
W2– OPERATING SYSTEMS 
ARCHITECTURAL INTERFACE, 
EXCEPTION CONTROL FLOW

CSCE 313 Spring 2017

Reading Reference: Textbook Chapter 1, 2



Content for this week

CSCE-313 Spring 2017

2

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system 
(Text: Chap. 2) 

Normal flow of commands and data versus 
anything that happens “out of the ordinary” .. how 
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS 
to meet some key challenges



Operating System Roles

 Referee
 Manage sharing of resources, 

Protection, Isolation
 Resource allocation, isolation, 

communication

 Illusionist
 Provide clean, easy to use 

abstractions of physical resources
 Infinite memory, dedicated machine
 Masking limitations, virtualization

 Glue
 Common services

 Storage, Window system, 
Networking

 Sharing, Authorization
 Look and feel CSCE-313 Spring 2017

3

Application Programs/Processes

storage

Processor Memory

user1 user2 user3 user4

return

user1 user2 user3 user4

Packet I/O



What, then, is an Operating System?

 The OS controls and coordinates the use of system resources.

 Primary goal: Provide a convenient environment for a user to 
access the available resources (CPU, memory, I/O)
 Provide appropriate abstractions (files, processes, ...)
 “virtual machine”

 Secondary goal: Efficient operation of the computer system.

 Key facets of Resource Management
 Transforming: Create virtual substitutes that are easier to use.
 Multiplexing: Create the illusion of multiple resources from a single 

resource
 Scheduling: “Who gets the resource when?”

4 CSCE-313 Spring 2017



What an operating system is not

OS is not a language or a compiler

OS is not a command interpreter / window 
system

OS is not a library of commands

OS is not a set of utilities

5 CSCE-313 Spring 2017



Key OS Challenges

 Reliability

Does the system do what it was designed to 
do?

 Availability

What portion of the time is the system 
working?

Mean Time To Failure (MTTF), Mean Time 
to Repair

CSCE-313 Spring 20176



Key OS Challenges

 Servicability

 Simplicity and Ease of system repair and 
maintenance

 Security

An OS needs both a security policy (what is 
permitted) and an enforcement mechanism (only 
allow permitted actions) 

Can the system be compromised by an attacker?

Privacy: Data is accessible only to authorized users

CSCE-313 Spring 20177



Key OS Challenges

 Portability

 For programs:

 Application programming 
interface (API)

 Abstract machine 
interface

 For the operating system

 Hardware abstraction 
layer

CSCE-313 Spring 20178



Key OS Challenges

 Performance
 Latency/response time
 How long does an operation take to complete?

 Throughput
 How many operations can be done per unit of time?

 Overhead
 How much extra work is done by the OS?

 Fairness
 How equal is the performance received by different users?

 Predictability
 How consistent is the performance over time?

CSCE-313 Spring 20179



Challenges in Modern OSs

 Smart Phones
 Responsiveness, security 

 Embedded Systems
 Reliable

 Web Servers
 Supporting billions of requests/sec efficiently

 Virtual Machines
 Low overhead and also proper h/w virtualization

 Server Clusters
 Hide the clustering details from application programs

1/23/2017

10



Challenges in Tomorrow’s OSs

 Existing challenges would be more critical

 OSs controlling future self driving cars, or traffic lights 
need to be absolutely reliable, secure, and efficient

 The future of OSs is intertwined with that of 
emerging computing hardware

 Giant-scale data centers

 Increasing numbers of processors per computer

 Newer portable devices

 Very large scale storage

1/23/2017

11



Content for this week

CSCE-313 Spring 2017

12

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system 
(Text: Chap. 2) 

Normal flow of commands and data versus 
anything that happens “out of the ordinary” .. how 
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS 
to meet some key challenges



Traditional UNIX System Structure

CSCE-313 Spring 201713



Control Flow

<startup>

inst1

inst2

inst3

…

instn

<shutdown>

 Computers do only one thing
 From startup to shutdown, a CPU simply reads and executes 

(interprets) a sequence of instructions, one at a time
 This sequence is the system’s physical control flow (or flow of 

control)
Physical control flow

Time

CSCE-313 Spring 201714



What alters the Control Flow?

 Program-assisted mechanisms for changing control 
flow:
 Jumps and branches—react to changes in program state

 Call and return using stack discipline—react to program 
state

 Insufficient  for a useful system
 Difficult for the CPU to react to other changes in system 

state 
 Data arrives from a disk or a network adapter

 Instruction divides by zero

 User hits control-C at the keyboard

 System needs mechanisms for “exception control flow”
CSCE-313 Spring 201715



 An exception is a transfer of control to the OS in response 
to some event (i.e., change in processor state)

User Process OS

exception

exception processing

by exception handler

exception 

return (optional)

event current
next

Exception Control Flow

CSCE-313 Spring 201716



Types of Exceptions

CSCE-313 Spring 2017

17

 Synchronous (i.e. aligned to an event or time)

 Asynchronous (can happen without notice)



Asynchronous Exceptions (Interrupts)

 Caused by events external to processor
 Indicated by setting the processor’s interrupt pin(s)

 Handler returns to “next” instruction.

 Examples:
 I/O interrupts
 Key pressed on the keyboard

 Arrival of packet from network

 Hard-reset interrupt
 Hitting reset button

 Soft-reset interrupt
 Hitting control-alt-delete to initiate restart on a PC

CSCE-313 Spring 201718



Interrupt Vectors

 Each type of event has a 
unique exception number k

 Index into jump table 
(a.k.a., interrupt vector)

 Jump table entry k points 
to a function (exception 
handler).

 Handler k is called each 
time exception k occurs. 

interrupt

vector

0
1

2 ...
n-1

code for  

exception handler 0

code for 

exception handler 1

code for

exception handler 2

code for 

exception handler n-1

...

Exception 

numbers

CSCE-313 Spring 201719



Synchronous Exceptions (Traps, Faults, 
Aborts)

 Caused by events that occur as result of executing 
an instruction:

 Traps
 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults
Unintentional but possibly recoverable 

 Examples: Page Faults

 Either re-executes faulting (“current”) instruction or aborts

CSCE-313 Spring 201720



Synchronous Exceptions (Traps, Faults, 
Aborts)

 Caused by events that occur as result of 
executing an instruction:

Aborts
Unintentional and unrecoverable

Examples: parity error, machine check

Aborts current program or entire OS

CSCE-313 Spring 201721



Trap Example

Open file

User Process OS

exception

return

int

pop

 Opening a File
User calls open(filename, options)

 Function open executes system-call instruction: int
$0x80

OS must find or create file, get it ready for reading 
or writing

Returns integer file descriptor

CSCE-313 Spring 201722



Fault Example #1

User Process OS

page fault

Create page and load 

into memoryreturn

event 

 Memory Reference

 User writes to memory location

 That portion (page) of user’s memory is currently on 
disk

 Page handler must load page into physical memory

 Returns to faulting instruction

 Successful on second try

int a[1000];

main ()

{

a[500] = 13;

}

CSCE-313 Spring 201723



Fault Example #2

User Process OS

page fault

Detect invalid address

event 

 Illegal Memory Reference

 User writes to memory location

 Address is not valid

 Page handler detects invalid address

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

Signal process

CSCE-313 Spring 201724



Summarizing Control Flow Exceptions

 Events that require nonstandard control flow

 Are Synchronous (Traps, Faults, Aborts) OR 
Asynchronous (I/O Interrupts, Hard or Soft Reset 
etc.)

 Generated Externally (interrupts) or Internally 
(traps and faults)

 OS decides how to handle

CSCE-313 Spring 201725



Preview: User/Kernel (Privileged) Mode

26

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

rtn

interrupt

rfi

FP 

exception

CSCE-313 Spring 2017

FP 

Exception 

error



Example: Web Server

CSCE-313 Spring 201727

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

syscall



Content for this week

CSCE-313 Spring 2017

28

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system 
(Text: Chap. 2) 

Normal flow of commands and data versus 
anything that happens “out of the ordinary” .. how 
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS 
to meet some key challenges



Architectural Support for OS

CSCE-313 Spring 2017

29

 Operating systems mediate between applications 
and the physical hardware of the computer

 Key goals of an OS are to enforce protection and 
resource sharing 

 If done well, applications can be oblivious to HW details



Challenge: Protection

 Why do we execute code with restricted privileges?

 Either because the code is buggy or if it might be 
malicious

 Some examples:

 A script running in a web browser

 A program you just downloaded off the Internet

 A program you just wrote that you haven’t tested yet

CSCE-313 Spring 2017

30



Challenge: Resource Sharing

 How do we ensure that resources are fairly (and 
efficiently) shared amongst (and utilized by) user 
programs?

 Some examples:

 Many students running code on a department machine

 Amazon.com servicing concurrent users

 Playing a movie on a computer while typing a project 
report and printing a document

CSCE-313 Spring 2017

31



Architectural Features
i.e. features we design in HW to facilitate the OS to meet some key challenges

CSCE-313 Spring 2017

32

 Privileged instructions 

 Protection modes (user/kernel) 

 Memory protection mechanisms 

 Interrupts and exceptions 

 System calls 

 Timer (clock) 

 I/O control and operation 

 Synchronization primitives (e.g., atomic 
instructions)



Main Points

 Dual-mode operation: user vs. kernel

 Kernel-mode: execute with complete privileges

 User-mode: execute with fewer privileges

 Safe control transfer

 How do we switch from one mode to the other?

CSCE-313 Spring 2017

33



Hardware Support: Dual-Mode Operation

 Kernel mode

 Execution with the full privileges of the hardware

 E.g. Read/write to any memory, access any I/O device, 
read/write any disk sector, send/receive any packet

 User mode

 Limited privileges

 Only those granted by the operating system kernel

 On the x86, mode stored in EFLAGS register

CSCE-313 Spring 2017

34



A Model of a CPU

CSCE-313 Spring 2017

35



A CPU with Dual-Mode Operation

CSCE-313 Spring 2017

36



 Privileged instructions

 Available to kernel

 Not available to user code

 Limits on memory accesses

 To prevent user code from overwriting the kernel or 
each other

 Timer

 To regain control from a user program in a loop

CSCE-313 Spring 2017

37

Hardware Support: Dual-Mode Operation



Privileged Instructions

CSCE-313 Spring 2017

38

 A select few CPU instructions available only to 
the OS

Allows access to protected state

Perform global operations 



Privileged Instructions - Examples

CSCE-313 Spring 2017

39

Only the OS should be able to 

Directly access I/O devices (disks, printers..)
Allows OS to enforce security and fairness 

Manipulate memory management state
E.g., page tables, protection bits, TLB entries, etc.

Adjust protected control registers 
User  Kernel modes or Raise/Lower interrupt 

level 

Execute the halt instruction



Question

CSCE-313 Spring 2017

40

 What should happen if a user program 
attempts to execute a privileged instruction?



Memory Protection

CSCE-313 Spring 2017

41

 Memory management hardware provides 
protection. Examples:

Base and limit registers

Page table pointers, Page Protection, Translation 
Lookaside Buffer (TLB)

 Manipulating memory management hardware 
uses protected (privileged) instructions



Memory Protection - Example

CSCE-313 Spring 2017

42



Hardware Timer

 Operating system timer is a critical building block

Many resources are time-shared; e.g., CPU

Allows OS to prevent infinite loops

 Fallback mechanism by which OS regains control

When timer expires, generates an interrupt

Handled by kernel, which controls resumption context
 Basis for OS scheduler; more later…

 Setting (and clearing) a timer is a privileged 
instruction

CSCE-313 Spring 2017

43



Question

 For a “Hello world” program, the kernel must copy 
the string from the user program memory into the 
screen memory. Why must the screen’s buffer 
memory be protected?

CSCE-313 Spring 2017

44



User  Kernel Mode Switch

 From user-mode to kernel-mode

 Interrupts

 Triggered by timer and I/O devices

 (Synchronous) Exceptions

 Triggered by unexpected program behavior

 Or malicious behavior!

 System calls (traps) (aka protected procedure call)

 Request by program for kernel to do some operation on its 
behalf

 Only limited # of very carefully coded entry points

CSCE-313 Spring 2017

45



Kernel  User Mode Switch

 From kernel-mode to user-mode

 New process/new thread start

 Jump to first instruction in program/thread

 Return from interrupt, exception, system call

 Resume suspended execution

 Process/thread context switch

 Resume some other process

 User-level upcall

 Asynchronous notification to user program by the kernel

CSCE-313 Spring 2017

46



Transfer from User to Kernel Mode –
Handling Interrupts

 On interrupt (x86)

 Save current stack pointer

 Save current program counter

 Save current processor status word (condition codes)

 Switch to kernel stack; put SP, PC, PSW on stack

 Switch to kernel mode

 Vector through interrupt table

 Access the interrupt handler

CSCE-313 Spring 2017

47



Before

CSCE-313 Spring 2017

48



During

CSCE-313 Spring 2017

49



After

CSCE-313 Spring 2017

50



At the end of handler

 Handler restores saved registers

 Atomically return to interrupted process/thread

 Restore program counter

 Restore program stack

 Restore processor status word/condition codes

 Switch to user mode

CSCE-313 Spring 2017

51



Kernel System Call Handler

 Locate arguments

 In registers or on user stack

 Copy arguments

 From user memory into kernel memory

 Protect kernel from malicious code evading checks

 Validate arguments

 Protect kernel from errors in user code

 Copy results back 

 into user memory

CSCE-313 Spring 2017

52



System Calls

CSCE-313 Spring 2017

53



Summary: User/Kernel (Privileged) Mode

54

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

rtn

interrupt

rfi

FP 

exception

CSCE-313 Spring 2017

FP 

Exception 

error



Example: Web Server (Revisited)

CSCE-313 Spring 201755

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

syscall



Summary of Learnings

CSCE-313 Spring 2017

56

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system 
(Text: Chap. 2) 

Normal flow of commands and data versus 
anything that happens “out of the ordinary” .. how 
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS 
to meet some key challenges



A Real-Life Analogy (Approximate)

57 CSCE-313 Spring 2017

A Typical Coffee Shop Computer System

Store System

Customer Process or Program or User Application

Barista/Cashier Operating System Kernel, Privileged Code

Coffee Machine CPU

Customer Order System Call

Order item not on Menu Exception

Telephone Call Interrupt

Fire Alarm Signal

>1 Customers being served Process Scheduling

Customer realizing at the 

counter that he needs to go to 

ATM to get money

Process Context Switching



Next Week
58

 Process and Programming Interface

CSCE-313 Spring 2017

Application Programs/Processes

storage

Processor Memory

user1 user2 user3 user4

return System calls,

Exceptions

Bock I/O INT Character O/P

Privileged 

Operations

user1 user2 user3 user4

System calls,

Exceptions


