Exam 3 review Functions, Cardinality, Sequences

Know how to:

- prove or disprove that a function is injective / surjective / bijective
- prove or disprove statements about images and preimages of functions (e.g. "⊆" relations between them)
- prove or disprove that $|A| \leq |B|, |A| < |B|, |A| = |B|$
- prove that a given sequence converges or diverges
- 1. Let f be a function from a set A to a set B. Let C and D be subsets of B. Prove from the definitions that if $C \cap D = \emptyset$, then $f^{-1}(C) \cap f^{-1}(D) = \emptyset$. If f is _____, then the converse is true. (Prove it!)
- 2. Let f be a function from a set A to a set B. Let U and V be subsets of A. Prove from the definitions that if $f(U) \cap f(V) = \emptyset$, then $U \cap V = \emptyset$. If f is _____, then the converse is true. (Prove it!)
- 3. Prove that $|\mathbb{R}| = |\mathbb{R} \{0\}|$ by finding an explicit bijection.
- 4. Prove that $|\mathbb{R}| = |\{0, 1, 2\}^{\mathbb{N}}|$. Clearly state all the theorems you use.
- 5. Let A be the set of 2×2 real matrices with determinant 1. Prove that $|A| = |\mathbb{R}|$.
- 6. Prove from the definitions, that the sequence $(-1)^n \frac{n}{n+1}$ diverges.