Final review problems

- 1. Write two implications that are true but whose converses are false.
- 2. Prove that there are infinitely many natural numbers n such that \sqrt{n} is irrational.
- 3. Prove that there does not exist natural numbers x and y such that $x^2 y^2 = 1$.
- 4. Consider the relation R in \mathbb{Z}_5 defined by aRb if $a^2 \equiv b^2 \pmod{5}$. Prove that R is an equivalence relation and describe the equivalence classes.
- 5. Prove or disprove: Let A be a set.
 - (a) The intersection of two equivalence relations on A is again an equivalence relation on A.
 - (b) The union of two equivalence relations on A is again an equivalence relation on A.
- 6. (a) Give an example of two sets A and B such that $|B^A| = 81$.
 - (b) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is injective but not surjective.
 - (c) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is surjective but not injective.
 - (d) Prove that if a function f is injective, then $f(C \cap D) = f(C) \cap f(D)$ for any subsets C, D of the domain.
 - (e) Give a concrete example to show that the statement above is false when f is not injective.
- 7. Determine whether the following sets are countable. Prove your assertions.
 - (a) The set of sequences of integers.
 - (b) The set of sequences of integers in which all but finitely many entries are zero.
- 8. Prove or disprove:
 - (a) Convergent sequences are bounded.
 - (b) Bounded sequences are convergent.
- 9. Suppose a sequence s_n converges to a positive real number L.
 - (a) Prove that there exists an integer M such that $s_n > 0$ for all $n \ge M$.
 - (b) Prove that the sequence $\sqrt{|s_n|}$ converges to \sqrt{L} .
- 10. Let G be a finite group (where composition is written multiplicatively). Let $g \in G$.
 - (a) Prove that the set $\langle g \rangle = \{g^n : n \in \mathbb{N}\}$ forms a subgroup of G.
 - (b) Prove that if G has prime order and $g \neq e$, then $\langle g \rangle = G$.
- 11. (a) Prove that groups of prime order are abelian.
 - (b) Prove that up to relabeling there is exactly one group of each prime order.
- 12. List all groups of order ≤ 7 up to relabeling.