CSCE 313 INTRODUCTION

CSCE 313 Spring 2017

Main Points (for today)

Part1
Introduction to Computer Systems
Part2
Course Objectives and Outcome
Logistics

Learnings from CSCE-312: Hardware and Software Hierarchy

A Modern Computer System

First Generation Computer Systems (1949-1956)

Single user: writes program, operates computer through console or card reader / printer

Absolute machine language

I/O devices

5

Development of libraries; device drivers
Compilers, linkers, loaders
Relocatable code

Second-Generation Computers (1956-1963)

- 6
- Automation of Load/Translate/Load/Execute
 - Batch systems
 - Monitor programs

- Advent of operators: computers as input/output box
- Problem: Resource management and I/O still under control of programmer. Issues??
 - Memory protection
 - Timers
 - Privileged instructions

Third-Generation Computer Systems (1964-1975)

Problem with batching: one-job-at-a-time

Solution: Multiprogramming

- Job pools: have several programs ready to execute
- Keep several programs in memory

Monitor	Job1	Job2	JobN
---------	------	------	------

New issues:

Job scheduling, Memory management, Protection

Time Sharing (mid 1960s on)

- Remote interactive access to computer: "Computing as Utility"
- OS interleaves execution of multiple user programs with time quantum, e.g. CTSS (1961): time quantum 0.2 sec
- User returns to own the machine
- New aspects and issues:
 - On-line file systems
 - resource protection
 - virtual memory
 - sophisticated process scheduling

Modern Computer Systems

9

- A modern computer system can be divided into the following three key components
 - Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, video games
 - Hardware provides basic computing resources
 - CPU, memory, I/O devices
 - Operating system controls and coordinates use of hardware among various applications and users

What is an operating system?

- Special layer of software that provides application software access to hardware resources
 - Convenient abstraction of complex hardware devices
 - Protected access to shared resources
 - Security and authentication
 - Communication amongst logical entities

OS Basics: "Virtual Machine" Boundary

Courtesy: Prof Culler, Berkley

OS Basics: Program => Process

OS Basics: Context Switch

OS Basics: Scheduling, Protection

OS Basics: I/O

OS Basics: Loading

Main Points (for today)

Part1 Introduction to Computer Systems Part2 Course Objectives and Outcome Logistics

Why take CSCE 313?

- Some of you will actually design and build operating systems or components of them
 - Perhaps more now than ever
- Many of you will create systems that utilize the core concepts in operating systems
 - The concept of "hierarchy" and "abstraction" are all too important
 - Whether you build software or hardware
 - The concepts and design patterns appear at many levels
- All of you will build applications, etc. that utilize operating systems
 - The better you understand their design and implementation, the better use you'll make of them.

CSCE-313 Course Outcome

In this course, you will learn

- What is an operating system; its components; system calls
- Execution of a program; function calls; interrupts
- OS application interface; file system; process control
- Concurrency, process and thread synchronization, inter-process communication
- Network Programming
- Security threats in centralized and distributed systems; authentication, authorization, confidentiality; security mechanisms

CSCE-313 Course Structure Spiral

Textbook, Reference Books

 Text: Operating Systems: Principles and Practice, Second Edition, Thomas Anderson and Michael Dahlin, Recursive Books, 2014.

Reference:

- Main: Advanced Programming in the UNIX Environment, Third Edition, W. Richard Stevens and Stephen A. Rago, Addison-Wesley Professional Computing Series, 2013.
- Secondary: Understanding Unix/Linux Programming A Guide to Theory and Practice, Bruce Molay, Pearson Education Inc., 2003
- Other Interesting Readings
 - Computer Systems
 - Computer Systems: A Programmer's Perspective, Randal E. Bryant and David R. O'Hallaron, Prentice Hall, 2011

How Success will be Measured

- The course will have two exams, a series of machine problems and quizzes. The grade allocation is as follows:
- Total = 200 points
 - Exams = 90 points (45 points each)
 - Announced Quizzes (several) = 10 points
 - Machine Problems (approx. 8) = 100 points
- The grading scale is as follows:
 - 180 200: A
 - 160 179: B
 - □ 140 159: C
 - □ 110 139: D
 - 109 and below: F

Exams

- Two exams Midterm and Final
- Exams are closed book
- Final Exam will be based on material covered after the midterm
- Exams will be tough but success is guaranteed if you have understood the concepts

Quizzes

24

 There will be several announced inclass quizzes

 These will be aligned with major topics

 These are intended to encourage class participation and incremental concepts refresh

Week	Торіс	Textbook	Reference
Maak 4	ack 1 Introduction to CSCE-313		N/A
vveek i	Introduction to Computer Systems	Ch 1	Ch 1, 2
Mook 0	0 Operating Systems Introduction		Ch 7
vveek 2	Operating Systems Structure - Exceptions	Ch 2	Ch 7
Maak 2	Architectural Support for Operating Systems	Ch 2	Ch 7
vveek 3	Introduction to UNIX Process		Ch 7
Wook 4	Unix Fork and Exec and Programming Interface	Ch 3	Ch 7, 8
vveek 4	MP2 Presentation	N/A	N/A
Mook F	Unix Programming Interface, Process Elements		Ch 7, 8
week 5	Process Scheduling	Ch 7	Ch 12
Mook	Process Scheduling	Ch 7	Ch 12
vveek o	Concurrency and Threads	Ch 4	Ch 11
Mook 7	Concurrency and Threads	Ch 4	Ch 11
vveek /	Midterm Exam	N/A	N/A
Mook 0	Process and Threads Synchronization	Ch 5, 6	Ch 12
vveek o	Process and Threads Synchronization	Ch 5, 6	Ch 12
—	Spring Break	N/A	N/A
	Spring Break	N/A	N/A
Wook 0	Process and Threads Synchronization	Ch 5, 6	Ch 12
vveek 9	Unix I/O	N/A	Ch 3
Mook 10	Inter Process Communication	N/A	Ch 15
vveek 10	Inter Process Communication	N/A	Ch 10, 15
Wook 11	Networking Basics	N/A N/A Ch 5, 6 N/A N/A N/A N/A N/A N/A	Ch 16
vveek 11	Network Programming	N/A	Ch 17
Wook 12	Network Programming	N/A	Ch 17
vveek 12	Computer Security	N/A	TBD
Wook 12	Computer Security	N/A	TBD
VVeek 15	Files and Directories	Ch 11, 13	Ch 4
Wook 14	Files and Directories	Ch 11, 13	Ch 4
VVeek 14	BUFFER	N/A	TBD
	REDEFINED DAY	N/A	N/A
Mook 15	Final Exam LINK is HERE:	N/A	N/A
VVeek 15	http://registrar.tamu.edu/general/finalschedule.aspx#0-		
	Spring2017		

Machine Problems

- There will be 8-9 Machine Problems assigned weekly or bi-weekly basis. Students will form teams of two to work on machine problems
- Typically, machine problems will be described in lab on week 'x' and will be graded in lab during week 'x+1' or 'x+2'
- Lab attendance is necessary to ensure you understand the problem, actively hash the problem out with your teammate, and clarify with lab instructors.
- We are deploying a new platform for MP submission. More on this in the next class

Late Policy for Machine Problems

- Quizzes: 0 marks for late submissions.
- Machine Problems Penalty: (Relative to due date and time)
 - 1 day late: 5%
 - 2 days late: 15%
 - 3 days late: 20%
 - 4 days late: 50%
 - 4 days 30 days late: The maximum possible grade will be capped to a 50% ceiling.

> 30 days late: 100% penalty i.e. 0 marks in the assignment