Name: Collaborators: Outside resources:

Math 2106, Foundations of Mathematical Proof HW 7 — Due April 21 (Friday)

Reference: Abstract Algebra by Thomas Judson. http://abstract.pugetsound.edu

- 1. Prove that composition of functions is associative. That is, for any functions $f : A \to B$, $g : B \to C$, and $h : C \to D$ show that $h \circ (g \circ f) = (h \circ g) \circ f$.
- 2. Let $S = \mathbb{R} \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.
- 3. Prove that the set

$$S = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

form a non-abelian group under matrix multiplication, called the *Heisenberg group*.

- 4. Write out the Cayley table for the group $(\mathbb{Z}_4, +)$.
- 5. Let $U(8) = \{[1], [3], [5], [7]\}$ where [i] denotes the equivalence class of i modulo 8. Write out the multiplication table for U(8) under the operation $[a] \cdot [b] \mapsto [ab]$. Prove that U(8) is a group under this operation. Is U(8) the same as \mathbb{Z}_4 up to relabeling? (The group U(8) is called \mathbb{Z}_8^* in some textbooks.)
- 6. Write out the Cayley table for the group G formed by the symmetries of a rectangle that is not a square. Is G the same as either \mathbb{Z}_4 or U(8) up to relabeling?
- 7. Show that up to relabeling there are exactly two different groups of order 4. (One is called the *cyclic group of order* 4 and the other is called the *Klein four-group*.)
- 8. Let G be a finite group with identity $e \in G$.
 - (a) Prove that for each $g \in G$, there exists an integer n > 0 such that $g^n = e$.
 - (b) Prove that there exists an integer m > 0 such that $g^m = e$ for all $g \in G$.

Note:
$$g^k = \underbrace{g * \cdots * g}_{k \text{ times}}.$$

- 9. Prove that the inverse of $g_1g_2\cdots g_n$ in a group is $g_n^{-1}\cdots g_2^{-1}g_1^{-1}$.
- 10. Prove that if $g^2 = e$ for all $g \in G$, then G is abelian.
- 11. Prove that a group G is abelian if and only if $(gh)^2 = g^2h^2$ for all $g, h \in G$.

- 12. Prove that a group G is abelian if and only if $(gh)^{-1} = g^{-1}h^{-1}$ for all $g, h \in G$.
- 13. (a) Give an example of an infinite group G and an infinite subgroup $H \subsetneq G$ such that [G:H] is finite.
 - (b) Give an example of an infinite group G and an infinite subgroup $H \subsetneq G$ such that [G:H] is infinite.
- 14. Let G be a group and H be a subgroup. Suppose $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$. Show that left cosets and right cosets coincide, that is, gH = Hg for all $g \in G$.