.

Proof. First we will prove that if A×B ⊆ A×C, then B ⊆ C. Using contrapositive,
suppose that B 6⊆ C. This means there is an element b ∈ B with b ∉ C. Since
A 6= ;, there exists an element a ∈ A. Now consider the ordered pair (a,b). Note
that (a,b) ∈ A×B, but (a,b) 6∈ A×C. This means A×B 6⊆ A×C.

Conversely, we will now show that if B ⊆ C, then A×B ⊆ A×C. We use direct
proof. Suppose B ⊆ C. Assume that (a,b) ∈ A×B. This means a ∈ A and b ∈ B.
But, as B ⊆ C, we also have b ∈ C. From a ∈ A and b ∈ C, we get (a,b) ∈ A×C.
We’ve now shown (a,b) ∈ A×B implies (a,b) ∈ A×C, so A×B ⊆ A×C. ■

31. Suppose B 6= ; and A×B ⊆ B×C. Prove A ⊆ C.

Proof. Suppose B 6= ; and A×B ⊆ B×C. In what follows, we show that A ⊆ C.
Let x ∈ A. Because B is not empty, it contains some element b. Observe that
(x,b) ∈ A×B. But as A×B ⊆ B×C, we also have (x,b) ∈ B×C, so, in particular,
x ∈ B. As x ∈ A and x ∈ B, we have (x, x) ∈ A×B. But as A×B ⊆ B×C, it follows
that (x, x) ∈ B×C. This implies x ∈ C.

Now we’ve shown x ∈ A implies x ∈ C, so A ⊆ C. ■

Chapter 9 Exercises
1. If x, y ∈R, then |x+ y| = |x|+ |y|.

This is false.
Disproof: Here is a counterexample: Let x = 1 and y=−1. Then |x+ y| = 0 and
|x|+ |y| = 2, so it’s not true that |x+ y| = |x|+ |y|.
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3. If n ∈Z and n5 −n is even, then n is even.
This is false.
Disproof: Here is a counterexample: Let n = 3. Then n5 −n = 35 −3= 240, but
n is not even.

5. If A, B,C and D are sets, then (A×B)∪ (C×D)= (A∪C)× (B∪D).
This is false.
Disproof: Here is a counterexample: Let A = {1,2}, B = {1,2}, C = {2,3} and
D = {2,3}. Then (A×B)∪(C×D)= {(1,1), (1,2), (2,1), (2,2)}∪{(2,2), (2,3), (3,2), (3,3)}=
{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3)} . Also (A ∪C)× (B ∪ D) = {1,2,3}× {1,2,3}=
{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}, so you can see that (A ×B)∪
(C×D) 6= (A∪C)× (B∪D).

7. If A, B and C are sets, and A×C = B×C, then A = B.
This is false.
Disproof: Here is a counterexample: Let A = {1}, B = {2} and C = ;. Then
A×C = B×C =;, but A 6= B.

9. If A and B are sets, then P(A)−P(B)⊆P(A−B).
This is false.
Disproof: Here is a counterexample: Let A = {1,2} and B = {1}. Then P(A)−
P(B)= {;, {1} , {2} , {1,2}}− {;, {1}}= {{2} , {1,2}}. Also P(A−B)= P({2})= {;, {2}}. In
this example we have P(A)−P(B) 6⊆P(A−B).

11. If a,b ∈N, then a+b < ab.
This is false.
Disproof: Here is a counterexample: Let a = 1 and b = 1. Then a+ b = 2 and
ab = 1, so it’s not true that a+b < ab.

13. There exists a set X for which R⊆ X and ;∈ X . This is true.

Proof. Simply let X = R∪ {;}. If x ∈ R, then x ∈ R∪ {;} = X , so R⊆ X . Likewise,
;∈R∪ {;}= X because ;∈ {;}. ■

15. Every odd integer is the sum of three odd integers. This is true.

Proof. Suppose n is odd. Then n = n+1+ (−1), and therefore n is the sum of
three odd integers. ■

17. For all sets A and B, if A−B =;, then B 6= ;.
This is false.
Disproof: Here is a counterexample: Just let A =; and B =;. Then A−B =;,
but it’s not true that B 6= ;.

19. For every r, s ∈Q with r < s, there is an irrational number u for which r < u < s.
This is true.

Proof. (Direct) Suppose r, s ∈Q with r < s. Consider the number u = r+p
2 s−r

2 .
In what follows we will show that u is irrational and r < u < s. Certainly since
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s− r is positive, it follows that r < r+p
2 s−r

2 = u. Also, since
p

2< 2 we have

u = r+
p

2
s− r

2
< r+2

s− r
2

= s,

and therefore u < s. Thus we can conclude r < u < s.

Now we just need to show that u is irrational. Suppose for the sake of contra-
diction that u is rational. Then u = a

b for some integers a and b. Since r and s
are rational, we have r = c

d and s = e
f for some c,d, e, f ∈Z. Now we have

u = r+
p

2
s− r

2
a
b

= c
d
+
p

2
e
f − c

d

2
ad−bc

bd
=

p
2

ed− c f
2d f

(ad−bc)2d f
bd(ed− c f )

=
p

2

This expresses
p

2 as a quotient of two integers, so
p

2 is rational, a contradiction.
Thus u is irrational.

In summary, we have produced an irrational number u with r < u < s, so the
proof is complete. ■

21. There exist two prime numbers p and q for which p− q = 97.
This statement is false.
Disproof: Suppose for the sake of contradiction that this is true. Let p and
q be prime numbers for which p− q = 97. Now, since their difference is odd, p
and q must have opposite parity, so one of p and q is even and the other is
odd. But there exists only one even prime number (namely 2), so either p = 2
or q = 2. If p = 2, then p− q = 97 implies q = 2−97 = −95, which is not prime.
On the other hand if q = 2, then p− q = 97 implies p = 99, but that’s not prime
either. Thus one of p or q is not prime, a contradiction.

23. If x, y ∈R and x3 < y3, then x < y. This is true.

Proof. (Contrapositive) Suppose x ≥ y. We need to show x3 ≥ y3.
Case 1. Suppose x and y have opposite signs, that is one of x and y is positive
and the other is negative. Then since x ≥ y, x is positive and y is negative.
Then, since the powers are odd, x3 is positive and y3 is negative, so x3 ≥ y3.
Case 2. Suppose x and y do not have opposite signs. Then x2 + xy+ y2 ≥ 0 and
also x− y≥ 0 because x ≥ y. Thus we have x3 − y3 = (x− y)(x2 + xy+ y2)≥ 0. From
this we get x3 − y3 ≥ 0, so x3 ≥ y3.
In either case we have x3 ≥ y3. ■
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25. For all a,b, c ∈Z, if a | bc, then a | b or a | c.
This is false.
Disproof: Let a = 6, b = 3 and c = 4. Note that a | bc, but a - b and a - c.

27. The equation x2 = 2x has three real solutions.

Proof. By inspection, the numbers x = 2 and x = 4 are two solutions of this
equation. But there is a third solution. Let m be the real number for which
m2m = 1

2 . Then negative number x =−2m is a solution, as follows.

x2 = (−2m)2 = 4m2 = 4
(

m2m

2m

)2
= 4

( 1
2

2m

)2

= 1
22m = 2−2m = 2x.

Therefore we have three solutions 2, 4 and m. ■

29. If x, y ∈R and |x+ y| = |x− y|, then y= 0.
This is false.
Disproof: Let x = 0 and y= 1. Then |x+ y| = |x− y|, but y= 1.

31. No number appears in Pascal’s triangle more than four times.
Disproof: The number 120 appears six times. Check that

(10
3

)= (10
7

)= (16
2

)=(16
14

)= (120
1

)= (120
119

)= 120.

33. Suppose f (x)= a0 +a1x+a2x2 +·· ·+anxn is a polynomial of degree 1 or greater,
and for which each coefficient ai is in N. Then there is an n ∈N for which the
integer f (n) is not prime.

Proof. (Outline) Note that, because the coefficients are all positive and the
degree is greater than 1, we have f (1)> 1. Let b = f (1)> 1. Now, the polynomial
f (x)− b has a root 1, so f (x)− b = (x− 1)g(x) for some polynomial g. Then
f (x) = (x−1)g(x)+ b. Now note that f (b+1) = bg(b)+ b = b(g(b)+1). If we can
now show that g(b)+ 1 is an integer, then we have a nontrivial factoring
f (b+1) = b(g(b)+1), and f (b+1) is not prime. To complete the proof, use the
fact that f (x)−b = (x−1)g(x) has integer coefficients, and deduce that g(x) must
also have integer coefficients. ■

Chapter 10 Exercises

1. For every integer n ∈N, it follows that 1+2+3+4+·· ·+n = n2 +n
2

.

Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1= 12 +1
2

, which is obviously true.
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(2) Consider any integer k ≥ 1. We must show that Sk implies Sk+1. In other
words, we must show that if 1+2+3+4+·· ·+k = k2+k

2 is true, then

1+2+3+4+·· ·+k+ (k+1)= (k+1)2 + (k+1)
2

is also true. We use direct proof.
Suppose k ≥ 1 and 1+2+3+4+·· ·+k = k2+k

2 . Observe that

1+2+3+4+·· ·+k+ (k+1) =
(1+2+3+4+·· ·+k)+ (k+1) =

k2 +k
2

+ (k+1) = k2 +k+2(k+1)
2

= k2 +2k+1 + k+1
2

= (k+1)2 + (k+1)
2

.

Therefore we have shown that 1+2+3+4+·· ·+k+ (k+1)= (k+1)2+(k+1)
2 . ■

3. For every integer n ∈N, it follows that 13 +23 +33 +43 +·· ·+n3 = n2(n+1)2
4 .

Proof. We will prove this with mathematical induction.
(1) When n = 1 the statement is 13 = 12(1+1)2

4 = 4
4 = 1, which is true.

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
13 +23 +33 +43 +·· ·+k3 = k2(k+1)2

4 . Observe that this implies the statement is
true for n = k+1.

13 +23 +33 +43 +·· ·+k3 + (k+1)3 =
(13 +23 +33 +43 +·· ·+k3)+ (k+1)3 =

k2(k+1)2

4
+ (k+1)3 = k2(k+1)2

4
+ 4(k+1)3

4

= k2(k+1)2 +4(k+1)3

4

= (k+1)2(k2 +4(k+1)1)
4

= (k+1)2(k2 +4k+4)
4

= (k+1)2(k+2)2

4

= (k+1)2((k+1)+1)2

4

Therefore 13 +23 +33 +43 +·· ·+ k3 + (k+1)3 = (k+1)2((k+1)+1)2
4 , which means the

statement is true for n = k+1. ■
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5. If n ∈N, then 21 +22 +23 +·· ·+2n = 2n+1 −2.

Proof. The proof is by mathematical induction.
(1) When n = 1, this statement is 21 = 21+1 −2, or 2= 4−2, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume

21+22+23+·· ·+2k = 2k+1−2. Observe this implies that the statement is true
for n = k+1, as follows:

21 +22 +23 +·· ·+2k +2k+1 =
(21 +22 +23 +·· ·+2k)+2k+1 =

2k+1 −2+2k+1 = 2 ·2k+1 −2

= 2k+2 −2

= 2(k+1)+1 −2

Thus we have 21 +22 +23 +·· ·+2k +2k+1 = 2(k+1)+1 −2, so the statement is true
for n = k+1.

Thus the result follows by mathematical induction. ■

7. If n ∈N, then 1 ·3+2 ·4+3 ·5+4 ·6+·· ·+n(n+2)= n(n+1)(2n+7)
6

.

Proof. The proof is by mathematical induction.
(1) When n = 1, we have 1 ·3= 1(1+1)(2+7)

6 , which is the true statement 3= 18
6 .

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2)= k(k+1)(2k+7)

6 . Now observe that

1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2)+ (k+1)((k+1)+2) =
(1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2))+ (k+1)((k+1)+2) =

k(k+1)(2k+7)
6

+ (k+1)((k+1)+2) =
k(k+1)(2k+7)

6
+ 6(k+1)(k+3)

6
=

k(k+1)(2k+7)+6(k+1)(k+3)
6

=
(k+1)(k(2k+7)+6(k+3))

6
=

(k+1)(2k2 +13k+18)
6

=
(k+1)(k+2)(2k+9)

6
=

(k+1)((k+1)+1)(2(k+1)+7)
6

Thus we have 1·3+2·4+3·5+4·6+·· ·+k(k+2)+(k+1)((k+1)+2)= (k+1)((k+1)+1)(2(k+1)+7)
6 ,

and this means the statement is true for n = k+1.
Thus the result follows by mathematical induction. ■
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9. For any integer n ≥ 0, it follows that 24 | (52n −1).

Proof. The proof is by mathematical induction.
(1) For n = 0, the statement is 24 | (52·0 −1). This is 24 | 0, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume

24 | (52k −1). This means 52k −1 = 24a for some integer a, and from this we
get 52k = 24a+1. Now observe that

52(k+1) −1 =
52k+2 −1 =
5252k −1 =

52(24a+1)−1 =
25(24a+1)−1 =

25 ·24a+25−1 = 24(25a+1).

This shows 52(k+1) −1= 24(25a+1), which means 24 | 52(k+1) −1.
This completes the proof by mathematical induction. ■

11. For any integer n ≥ 0, it follows that 3 | (n3 +5n+6).

Proof. The proof is by mathematical induction.
(1) When n = 0, the statement is 3 | (03 +5 ·0+6), or 3 | 6, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 0, that is assume

3 | (k3 +5k+6). This means k3 +5k+6 = 3a for some integer a. We need to
show that 3 | ((k+1)3 +5(k+1)+6). Observe that

(k+1)3 +5(k+1)+6 = k3 +3k2 +3k+1+5k+5+6

= (k3 +5k+6)+3k2 +3k+6

= 3a+3k2 +3k+6

= 3(a+k2 +k+2).

Thus we have deduced (k+1)3 − (k+1)= 3(a+k2 +k+2). Since a+k2 +k+2 is
an integer, it follows that 3 | ((k+1)3 +5(k+1)+6).

It follows by mathematical induction that 3 | (n3 +5n+6) for every n ≥ 0. ■

13. For any integer n ≥ 0, it follows that 6 | (n3 −n).

Proof. The proof is by mathematical induction.
(1) When n = 0, the statement is 6 | (03 −0), or 6 | 0, which is true.
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(2) Now assume the statement is true for some integer n = k ≥ 0, that is, assume
6 | (k3 −k). This means k3 −k = 6a for some integer a. We need to show that
6 | ((k+1)3 − (k+1)). Observe that

(k+1)3 − (k+1) = k3 +3k2 +3k+1−k−1

= (k3 −k)+3k2 +3k

= 6a+3k2 +3k

= 6a+3k(k+1).

Thus we have deduced (k+1)3 − (k+1)= 6a+3k(k+1). Since one of k or (k+1)
must be even, it follows that k(k+1) is even, so k(k+1)= 2b for some integer
b. Consequently (k+1)3 − (k+1) = 6a+3k(k+1) = 6a+3(2b) = 6(a+ b). Since
(k+1)3 − (k+1)= 6(a+b) it follows that 6 | ((k+1)3 − (k+1)).

Thus the result follows by mathematical induction. ■

15. If n ∈N, then 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 +·· ·+ 1
n(n+1) = 1− 1

n+1 .

Proof. The proof is by mathematical induction.
(1) When n = 1, the statement is 1

1(1+1) = 1− 1
1+1 , which simplifies to 1

2 = 1
2 .

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
1

1·2 + 1
2·3 + 1

3·4 + 1
4·5 +·· ·+ 1

k(k+1) = 1− 1
k+1 . Next we show that the statement for

n = k+1 is true. Observe that
1

1 ·2 + 1
2 ·3 + 1

3 ·4 + 1
4 ·5 +·· ·+ 1

k(k+1)
+ 1

(k+1)((k+1)+1)
=(

1
1 ·2 + 1

2 ·3 + 1
3 ·4 + 1

4 ·5 +·· ·+ 1
k(k+1)

)
+ 1

(k+1)(k+2)
=(

1− 1
k+1

)
+ 1

(k+1)(k+2)
=

1− 1
k+1

+ 1
(k+1)(k+2)

=

1− k+2
(k+1)(k+2)

+ 1
(k+1)(k+2)

=

1− k+1
(k+1)(k+2)

=

1− 1
k+2

=

1− 1
(k+1)+1

.

This establishes 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 +·· ·+ 1
(k+1)((k+1)+1 = 1− 1

(k+1)+1 , which is to say
that the statement is true for n = k+1.

This completes the proof by mathematical induction. ■
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17. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that
A1 ∩ A2 ∩·· ·∩ An = A1 ∪ A2 ∪·· ·∪ An.

Proof. The proof is by strong induction.
(1) When n = 2 the statement is A1 ∩ A2 = A1 ∪ A2. This is not an entirely

obvious statement, so we have to prove it. Observe that

A1 ∩ A2 = {x : (x ∈U)∧ (x ∉ A1 ∩ A2)} (definition of complement)
= {x : (x ∈U)∧∼ (x ∈ A1 ∩ A2)}

= {x : (x ∈U)∧∼ ((x ∈ A1)∧ (x ∈ A2))} (definition of ∩)
= {x : (x ∈U)∧ (∼ (x ∈ A1)∨∼ (x ∈ A2))} (DeMorgan)
= {x : (x ∈U)∧ ((x ∉ A1)∨ (x ∉ A2))}

= {x : (x ∈U)∧ (x ∉ A1)∨ (x ∈U)∧ (x ∉ A2)} (distributive prop.)
= {x : ((x ∈U)∧ (x ∉ A1))}∪ {x : ((x ∈U)∧ (x ∉ A2))} (def. of ∪)
= A1 ∪ A2 (definition of complement)

(2) Let k ≥ 2. Assume the statement is true if it involves k or fewer sets. Then

A1 ∩ A2 ∩·· ·∩ Ak−1 ∩ Ak ∩ Ak+1 =
A1 ∩ A2 ∩·· ·∩ Ak−1 ∩ (Ak ∩ Ak+1) = A1 ∪ A2 ∪·· ·∪ Ak−1 ∪ Ak ∩ Ak+1

= A1 ∪ A2 ∪·· ·∪ Ak−1 ∪ Ak ∪ Ak+1

Thus the statement is true when it involves k+1 sets.
This completes the proof by strong induction. ■

19. Prove ∑n
k=1 1/k2 ≤ 2−1/n for every n.

Proof. This clearly holds for n = 1. Assume it holds for some n ≥ 1. Then∑n+1
k=1 1/k2 ≤ 2−1/n+1/(n+1)2 = 2− (n+1)2−n

n(n+1)2 ≤ 2−1/(n+1). The proof is complete. ■

21. If n ∈N, then 1
1 + 1

2 + 1
3 +·· ·+ 1

2n ≥ 1+ n
2 .

Proof. If n = 1, the result is obvious.
Assume the proposition holds for some n > 1. Then

1
1
+ 1

2
+ 1

3
+·· ·+ 1

2n+1 =
(

1
1
+ 1

2
+ 1

3
+·· ·+ 1

2n

)
+

(
1

2n +1
+ 1

2n +2
+ 1

2n +3
+·· ·+ 1

2n+1

)
≥

(
1+ n

2

)
+

(
1

2n +1
+ 1

2n +2
+ 1

2n +3
+·· ·+ 1

2n+1

)
.

Now, the sum
(

1
2n+1 + 1

2n+2 + 1
2n+3 +·· ·+ 1

2n+1

)
on the right has 2n+1−2n = 2n terms,

all greater than or equal to 1
2n+1 , so the sum is greater than 2n 1

2n+1 = 1
2 . Therefore

we get 1
1 + 1

2 + 1
3 +·· ·+ 1

2n+1 ≥ (
1+ n

2
)+ (

1
2n+1 + 1

2n+2 + 1
2n+3 +·· ·+ 1

2n+1

)
≥ (

1+ n
2
)+ 1

2 =
1+ n+1

2 . This means the result is true for n+1, so the theorem is proved. ■
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23. Use induction to prove the binomial theorem (x+ y)n =∑n
i=0

(n
i
)
xn−i yi.

Proof. Notice that when n = 1, the formula is (x+ y)1 = (1
0
)
x1 y0 + (1

1
)
x0 y1 = x+ y,

which is true.

Now assume the theorem is true for some n > 1. We will show that this implies
that it is true for the power n+1. Just observe that

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)
n∑

i=0

(
n
i

)
xn−i yi

=
n∑

i=0

(
n
i

)
x(n+1)−i yi +

n∑
i=0

(
n
i

)
xn−i yi+1

=
n∑

i=0

[(
n
i

)
+

(
n

i−1

)]
x(n+1)−i yi + yn+1

=
n∑

i=0

(
n+1

i

)
x(n+1)−i yi +

(
n+1
n+1

)
yn+1

=
n+1∑
i=0

(
n+1

i

)
x(n+1)−i yi.

This shows that the formula is true for (x+ y)n+1, so the theorem is proved. ■

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2−1.

Proof. The proof is by induction.
(1) When n = 1 the statement is F1 = F1+2 −1 = F3 −1 = 2−1 = 1, which is true.

Also when n = 2 the statement is F1+F2 = F2+2−1= F4−1= 3−1= 2, which is
true, as F1 +F2 = 1+1= 2.

(2) Now assume k ≥ 1 and F1 +F2 +F3 +F4 + . . .+Fk = Fk+2 −1. We need to show
F1 +F2 +F3 +F4 + . . .+Fk +Fk+1 = Fk+3 −1. Observe that

F1 +F2 +F3 +F4 + . . .+Fk +Fk+1 =
(F1 +F2 +F3 +F4 + . . .+Fk)+Fk+1 =

Fk+2 −1++Fk+1 = (Fk+1 +Fk+2)−1

= Fk+3 −1.

This completes the proof by induction. ■

27. Concerning the Fibonacci sequence, prove that F1 +F3 +·· ·+F2n−1 = F2n.

Proof. If n = 1, the result is immediate. Assume for some n > 1 we have∑n
i=1 F2i−1 = F2n. Then ∑n+1

i=1 F2i−1 = F2n+1+∑n
i=1 F2i−1 = F2n+1+F2n = F2n+2 = F2(n+1)

as desired. ■
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29. Prove that
(n
0
)+ (n−1

1
)+ (n−2

2
)+ (n−3

3
)+·· ·+ ( 1

n−1
)+ (0

n
)= Fn+1.

Proof. (Strong Induction) For n = 1 this is
(1
0
)+ (0

1
)= 1+0 = 1 = F2 = F1+1. Thus

the assertion is true when n = 1.
Now fix n and assume that

(k
0
)+(k−1

1
)+(k−2

2
)+(k−3

3
)+·· ·+ ( 1

k−1
)+(0

k
)= Fk+1 whenever

k < n. In what follows we use the identity
(n

k
)= (n−1

k−1
)+ (n−1

k
)
. We also often use(a

b
)= 0 whenever it is untrue that 0≤ b ≤ a.(

n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+·· ·+

(
1

n−1

)
+

(
0
n

)

=
(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+·· ·+

(
1

n−1

)

=
(
n−1
−1

)
+

(
n−1

0

)
+

(
n−2

0

)
+

(
n−2

1

)
+

(
n−3

1

)
+

(
n−3

2

)
+·· ·+

(
0

n−1

)
+

(
0
n

)

=
(
n−1

0

)
+

(
n−2

0

)
+

(
n−2

1

)
+

(
n−3

1

)
+

(
n−3

2

)
+·· ·+

(
0

n−1

)
+

(
0
n

)

=
[(

n−1
0

)
+

(
n−2

1

)
+·· ·+

(
0

n−1

)]
+

[(
n−2

0

)
+

(
n−3

1

)
+·· ·+

(
0

n−2

)]
= Fn +Fn−1 = Fn

This completes the proof. ■

31. Prove that ∑n
k=0

(k
r
)= (n+1

r+1
)
, where r ∈N.

Hint: Use induction on the integer n. After doing the basis step, break up the
expression

(k
r
)
as

(k
r
)= (k−1

r−1
)+ (k−1

r
)
. Then regroup, use the induction hypothesis,

and recombine using the above identity.
33. Suppose that n infinitely long straight lines lie on the plane in such a way that

no two are parallel, and no three intersect at a single point. Show that this
arrangement divides the plane into n2+n+2

2 regions.

Proof. The proof is by induction. For the basis step, suppose n = 1. Then there
is one line, and it clearly divides the plane into 2 regions, one on either side of
the line. As 2= 12+1+2

2 = n2+n+2
2 , the formula is correct when n = 1.

Now suppose there are n+1 lines on the plane, and that the formula is correct
for when there are n lines on the plane. Single out one of the n+1 lines on the
plane, and call it `. Remove line `, so that there are now n lines on the plane.
By the induction hypothesis, these n lines
divide the plane into n2+n+2

2 regions. Now add
line ` back. Doing this adds an additional
n+1 regions. (The diagram illustrates the
case where n+1 = 5. Without `, there are
n = 4 lines. Adding ` back produces n+1= 5
new regions.)

`

1

2
3
4

5
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Thus, with n+1 lines there are all together (n+1)+ n2+n+2
2 regions. Observe

(n+1)+ n2 +n+2
2

= 2n+2+n2 +n+2
2

= (n+1)2 + (n+1)+2
2

.

Thus, with n+1 lines, we have (n+1)2+(n+1)+2
2 regions, which means that the

formula is true for when there are n+1 lines. We have shown that if the
formula is true for n lines, it is also true for n+1 lines. This completes the
proof by induction. ■

35. If n,k ∈N, and n is even and k is odd, then
(n

k
)
is even.

Proof. Notice that if k is not a value between 0 and n, then
(n

k
)= 0 is even; thus

from here on we can assume that 0< k < n. We will use strong induction.

For the basis case, notice that the assertion is true for the even values n = 2
and n = 4:

(2
1
)= 2;

(4
1
)= 4;

(4
3
)= 4 (even in each case).

Now fix and even n assume that
(m

k
)
is even whenever m is even, k is odd, and

m < n. Using the identity
(n

k
)= (n−1

k−1
)+ (n−1

k
)
three times, we get

(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)

=
(
n−2
k−2

)
+

(
n−2
k−1

)
+

(
n−2
k−1

)
+

(
n−2

k

)

=
(
n−2
k−2

)
+2

(
n−2
k−1

)
+

(
n−2

k

)
.

Now, n−2 is even, and k and k−2 are odd. By the inductive hypothesis, the
outer terms of the above expression are even, and the middle is clearly even;
thus we have expressed

(n
k
)
as the sum of three even integers, so it is even. ■

Chapter 11 Exercises
Section 11.0 Exercises

1. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses > on A. Then
illustrate it with a diagram.

R = {
(5,4), (5,3), (5,3), (5,3), (5,1), (5,0), (4,3), (4,2), (4,1),

(4,0), (3,2), (3,1), (3,0), (2,1), (2,0), (1,0)
}

0

12

3

4 5

3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses ≥ on A. Then
illustrate it with a diagram.
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R = {
(5,5), (5,4), (5,3), (5,2), (5,1), (5,0),

(4,4), (4,3), (4,2), (4,1), (4,0),
(3,3), (3,2), (3,1), (3,0),
(2,2), (2,1), (2,0), (1,1), (1,0), (0,0)

} 0

12

3

4 5

5. The following diagram represents a relation R on a set A. Write the sets A
and R. Answer: A = {0,1,2,3,4,5}; R = {(3,3), (4,3), (4,2), (1,2), (2,5), (5,0)}

7. Write the relation < on the set A =Z as a subset R of Z×Z. This is an infinite
set, so you will have to use set-builder notation.
Answer: R = {(x, y) ∈Z×Z : y− x ∈N}

9. How many different relations are there on the set A = {
1,2,3,4,5,6

}
?

Consider forming a relation R ⊆ A× A on A. For each ordered pair (x, y) ∈ A× A,
we have two choices: we can either include (x, y) in R or not include it. There
are 6 ·6= 36 ordered pairs in A× A. By the multiplication principle, there are
thus 236 different subsets R and hence also this many relations on A.

11. Answer: 2(|A|2) 13. Answer: 6= 15. Answer: ≡ (mod 3)

Section 11.1 Exercises

1. Consider the relation R = {(a,a), (b,b), (c, c), (d,d), (a,b), (b,a)} on the set A = {a,b, c,d}.
Which of the properties reflexive, symmetric and transitive does R possess and
why? If a property does not hold, say why.
This is reflexive because (x, x) ∈ R (i.e., xRx )for every x ∈ A.
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.

3. Consider the relation R = {(a,b), (a, c), (c,b), (b, c)} on the set A = {a,b, c}. Which
of the properties reflexive, symmetric and transitive does R possess and why?
If a property does not hold, say why.
This is not reflexive because (a,a) ∉ R (for example).
It is not symmetric because (a,b) ∈ R but (b,a) ∉ R.
It is not transitive because cRb and bRc are true, but cRc is false.

5. Consider the relation R = {
(0,0), (

p
2,0), (0,

p
2), (

p
2,
p

2)
}
on R. Say whether this

relation is reflexive, symmetric and transitive. If a property does not hold, say
why.
This is not reflexive because (1,1) ∉ R (for example).
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.

7. There are 16 possible different relations R on the set A = {a,b}. Describe all of
them. (A picture for each one will suffice, but don’t forget to label the nodes.)
Which ones are reflexive? Symmetric? Transitive?
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a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Only the four in the right column are reflexive. Only the eight in the first and
fourth rows are symmetric. All of them are transitive except the first three
on the fourth row.

9. Define a relation on Z by declaring xR y if and only if x and y have the same
parity. Say whether this relation is reflexive, symmetric and transitive. If a
property does not hold, say why. What familiar relation is this?
This is reflexive because xRx since x always has the same parity as x.
It is symmetric because if x and y have the same parity, then y and x must
have the same parity (that is, xR y⇒ yRx).
It is transitive because if x and y have the same parity and y and z have the
same parity, then x and z must have the same parity. (That is (xR y∧yRz)⇒ xRz
always holds.)
The relation is congruence modulo 2.

11. Suppose A = {a,b, c,d} and R = {(a,a), (b,b), (c, c), (d,d)}. Say whether this relation
is reflexive, symmetric and transitive. If a property does not hold, say why.
This is reflexive because (x, x) ∈ R for every x ∈ A.
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.
(For example (aRa∧aRa)⇒ aRa is true, etc.)

13. Consider the relation R = {(x, y) ∈R×R : x− y ∈Z} on R. Prove that this relation
is reflexive and symmetric, and transitive.

Proof. In this relation, xR y means x− y ∈Z.
To see that R is reflexive, take any x ∈R and observe that x− x = 0 ∈Z, so xRx.
Therefore R is reflexive.
To see that R is symmetric, we need to prove xR y ⇒ yRx for all x, y ∈ R. We
use direct proof. Suppose xR y. This means x− y ∈ Z. Then it follows that
−(x− y)= y− x is also in Z. But y− x ∈Z means yRx. We’ve shown xR y implies
yRx, so R is symmetric.
To see that R is transitive, we need to prove (xR y∧ yRz) ⇒ xRz is always
true. We prove this conditional statement with direct proof. Suppose xR y and
yRz. Since xR y, we know x− y ∈ Z. Since yRz, we know y− z ∈ Z. Thus x− y
and y− z are both integers; by adding these integers we get another integer
(x− y)+ (y− z)= x− z. Thus x− z ∈Z, and this means xRz. We’ve now shown that
if xR y and yRz, then xRz. Therefore R is transitive. ■
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15. Prove or disprove: If a relation is symmetric and transitive, then it is also
reflexive.
This is false. For a counterexample, consider the relation R = {(a,a), (a,b), (b,a), (b,b)}
on the set A = {a,b, c}. This is symmetric and transitive but it is not reflexive.

17. Define a relation ∼ on Z as x ∼ y if and only if |x− y| ≤ 1. Say whether ∼ is
reflexive, symmetric and transitive.
This is reflexive because |x−x| = 0≤ 1 for all integers x. It is symmetric because
x ∼ y if and only if |x− y| ≤ 1, if and only if |y−x| ≤ 1, if and only if y∼ x. It is not
transitive because, for example, 0∼ 1 and 1∼ 2, but is not the case that 0∼ 2.

Section 11.2 Exercises

1. Let A = {1,2,3,4,5,6}, and consider the following equivalence relation on A: R =
{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,3), (3,2), (4,5), (5,4), (4,6), (6,4), (5,6), (6,5)}. List
the equivalence classes of R.

The equivalence classes are: [1]= {1}; [2]= [3]= {2,3}; [4]= [5]= [6]= {4,5,6}.
3. Let A = {a,b, c,d, e}. Suppose R is an equivalence relation on A. Suppose R has

three equivalence classes. Also aRd and bRc. Write out R as a set.
Answer: R = {(a,a), (b,b), (c, c), (d,d), (e, e), (a,d), (d,a), (b, c), (c,b)}.

5. There are two different equivalence relations on the set A = {a,b}. Describe
them all. Diagrams will suffice.
Answer: R = {(a,a), (b,b)} and R = {(a,a), (b,b), (a,b), (b,a)}

7. Define a relation R on Z as xR y if and only if 3x−5y is even. Prove R is an
equivalence relation. Describe its equivalence classes.

To prove that R is an equivalence relation, we must show it’s reflexive, sym-
metric and transitive.
The relation R is reflexive for the following reason. If x ∈Z, then 3x−5x =−2x
is even. But then since 3x−5x is even, we have xRx. Thus R is reflexive.

To see that R is symmetric, suppose xR y. We must show yRx. Since xR y, we
know 3x−5y is even, so 3x−5y= 2a for some integer a. Now reason as follows:

3x−5y = 2a

3x−5y+8y−8x = 2a+8y−8x

3y−5x = 2(a+4y−4x).

From this it follows that 3y−5x is even, so yRx. We’ve now shown xR y implies
yRx, so R is symmetric.

To prove that R is transitive, assume that xR y and yRz. (We will show that this
implies xRz.) Since xR y and yRz, it follows that 3x−5y and 3y−5z are both even,
so 3x−5y= 2a and 3y−5z = 2b for some integers a and b. Adding these equations,
we get (3x−5y)+ (3y−5z) = 2a+2b, and this simplifies to 3x−5z = 2(a+ b+ y).
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Therefore 3x−5z is even, so xRz. We’ve now shown that if xR y and yRz, then
xRz, so R is transitive.

We’ve now shown that R is reflexive, symmetric and transitive, so it is an
equivalence relation.

The completes the first part of the problem. Now we move on the second part.
To find the equivalence classes, first note that

[0]= {x ∈Z : xR0}= {x ∈Z : 3x−5 ·0 is even}= {x ∈Z : 3x is even}= {x ∈Z : x is even} .

Thus the equivalence class [0] consists of all even integers. Next, note that

[1]= {x ∈Z : xR1}= {x ∈Z : 3x−5 ·1 is even}= {x ∈Z : 3x−5 is even}= {
x ∈Z : x is odd

}
.

Thus the equivalence class [1] consists of all odd integers.

Consequently there are just two equivalence classes {. . . ,−4,−2,0,2,4, . . .} and
{. . . ,−3,−1,1,3,5, . . .}.

9. Define a relation R on Z as xR y if and only if 4 | (x+ 3y). Prove R is an
equivalence relation. Describe its equivalence classes.
This is reflexive, because for any x ∈Z we have 4 | (x+3x), so xRx.
To prove that R is symmetric, suppose xR y. Then 4 | (x+3y), so x+3y = 4a
for some integer a. Multiplying by 3, we get 3x+9y = 12a, which becomes
y+3x = 12a−8y. Then y+3x = 4(3a−2y), so 4 | (y+3x), hence yRx. Thus we’ve
shown xR y implies yRx, so R is symmetric.
To prove transitivity, suppose xR y and yRz. Then 4|(x+3y) and 4|(y+3z), so
x+3y= 4a and y+3z = 4b for some integers a and b. Adding these two equations
produces x+4y+3z = 4a+4b, or x+3z = 4a+4b−4y= 4(a+b− y). Consequently
4|(x+3z), so xRz, and R is transitive.
As R is reflexive, symmetric and transitive, it is an equivalence relation.
Now let’s compute its equivalence classes.
[0]= {x ∈Z : xR0}= {x ∈Z : 4 | (x+3 ·0)}= {x ∈Z : 4 | x}= {. . .−4,0,4,8,12,16 . . .}
[1]= {x ∈Z : xR1}= {x ∈Z : 4 | (x+3 ·1)}= {x ∈Z : 4 | (x+3)}= {. . .−3,1,5,9,13,17 . . .}
[2]= {x ∈Z : xR2}= {x ∈Z : 4 | (x+3 ·2)}= {x ∈Z : 4 | (x+6)}= {. . .−2,2,6,10,14,18 . . .}
[3]= {x ∈Z : xR3}= {x ∈Z : 4 | (x+3 ·3)}= {x ∈Z : 4 | (x+9)}= {. . .−1,3,7,11,15,19 . . .}

11. Prove or disprove: If R is an equivalence relation on an infinite set A, then R
has infinitely many equivalence classes.
This is False. Counterexample: consider the relation of congruence modulo 2.
It is a relation on the infinite set Z, but it has only two equivalence classes.

13. Answer: m|A| 15. Answer: 15
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Section 11.3 Exercises

1. List all the partitions of the set A = {a,b}. Compare your answer to the answer
to Exercise 5 of Section 11.2.
There are just two partitions {{a} , {b}} and {{a,b}}. These correspond to the two
equivalence relations R1 = {(a,a), (b,b)} and R2 = {(a,a), (a,b), (b,a), (b,b)}, respec-
tively, on A.

3. Describe the partition of Z resulting from the equivalence relation ≡ (mod 4).
Answer: The partition is {[0], [1], [2], [3]} ={

{. . . ,−4,0,4,8,12, . . .} , {. . . ,−3,1,5,9,13, . . .} , {. . . ,−2,2,4,6,10,14, . . .} , {. . . ,−1,3,7,11,15, . . .}
}

5. Answer: Congruence modulo 2, or “same parity.”

Section 11.4 Exercises

1. Write the addition and multiplication tables for Z2.

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

· [0] [1]

[0] [0] [0]

[1] [0] [1]

3. Write the addition and multiplication tables for Z4.

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

· [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

5. Suppose [a], [b] ∈Z5 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0]
or [b]= [0]?

The multiplication table for Z5 is shown in Section 11.4. In the body of that
table, the only place that [0] occurs is in the first row or the first column. That
row and column are both headed by [0]. It follows that if [a] · [b] = [0], then
either [a] or [b] must be [0].

7. Do the following calculations in Z9, in each case expressing your answer as [a]
with 0≤ a ≤ 8.
(a) [8]+ [8]= [7] (b) [24]+ [11]= [8] (c) [21] · [15]= [0] (d) [8] · [8]= [1]
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Chapter 12 Exercises

Section 12.1 Exercises

1. Suppose A = {0,1,2,3,4}, B = {2,3,4,5} and f = {(0,3), (1,3), (2,4), (3,2), (4,2)}. State
the domain and range of f . Find f (2) and f (1).
Domain is A; Range is {2,3,4}; f (2)= 4; f (1)= 3.

3. There are four different functions f : {a,b}→ {0,1}. List them all. Diagrams will
suffice.
f1 = {(a,0), (b,0)} f2 = {(a,1), (b,0)} , f3 = {(a,0), (b,1)} f4 = {(a,1), (b,1)}

5. Give an example of a relation from {a,b, c,d} to {d, e} that is not a function.
One example is {(a,d), (a, e), (b,d), (c,d), (d,d)}.

7. Consider the set f = {(x, y) ∈Z×Z : 3x+ y= 4}. Is this a function from Z to Z?
Explain.
Yes, since 3x+ y= 4 if and only if y= 4−3x, this is the function f :Z→Z defined
as f (x)= 4−3x.

9. Consider the set f = {
(x2, x) : x ∈R}

. Is this a function from R to R? Explain.
No. This is not a function. Observe that f contains the ordered pairs (4,2) and
(4,−2). Thus the real number 4 occurs as the first coordinate of more than one
element of f .

11. Is the set θ = {(X , |X |) : X ⊆Z5} a function? If so, what is its domain and range?
Yes, this is a function. The domain is P(Z5). The range is {0,1,2,3,4,5}.

Section 12.2 Exercises

1. Let A = {1,2,3,4} and B = {a,b, c}. Give an example of a function f : A → B that
is neither injective nor surjective.
Consider f = {(1,a), (2,a), (3,a), (4,a)}.
Then f is not injective because f (1)= f (2).
Also f is not surjective because it sends no element of A to the element c ∈ B.

3. Consider the cosine function cos :R→R. Decide whether this function is injective
and whether it is surjective. What if it had been defined as cos :R→ [−1,1]?
The function cos :R→R is not injective because, for example, cos(0)= cos(2π). It
is not surjective because if b = 5 ∈R (for example), there is no real number for
which cos(x)= b. The function cos :R→ [−1,1] is surjective. but not injective.

5. A function f :Z→Z is defined as f (n)= 2n+1. Verify whether this function is
injective and whether it is surjective.
This function is injective. To see this, suppose m,n ∈Z and f (m)= f (n).
This means 2m+1= 2n+1, from which we get 2m = 2n, and then m = n.
Thus f is injective.
This function is not surjective. To see this notice that f (n) is odd for all
n ∈ Z. So given the (even) number 2 in the codomain Z, there is no n with
f (n)= 2.
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7. A function f : Z×Z→ Z is defined as f ((m,n)) = 2n−4m. Verify whether this
function is injective and whether it is surjective.
This is not injective because (0,2) 6= (−1,0), yet f ((0,2))= f ((−1,0))= 4. This is
not surjective because f ((m,n)) = 2n−4m = 2(n−2m) is always even. If b ∈Z
is odd, then f ((m,n)) 6= b, for all (m,n) ∈Z×Z.

9. Prove that the function f :R− {2}→R− {5} defined by f (x)= 5x+1
x−2 is bijective.

Proof. First, let’s check that f is injective. Suppose f (x)= f (y). Then

5x+1
x−2

= 5y+1
y−2

(5x+1)(y−2) = (5y+1)(x−2)

5xy−10x+ y−2 = 5yx−10y+ x−2

−10x+ y = −10y+ x

11y = 11x

y = x.

Since f (x)= f (y) implies x = y, it follows that f is injective.
Next, let’s check that f is surjective. For this, take an arbitrary element
b ∈R− {5}. We want to see if there is an x ∈R− {2} for which f (x)= b, or 5x+1

x−2 = b.
Solving this for x, we get:

5x+1 = b(x−2)

5x+1 = bx−2b

5x− xb = −2b−1

x(5−b) = −2b−1.

Since we have assumed b ∈ R− {5}, the term (5− b) is not zero, and we can
divide with impunity to get x = −2b−1

5−b
. This is an x for which f (x)= b, so f is

surjective.
Since f is both injective and surjective, it is bijective. ■

11. Consider the function θ : {0,1}×N→Z defined as θ(a,b)= (−1)ab. Is θ injective?
Is it surjective? Explain.
First we show that θ is injective. Suppose θ(a,b)= θ(c,d). Then (−1)ab = (−1)cd.
As b and d are both in N, they are both positive. Then because (−1)ab = (−1)cd,
it follows that (−1)a and (−1)c have the same sign. Since each of (−1)a and (−1)c

equals ±1, we have (−1)a = (−1)c, so then (−1)ab = (−1)cd implies b = d. But also
(−1)a = (−1)c means a and c have the same parity, and because a, c ∈ {0,1}, it
follows a = c. Thus (a,b)= (c,d), so θ is injective.
Next note that θ is not surjective because θ(a,b)= (−1)ab is either positive or
negative, but never zero. Therefore there exist no element (a,b) ∈ {0,1}×N for
which θ(a,b)= 0 ∈Z.
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13. Consider the function f :R2 →R2 defined by the formula f (x, y)= (xy, x3). Is f
injective? Is it surjective?
Notice that f (0,1)= (0,0) and f (0,0)= (0,0), so f is not injective. To show that f
is also not surjective, we will show that it’s impossible to find an ordered pair
(x, y) with f (x, y) = (1,0). If there were such a pair, then f (x, y) = (xy, x3) = (1,0),
which yields xy= 1 and x3 = 0. From x3 = 0 we get x = 0, so xy= 0, a contradiction.

15. This question concerns functions f : {A,B,C,D,E,F,G} → {1,2,3,4,5,6,7}. How
many such functions are there? How many of these functions are injective?
How many are surjective? How many are bijective?
Function f can described as a list ( f (A), f (B), f (C), f (D), f (E), f (F), f (G)), where
there are seven choices for each entry. By the multiplication principle, the total
number of functions f is 77 = 823543.
If f is injective, then this list can’t have any repetition, so there are 7!= 5040
injective functions. Since any injective function sends the seven elements of the
domain to seven distinct elements of the codomain, all of the injective functions
are surjective, and vice versa. Thus there are 5040 surjective functions and
5040 bijective functions.

17. This question concerns functions f : {A,B,C,D,E,F,G}→ {1,2}. How many such
functions are there? How many of these functions are injective? How many
are surjective? How many are bijective?
Function f can described as a list ( f (A), f (B), f (C), f (D), f (E), f (F), f (G)), where
there are two choices for each entry. Therefore the total number of functions
is 27 = 128. It is impossible for any function to send all seven elements of
{A,B,C,D,E,F,G} to seven distinct elements of {1,2}, so none of these 128
functions is injective, hence none are bijective.
How many are surjective? Only two of the 128 functions are not surjective, and
they are the “constant” functions {(A,1), (B,1), (C,1), (D,1), (E,1), (F,1), (G,1)} and
{(A,2), (B,2), (C,2), (D,2), (E,2), (F,2), (G,2)}. So there are 126 surjective functions.

Section 12.3 Exercises

1. If 6 integers are chosen at random, at least two will have the same remainder
when divided by 5.

Proof. Write Z as follows: Z=⋃4
j=0{5k+ j : k ∈Z}. This is a partition of Z into 5

sets. If six integers are picked at random, by the pigeonhole principle, at least
two will be in the same set. However, each set corresponds to the remainder
of a number after being divided by 5 (for example, {5k+1 : k ∈Z} are all those
integers that leave a remainder of 1 after being divided by 5). ■

3. Given any six positive integers, there are two for which their sum or difference
is divisible by 9.

Proof. If for two of the integers n,m we had n ≡ m (mod 9), then n−m ≡ 0 (mod 9),
and we would be done. Thus assume this is not the case. Observe that the
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only two element subsets of positive integers that sum to 9 are {1,8}, {2,7}, {3,6},
and {4,5}. However, since at least five of the six integers must have distinct
remainders from 1, 2, ..., 8 it follows from the pigeonhole principle that two
integers n,m are in the same set. Hence n+m ≡ 0 (mod 9) as desired. ■

5. Prove that any set of 7 distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

Proof. Let S = {a1,a2,a3,a4,a5,a6,a7} be any set of 7 natural numbers. Let’s say
that a1 < a2 < a3 < ·· · < a7. Consider the set

A = {a1 −a2, a1 −a3, a1 −a4, a1 −a5, a1 −a6, a1 −a7,
a1 +a2, a1 +a3, a1 +a4, a1 +a5, a1 +a6, a1 +a7}

Thus |A| = 12. Now let B = {0,1,2,3,4,5,6,7,8,9}, so |B| = 10. Let f : A → B be the
function for which f (n) equals the last digit of n. (That is f (97)= 7, f (12)= 2,
f (230)= 0, etc.) Then, since |A| > |B|, the pigeonhole principle guarantees that
f is not injective. Thus A contains elements a1 ± ai and a1 ± a j for which
f (a1±ai)= f (a1±a j). This means the last digit of a1±ai is the same as the last
digit of a1±a j. Thus the last digit of the difference (a1±ai)− (a1±a j)= ±ai ±a j
is 0. Hence ±ai ±a j is a sum or difference of elements of S that is divisible by
10. ■

Section 12.4 Exercises
1. Suppose A = {5,6,8}, B = {0,1}, C = {1,2,3}. Let f : A → B be the function f =

{(5,1), (6,0), (8,1)}, and g : B → C be g = {(0,1), (1,1)}. Find g ◦ f .
g ◦ f = {(5,1), (6,1), (8,1)}

3. Suppose A = {1,2,3}. Let f : A → A be the function f = {(1,2), (2,2), (3,1)}, and let
g : A → A be the function g = {(1,3), (2,1), (3,2)}. Find g ◦ f and f ◦ g.
g ◦ f = {(1,1), (2,1), (3,3)}; f ◦ g = {(1,1), (2,2), (3,2)}.

5. Consider the functions f , g : R→ R defined as f (x) = 3px+1 and g(x) = x3. Find
the formulas for g ◦ f and f ◦ g.
g ◦ f (x)= x+1; f ◦ g (x)= 3px3 +1

7. Consider the functions f , g : Z×Z → Z×Z defined as f (m,n) = (mn,m2) and
g(m,n)= (m+1,m+n). Find the formulas for g ◦ f and f ◦ g.
Note g ◦ f (m,n)= g( f (m,n))= g(mn,m2)= (mn+1,mn+m2).
Thus g ◦ f (m,n)= (mn+1,mn+m2).
Note f ◦ g (m,n)= f (g(m,n))= f (m+1,m+n)= ((m+1)(m+n), (m+1)2).
Thus f ◦ g (m,n)= (m2 +mn+m+n,m2 +2m+1).

9. Consider the functions f :Z×Z→Z defined as f (m,n)= m+n and g :Z→Z×Z
defined as g(m)= (m,m). Find the formulas for g ◦ f and f ◦ g.
g ◦ f (m,n)= (m+n,m+n)
f ◦ g(m)= 2m
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Section 12.5 Exercises
1. Check that the function f : Z→ Z defined by f (n) = 6− n is bijective. Then

compute f −1.
It is injective as follows. Suppose f (m)= f (n). Then 6−m = 6−n, which reduces
to m = n.
It is surjective as follows. If b ∈Z, then f (6−b)= 6− (6−b)= b.
Inverse: f −1(n)= 6−n.

3. Let B = {2n : n ∈Z}= {
. . . , 1

4 , 1
2 ,1,2,4,8, . . .

}
. Show that the function f :Z→ B defined

as f (n)= 2n is bijective. Then find f −1.
It is injective as follows. Suppose f (m) = f (n), which means 2m = 2n. Taking
log2 of both sides gives log2(2m)= log2(2n), which simplifies to m = n.
The function f is surjective as follows. Suppose b ∈ B. By definition of B this
means b = 2n for some n ∈Z. Then f (n)= 2n = b.
Inverse: f −1(n)= log2(n).

5. The function f :R→R defined as f (x)=πx− e is bijective. Find its inverse.
Inverse: f −1(x)= x+ e

π
.

7. Show that the function f :R2 →R2 defined by the formula f ((x, y)= ((x2 +1)y, x3)
is bijective. Then find its inverse.
First we prove the function is injective. Assume f (x1, y1) = f (x2, y2). Then
(x2

1 +1)y1 = (x2
2 +1)y2 and x3

1 = x3
2. Since the real-valued function f (x)= x3 is one-

to-one, it follows that x1 = x2. Since x1 = x2, and x2
1 +1 > 0 we may divide both

sides of (x2
1 +1)y1 = (x2

1 +1)y2 by (x2
1 +1) to get y1 = y2. Hence (x1, y1)= (x2, y2).

Now we prove the function is surjective. Let (a,b) ∈ R2. Set x = b1/3 and y =
a/(b2/3 +1). Then f (x, y) = ((b2/3 +1) a

b2/3+1 , (b1/3)3) = (a,b). It now follows that f is
bijective.
Finally, we compute the inverse. Write f (x, y)= (u,v). Interchange variables to
get (x, y)= f (u,v)= ((u2+1)v,u3). Thus x = (u2+1)v and y= u3. Hence u = y1/3 and
v = x

y2/3+1 . Therefore f −1(x, y)= (u,v)=
(
y1/3, x

y2/3+1

)
.

9. Consider the function f : R×N→N×R defined as f (x, y) = (y,3xy). Check that
this is bijective; find its inverse.
To see that this is injective, suppose f (a,b) = f (c,d). This means (b,3ab) =
(d,3cd). Since the first coordinates must be equal, we get b = d. As the second
coordinates are equal, we get 3ab = 3dc, which becomes 3ab = 3bc. Note that,
from the definition of f , b ∈ N, so b 6= 0. Thus we can divide both sides of
3ab = 3bc by the non-zero quantity 3b to get a = c. Now we have a = c and b = d,
so (a,b)= (c,d). It follows that f is injective.
Next we check that f is surjective. Given any (b, c) in the codomain N×R, notice
that ( c

3b ,b) belongs to the domain R×N, and f ( c
3b ,b)= (b, c). Thus f is surjective.

As it is both injective and surjective, it is bijective; thus the inverse exists.
To find the inverse, recall that we obtained f ( c

3b ,b)= (b, c). Then f −1 f ( c
3b ,b)=

f −1(b, c), which reduces to ( c
3b ,b) = f −1(b, c). Replacing b and c with x and y,

respectively, we get f −1(x, y)= ( y
3x , x).
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Section 12.6 Exercises
1. Consider the function f : R→ R defined as f (x) = x2 + 3. Find f ([−3,5]) and

f −1([12,19]). Answers: f ([−3,5])= [3,28]; f −1([12,19])= [−4,−3]∪ [3,4].
3. This problem concerns functions f : {1,2,3,4,5,6,7} → {0,1,2,3,4}. How many

such functions have the property that | f −1({3})| = 3? Answer: 44 (7
3
)
.

5. Consider a function f : A → B and a subset X ⊆ A. We observed in Section 12.6
that f −1( f (X )) 6= X in general. However X ⊆ f −1( f (X )) is always true. Prove this.

Proof. Suppose a ∈ X . Thus f (a) ∈ { f (x) : x ∈ X } = f (X ), that is f (a) ∈ f (X ). Now,
by definition of preimage, we have f −1( f (X )) = {x ∈ A : f (x) ∈ f (X )}. Since a ∈ A
and f (a) ∈ f (X ), it follows that a ∈ f −1( f (X )). This proves X ⊆ f −1( f (X )). ■

7. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∩ X )⊆ f (W)∩ f (X ).

Proof. Suppose b ∈ f (W ∩ X ). This means b ∈ { f (x) : x ∈W ∩ X }, that is b = f (a)
for some a ∈ W ∩ X . Since a ∈ W we have b = f (a) ∈ { f (x) : x ∈W} = f (W). Since
a ∈ X we have b = f (a) ∈ { f (x) : x ∈ X }= f (X ). Thus b is in both f (W) and f (X ), so
b ∈ f (W)∩ f (X ). This completes the proof that f (W ∩ X )⊆ f (W)∩ f (X ). ■

9. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∪ X )= f (W)∪ f (X ).

Proof. First we will show f (W ∪ X ) ⊆ f (W)∪ f (X ). Suppose b ∈ f (W ∪ X ). This
means b ∈ { f (x) : x ∈W ∪ X }, that is, b = f (a) for some a ∈ W ∪ X . Thus a ∈ W
or a ∈ X . If a ∈ W, then b = f (a) ∈ { f (x) : x ∈W} = f (W). If a ∈ X , then b = f (a) ∈
{ f (x) : x ∈ X }= f (X ). Thus b is in f (W) or f (X ), so b ∈ f (W)∪ f (X ). This completes
the proof that f (W ∪ X )⊆ f (W)∪ f (X ).
Next we will show f (W)∪ f (X )⊆ f (W ∪ X ). Suppose b ∈ f (W)∪ f (X ). This means
b ∈ f (W) or b ∈ f (X ). If b ∈ f (W), then b = f (a) for some a ∈W. If b ∈ f (X ), then
b = f (a) for some a ∈ X . Either way, b = f (a) for some a that is in W or X . That
is, b = f (a) for some a ∈W ∪ X . But this means b ∈ f (W ∪ X ). This completes the
proof that f (W)∪ f (X )⊆ f (W ∪ X ).
The previous two paragraphs show f (W ∪ X )= f (W)∪ f (X ). ■

11. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∪Z)= f −1(Y )∪ f −1(Z).

Proof. First we will show f −1(Y ∪Z) ⊆ f −1(Y )∪ f −1(Z). Suppose a ∈ f −1(Y ∪Z).
By Definition 12.9, this means f (a) ∈ Y ∪ Z. Thus, f (a) ∈ Y or f (a) ∈ Z. If
f (a) ∈ Y , then a ∈ f −1(Y ), by Definition 12.9. Similarly, if f (a) ∈ Z, then a ∈
f −1(Z). Hence a ∈ f −1(Y ) or a ∈ f −1(Z), so a ∈ f −1(Y )∪ f −1(Z). Consequently
f −1(Y ∪Z)⊆ f −1(Y )∪ f −1(Z).
Next we show f −1(Y )∪ f −1(Z) ⊆ f −1(Y ∪ Z). Suppose a ∈ f −1(Y )∪ f −1(Z). This
means a ∈ f −1(Y ) or a ∈ f −1(Z). Hence, by Definition 12.9, f (a) ∈ Y or f (a) ∈ Z,
which means f (a) ∈Y∪Z. But by Definition 12.9, f (a) ∈Y∪Z means a ∈ f −1(Y∪Z).
Consequently f −1(Y )∪ f −1(Z)⊆ f −1(Y ∪Z).
The previous two paragraphs show f −1(Y ∪Z)= f −1(Y )∪ f −1(Z). ■
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13. Let f : A → B be a function, and X ⊆ A. Prove or disprove: f
(
f −1( f (X ))

)= f (X ).

Proof. First we will show f
(
f −1( f (X ))

) ⊆ f (X ). Suppose y ∈ f
(
f −1( f (X ))

)
. By

definition of image, this means y= f (x) for some x ∈ f −1( f (X )). But by definition
of preimage, x ∈ f −1( f (X )) means f (x) ∈ f (X ). Thus we have y = f (x) ∈ f (X ), as
desired.

Next we show f (X ) ⊆ f
(
f −1( f (X ))

)
. Suppose y ∈ f (X ). This means y = f (x) for

some x ∈ X . Then f (x)= y ∈ f (X ), which means x ∈ f −1( f (X )). Then by definition
of image, f (x) ∈ f ( f −1( f (X ))). Now we have y= f (x) ∈ f ( f −1( f (X ))), as desired.

The previous two paragraphs show f
(
f −1( f (X ))

)= f (X ). ■

Chapter 13 Exercises
Section 13.1 Exercises

1. R and (0,∞)
Observe that the function f (x) = ex sends R to (0,∞). It is injective because
f (x)= f (y) implies ex = ey, and taking ln of both sides gives x = y. It is surjective
because if b ∈ (0,∞), then f (ln(b)) = b. Therefore, because of the bijection
f :R→ (0,∞), it follows that |R| = |(0,∞)|.

3. R and (0,1)
Observe that the function 1

π
f (x) = cot−1(x) sends R to (0,1). It is injective and

surjective by elementary trigonometry. Therefore, because of the bijection
f :R→ (0,1), it follows that |R| = |(0,1)|.

5. A = {3k : k ∈Z} and B = {7k : k ∈Z}
Observe that the function f (x) = 7

3 x sends A to B. It is injective because
f (x) = f (y) implies 7

3 x = 7
3 y, and multiplying both sides by 3

7 gives x = y. It is
surjective because if b ∈ B, then b = 7k for some integer k. Then 3k ∈ A, and
f (3k) = 7k = b. Therefore, because of the bijection f : A → B, it follows that
|A| = |B|.

7. Z and S = {
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8,16, . . .
}

Observe that the function f :Z→ S defined as f (n)= 2n is bijective: It is injective
because f (m)= f (n) implies 2m = 2n, and taking log2 of both sides produces m = n.
It is surjective because any element b of S has form b = 2n for some integer n,
and therefore f (n) = 2n = b. Because of the bijection f : Z→ S, it follows that
|Z| = |S|.

9. {0,1}×N and N
Consider the function f : {0,1}×N→N defined as f (a,n)= 2n−a. This is injective
because if f (a,n)= f (b,m), then 2n−a = 2m−b. Now if a were unequal to b, one
of a or b would be 0 and the other would be 1, and one side of 2n−a = 2m−b
would be odd and the other even, a contradiction. Therefore a = b. Then
2n−a = 2m−b becomes 2n−a = 2m−a; add a to both sides and divide by 2 to
get m = n. Thus we have a = b and m = n, so (a,n) = (b,m), so f is injective.
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To see that f is surjective, take any b ∈N. If b is even, then b = 2n for some
integer n, and f (0,n)= 2n−0= b. If b is odd, then b = 2n+1 for some integer n.
Then f (1,n+1)= 2(n+1)−1= 2n+1= b. Therefore f is surjective. Then f is a
bijection, so |{0,1}×N| = |N|.

11. [0,1] and (0,1)

Proof. Consider the subset X = { 1
n : n ∈N}⊆ [0,1]. Let f : [0,1]→ [0,1) be defined

as f (x)= x if x ∈ [0,1]− X and f ( 1
n )= 1

n+1 for any 1
n ∈ X . It is easy to check that

f is a bijection. Next let Y = {
1− 1

n : n ∈N}⊆ [0,1), and define g : [0,1)→ (0,1) as
g(x)= x if x ∈ [0,1)−Y and g(1− 1

n )= 1− 1
n+1 for any 1− 1

n ∈Y . As in the case of f , it
is easy to check that g is a bijection. Therefore the composition g◦ f : [0,1]→ (0,1)
is a bijection. (See Theorem 12.2.) We conclude that |[0,1]| = |(0,1)|. ■

13. P(N) and P(Z)
Outline: By Exercise 18 of Section 12.2, we have a bijection f :N→Z defined as
f (n)= (−1)n(2n−1)+1

4
. Now define a function Φ : P(N) →P(Z) as Φ(X ) = { f (x) :

x ∈ X }. Check that Φ is a bijection.
15. Find a formula for the bijection f in Example 13.2.

Hint: Consider the function f from Exercise 18 of Section 12.2.

Section 13.2 Exercises

1. Prove that the set A = {ln(n) : n ∈N}⊆R is countably infinite.
Just note that its elements can be written in infinite list form as ln(1), ln(2), ln(3), · · · .
Thus A is countably infinite.

3. Prove that the set A = {(5n,−3n) : n ∈Z} is countably infinite.
Consider the function f : Z→ A defined as f (n) = (5n,−3n). This is clearly
surjective, and it is injective because f (n)= f (m) gives (5n,−3n)= (5m,−3m), so
5n = 5m, hence m = n. Thus, because f is surjective, |Z| = |A|, and |A| = |Z| = ℵ0.
Therefore A is countably infinite.

5. Prove or disprove: There exists a countably infinite subset of the set of irrational
numbers.
This is true. Just consider the set consisting of the irrational numbers
π
1 , π2 , π3 , π4 , · · · .

7. Prove or disprove: The set Q100 is countably infinite.
This is true. Note Q100 = Q×Q×·· ·×Q (100 times), and since Q is countably
infinite, it follows from the corollary of Theorem 13.5 that this product is
countably infinite.

9. Prove or disprove: The set {0,1}×N is countably infinite.
This is true. Note that {0,1}×N can be written in infinite list form as
(0,1), (1,1), (0,2), (1,2), (0,3), (1,3), (0,4), (1,4), · · · . Thus the set is countably infinite.
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11. Partition N into 8 countably infinite sets.

For each i ∈ {1,2,3,4,5,6,7,8}, let X i be those natural numbers that are congruent
to i modulo 8, that is,

X1 = {1,9,17,25,33, . . .}

X2 = {2,10,18,26,34, . . .}

X3 = {3,11,19,27,35, . . .}

X4 = {4,12,20,28,36, . . .}

X5 = {5,13,21,29,37, . . .}

X6 = {6,14,22,30,38, . . .}

X7 = {7,15,13,31,39, . . .}

X8 = {8,16,24,32,40, . . .}

13. If A = {X ⊂N : X is finite}, then |A| = ℵ0.

Proof. This is true. To show this we will describe how to arrange the items of
A in an infinite list X1, X2, X3, X4, . . ..
For each natural number n, let pn be the nth prime number. Thus p1 = 2,
p2 = 3, p3 = 5, p4 = 7, p5 = 11, and so on. Now consider any element X ∈ A. If
X 6= ;, then X = {n1,n2,n3, ...,nk}, where k = |X | and ni ∈ N for each 1 ≤ i ≤ k.
Define a function f : A → N∪ {0} as follows: f ({n1,n2,n3, ...,nk}) = pn1 pn2 · · · pnk .
For example, f ({1,2,3})= p1 p2 p3 = 2 ·3 ·5= 30, and f ({3,5})= p3 p5 = 5 ·11= 55, etc.
Also, we should not forget that ;∈ A, and we define f (;)= 0.
Note that f : A → N∪ {0} is an injection: Let X = {n1,n2,n3, ...,nk} and Y =
{m1,m2,m3, ...,m`}, and X 6= Y . Then there is an integer a that belongs to
one of X or Y but not the other. Then the prime factorization of one of the
numbers f (X ) and f (Y ) uses the prime number pa but the prime factorization
of the other does not use pa. It follows that f (X ) 6= f (Y ) by the fundamental
theorem of arithmetic. Thus f is injective.
So each set X ∈ A is associated with an integer f (X )≥ 0, and no two different
sets are associated with the same number. Thus we can list the elements in
X ∈ A in increasing order of the numbers f (X ). The list begins as

;, {1}, {2}, {3}, {1,2}, {4}, {1,3}, {5}, {6}, {1,4}, {2,3}, {7}, . . .

It follows that A is countably infinite. ■

15. Hint: Use the fundamental theorem of arithmetic.

Section 13.3 Exercises

1. Suppose B is an uncountable set and A is a set. Given that there is a surjective
function f : A → B, what can be said about the cardinality of A?
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The set A must be uncountable, as follows. For each b ∈ B, let ab be an
element of A for which f (ab) = b. (Such an element must exist because f is
surjective.) Now form the set U = {ab : b ∈ B}. Then the function f : U → B is
bijective, by construction. Then since B is uncountable, so is U. Therefore U is
an uncountable subset of A, so A is uncountable by Theorem 13.9.

3. Prove or disprove: If A is uncountable, then |A| = |R|.
This is false. Let A = P(R). Then A is uncountable, and by Theorem 13.7,
|R| < |P(R)| = |A|.

5. Prove or disprove: The set {0,1}×R is uncountable.
This is true. To see why, first note that the function f :R→ {0}×R defined as
f (x) = (0, x) is a bijection. Thus |R| = |{0}×R|, and since R is uncountable, so is
{0}×R. Then {0}×R is an uncountable subset of the set {0,1}×R, so {0,1}×R is
uncountable by Theorem 13.9.

7. Prove or disprove: If A ⊆ B and A is countably infinite and B is uncountable,
then B− A is uncountable.
This is true. To see why, suppose to the contrary that B−A is countably infinite.
Then B = A∪ (B− A) is a union of countably infinite sets, and thus countable,
by Theorem 13.6. This contradicts the fact that B is uncountable.

Exercises for Section 13.4

1. Show that if A ⊆ B and there is an injection g : B → A, then |A| = |B|.
Just note that the map f : A → B defined as f (x)= x is an injection. Now apply
the Cantor-Bernstein-Schröeder theorem.

3. Let F be the set of all functions N→ {
0,1}. Show that |R| = |F |.

Because |R| = |P(N)|, it suffices to show that |F | = |P(N)|. To do this, we will
exhibit a bijection f : F →P(N). Define f as follows. Given a function ϕ ∈F ,
let f (ϕ)= {n ∈N :ϕ(n)= 1}. To see that f is injective, suppose f (ϕ)= f (θ). Then
{n ∈N :ϕ(n) = 1} = {n ∈N : θ(n) = 1}. Put X = {n ∈N :ϕ(n) = 1}. Now we see that if
n ∈ X , then ϕ(n) = 1 = θ(n). And if n ∈N− X , then ϕ(n) = 0 = θ(n). Consequently
ϕ(n)= θ(n) for any n ∈N, so ϕ= θ. Thus f is injective. To see that f is surjective,
take any X ∈P(N). Consider the function ϕ ∈F for which ϕ(n)= 1 if n ∈ X and
ϕ(n)= 0 if n ∉ X . Then f (ϕ)= X , so f is surjective.

5. Consider the subset B = {
(x, y) : x2 + y2 ≤ 1

}⊆R2. Show that |B| = |R2|.
This will follow from the Cantor-Bernstein-Schröeder theorem provided that
we can find injections f : B →R2 and g :R2 → B. The function f : B →R2 defined
as f (x, y)= (x, y) is clearly injective. For g :R2 → B, consider the function

g(x, y)=
(

x2 + y2

x2 + y2 +1
x,

x2 + y2

x2 + y2 +1
y
)
.

Verify that this is an injective function g :R2 → B.
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7. Prove or disprove: If there is a injection f : A → B and a surjection g : A → B,
then there is a bijection h : A → B.

This is true. Here is an outline of a proof. Define a function g′ : B → A as
follows. For each b ∈ B, choose an element xb ∈ g−1({x}). (That is, choose an
element xb ∈ A for which g(xb)= b.) Now let g′ : B → A be the function defined
as g′(b) = xb. Check that g′ is injective and apply the the Cantor-Bernstein-
Schröeder theorem.
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codomain of, 198
composition of, 208
domain of, 198
equality, 200
injective, 201
inverse, 211
notation, 199



302 Index
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contradiction, 111
equivalence, 49
inference, 61
quantifier, 52

existential, 52
universal, 52
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constructive, 128
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non-constructive, 128
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sigma notation, 24
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theorem, 87
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tree, 163
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true, 34
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