
W2– OPERATING SYSTEMS
ARCHITECTURAL INTERFACE,
EXCEPTION CONTROL FLOW

CSCE 313 Spring 2017

Reading Reference: Textbook Chapter 1, 2

Content for this week

CSCE-313 Spring 2017

2

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system
(Text: Chap. 2)

Normal flow of commands and data versus
anything that happens “out of the ordinary” .. how
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS
to meet some key challenges

Operating System Roles

 Referee
 Manage sharing of resources,

Protection, Isolation
 Resource allocation, isolation,

communication

 Illusionist
 Provide clean, easy to use

abstractions of physical resources
 Infinite memory, dedicated machine
 Masking limitations, virtualization

 Glue
 Common services

 Storage, Window system,
Networking

 Sharing, Authorization
 Look and feel CSCE-313 Spring 2017

3

Application Programs/Processes

storage

Processor Memory

user1 user2 user3 user4

return

user1 user2 user3 user4

Packet I/O

What, then, is an Operating System?

 The OS controls and coordinates the use of system resources.

 Primary goal: Provide a convenient environment for a user to
access the available resources (CPU, memory, I/O)
 Provide appropriate abstractions (files, processes, ...)
 “virtual machine”

 Secondary goal: Efficient operation of the computer system.

 Key facets of Resource Management
 Transforming: Create virtual substitutes that are easier to use.
 Multiplexing: Create the illusion of multiple resources from a single

resource
 Scheduling: “Who gets the resource when?”

4 CSCE-313 Spring 2017

What an operating system is not

OS is not a language or a compiler

OS is not a command interpreter / window
system

OS is not a library of commands

OS is not a set of utilities

5 CSCE-313 Spring 2017

Key OS Challenges

 Reliability

Does the system do what it was designed to
do?

 Availability

What portion of the time is the system
working?

Mean Time To Failure (MTTF), Mean Time
to Repair

CSCE-313 Spring 20176

Key OS Challenges

 Servicability

 Simplicity and Ease of system repair and
maintenance

 Security

An OS needs both a security policy (what is
permitted) and an enforcement mechanism (only
allow permitted actions)

Can the system be compromised by an attacker?

Privacy: Data is accessible only to authorized users

CSCE-313 Spring 20177

Key OS Challenges

 Portability

 For programs:

 Application programming
interface (API)

 Abstract machine
interface

 For the operating system

 Hardware abstraction
layer

CSCE-313 Spring 20178

Key OS Challenges

 Performance
 Latency/response time
 How long does an operation take to complete?

 Throughput
 How many operations can be done per unit of time?

 Overhead
 How much extra work is done by the OS?

 Fairness
 How equal is the performance received by different users?

 Predictability
 How consistent is the performance over time?

CSCE-313 Spring 20179

Challenges in Modern OSs

 Smart Phones
 Responsiveness, security

 Embedded Systems
 Reliable

 Web Servers
 Supporting billions of requests/sec efficiently

 Virtual Machines
 Low overhead and also proper h/w virtualization

 Server Clusters
 Hide the clustering details from application programs

1/23/2017

10

Challenges in Tomorrow’s OSs

 Existing challenges would be more critical

 OSs controlling future self driving cars, or traffic lights
need to be absolutely reliable, secure, and efficient

 The future of OSs is intertwined with that of
emerging computing hardware

 Giant-scale data centers

 Increasing numbers of processors per computer

 Newer portable devices

 Very large scale storage

1/23/2017

11

Content for this week

CSCE-313 Spring 2017

12

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system
(Text: Chap. 2)

Normal flow of commands and data versus
anything that happens “out of the ordinary” .. how
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS
to meet some key challenges

Traditional UNIX System Structure

CSCE-313 Spring 201713

Control Flow

<startup>

inst1

inst2

inst3

…

instn

<shutdown>

 Computers do only one thing
 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
 This sequence is the system’s physical control flow (or flow of

control)
Physical control flow

Time

CSCE-313 Spring 201714

What alters the Control Flow?

 Program-assisted mechanisms for changing control
flow:
 Jumps and branches—react to changes in program state

 Call and return using stack discipline—react to program
state

 Insufficient for a useful system
 Difficult for the CPU to react to other changes in system

state
 Data arrives from a disk or a network adapter

 Instruction divides by zero

 User hits control-C at the keyboard

 System needs mechanisms for “exception control flow”
CSCE-313 Spring 201715

 An exception is a transfer of control to the OS in response
to some event (i.e., change in processor state)

User Process OS

exception

exception processing

by exception handler

exception

return (optional)

event current
next

Exception Control Flow

CSCE-313 Spring 201716

Types of Exceptions

CSCE-313 Spring 2017

17

 Synchronous (i.e. aligned to an event or time)

 Asynchronous (can happen without notice)

Asynchronous Exceptions (Interrupts)

 Caused by events external to processor
 Indicated by setting the processor’s interrupt pin(s)

 Handler returns to “next” instruction.

 Examples:
 I/O interrupts
 Key pressed on the keyboard

 Arrival of packet from network

 Hard-reset interrupt
 Hitting reset button

 Soft-reset interrupt
 Hitting control-alt-delete to initiate restart on a PC

CSCE-313 Spring 201718

Interrupt Vectors

 Each type of event has a
unique exception number k

 Index into jump table
(a.k.a., interrupt vector)

 Jump table entry k points
to a function (exception
handler).

 Handler k is called each
time exception k occurs.

interrupt

vector

0
1

2 ...
n-1

code for

exception handler 0

code for

exception handler 1

code for

exception handler 2

code for

exception handler n-1

...

Exception

numbers

CSCE-313 Spring 201719

Synchronous Exceptions (Traps, Faults,
Aborts)

 Caused by events that occur as result of executing
an instruction:

 Traps
 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults
Unintentional but possibly recoverable

 Examples: Page Faults

 Either re-executes faulting (“current”) instruction or aborts

CSCE-313 Spring 201720

Synchronous Exceptions (Traps, Faults,
Aborts)

 Caused by events that occur as result of
executing an instruction:

Aborts
Unintentional and unrecoverable

Examples: parity error, machine check

Aborts current program or entire OS

CSCE-313 Spring 201721

Trap Example

Open file

User Process OS

exception

return

int

pop

 Opening a File
User calls open(filename, options)

 Function open executes system-call instruction: int
$0x80

OS must find or create file, get it ready for reading
or writing

Returns integer file descriptor

CSCE-313 Spring 201722

Fault Example #1

User Process OS

page fault

Create page and load

into memoryreturn

event

 Memory Reference

 User writes to memory location

 That portion (page) of user’s memory is currently on
disk

 Page handler must load page into physical memory

 Returns to faulting instruction

 Successful on second try

int a[1000];

main ()

{

a[500] = 13;

}

CSCE-313 Spring 201723

Fault Example #2

User Process OS

page fault

Detect invalid address

event

 Illegal Memory Reference

 User writes to memory location

 Address is not valid

 Page handler detects invalid address

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

Signal process

CSCE-313 Spring 201724

Summarizing Control Flow Exceptions

 Events that require nonstandard control flow

 Are Synchronous (Traps, Faults, Aborts) OR
Asynchronous (I/O Interrupts, Hard or Soft Reset
etc.)

 Generated Externally (interrupts) or Internally
(traps and faults)

 OS decides how to handle

CSCE-313 Spring 201725

Preview: User/Kernel (Privileged) Mode

26

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

rtn

interrupt

rfi

FP

exception

CSCE-313 Spring 2017

FP

Exception

error

Example: Web Server

CSCE-313 Spring 201727

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

syscall

Content for this week

CSCE-313 Spring 2017

28

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system
(Text: Chap. 2)

Normal flow of commands and data versus
anything that happens “out of the ordinary” .. how
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS
to meet some key challenges

Architectural Support for OS

CSCE-313 Spring 2017

29

 Operating systems mediate between applications
and the physical hardware of the computer

 Key goals of an OS are to enforce protection and
resource sharing

 If done well, applications can be oblivious to HW details

Challenge: Protection

 Why do we execute code with restricted privileges?

 Either because the code is buggy or if it might be
malicious

 Some examples:

 A script running in a web browser

 A program you just downloaded off the Internet

 A program you just wrote that you haven’t tested yet

CSCE-313 Spring 2017

30

Challenge: Resource Sharing

 How do we ensure that resources are fairly (and
efficiently) shared amongst (and utilized by) user
programs?

 Some examples:

 Many students running code on a department machine

 Amazon.com servicing concurrent users

 Playing a movie on a computer while typing a project
report and printing a document

CSCE-313 Spring 2017

31

Architectural Features
i.e. features we design in HW to facilitate the OS to meet some key challenges

CSCE-313 Spring 2017

32

 Privileged instructions

 Protection modes (user/kernel)

 Memory protection mechanisms

 Interrupts and exceptions

 System calls

 Timer (clock)

 I/O control and operation

 Synchronization primitives (e.g., atomic
instructions)

Main Points

 Dual-mode operation: user vs. kernel

 Kernel-mode: execute with complete privileges

 User-mode: execute with fewer privileges

 Safe control transfer

 How do we switch from one mode to the other?

CSCE-313 Spring 2017

33

Hardware Support: Dual-Mode Operation

 Kernel mode

 Execution with the full privileges of the hardware

 E.g. Read/write to any memory, access any I/O device,
read/write any disk sector, send/receive any packet

 User mode

 Limited privileges

 Only those granted by the operating system kernel

 On the x86, mode stored in EFLAGS register

CSCE-313 Spring 2017

34

A Model of a CPU

CSCE-313 Spring 2017

35

A CPU with Dual-Mode Operation

CSCE-313 Spring 2017

36

 Privileged instructions

 Available to kernel

 Not available to user code

 Limits on memory accesses

 To prevent user code from overwriting the kernel or
each other

 Timer

 To regain control from a user program in a loop

CSCE-313 Spring 2017

37

Hardware Support: Dual-Mode Operation

Privileged Instructions

CSCE-313 Spring 2017

38

 A select few CPU instructions available only to
the OS

Allows access to protected state

Perform global operations

Privileged Instructions - Examples

CSCE-313 Spring 2017

39

Only the OS should be able to

Directly access I/O devices (disks, printers..)
Allows OS to enforce security and fairness

Manipulate memory management state
E.g., page tables, protection bits, TLB entries, etc.

Adjust protected control registers
User Kernel modes or Raise/Lower interrupt

level

Execute the halt instruction

Question

CSCE-313 Spring 2017

40

 What should happen if a user program
attempts to execute a privileged instruction?

Memory Protection

CSCE-313 Spring 2017

41

 Memory management hardware provides
protection. Examples:

Base and limit registers

Page table pointers, Page Protection, Translation
Lookaside Buffer (TLB)

 Manipulating memory management hardware
uses protected (privileged) instructions

Memory Protection - Example

CSCE-313 Spring 2017

42

Hardware Timer

 Operating system timer is a critical building block

Many resources are time-shared; e.g., CPU

Allows OS to prevent infinite loops

 Fallback mechanism by which OS regains control

When timer expires, generates an interrupt

Handled by kernel, which controls resumption context
 Basis for OS scheduler; more later…

 Setting (and clearing) a timer is a privileged
instruction

CSCE-313 Spring 2017

43

Question

 For a “Hello world” program, the kernel must copy
the string from the user program memory into the
screen memory. Why must the screen’s buffer
memory be protected?

CSCE-313 Spring 2017

44

User Kernel Mode Switch

 From user-mode to kernel-mode

 Interrupts

 Triggered by timer and I/O devices

 (Synchronous) Exceptions

 Triggered by unexpected program behavior

 Or malicious behavior!

 System calls (traps) (aka protected procedure call)

 Request by program for kernel to do some operation on its
behalf

 Only limited # of very carefully coded entry points

CSCE-313 Spring 2017

45

Kernel User Mode Switch

 From kernel-mode to user-mode

 New process/new thread start

 Jump to first instruction in program/thread

 Return from interrupt, exception, system call

 Resume suspended execution

 Process/thread context switch

 Resume some other process

 User-level upcall

 Asynchronous notification to user program by the kernel

CSCE-313 Spring 2017

46

Transfer from User to Kernel Mode –
Handling Interrupts

 On interrupt (x86)

 Save current stack pointer

 Save current program counter

 Save current processor status word (condition codes)

 Switch to kernel stack; put SP, PC, PSW on stack

 Switch to kernel mode

 Vector through interrupt table

 Access the interrupt handler

CSCE-313 Spring 2017

47

Before

CSCE-313 Spring 2017

48

During

CSCE-313 Spring 2017

49

After

CSCE-313 Spring 2017

50

At the end of handler

 Handler restores saved registers

 Atomically return to interrupted process/thread

 Restore program counter

 Restore program stack

 Restore processor status word/condition codes

 Switch to user mode

CSCE-313 Spring 2017

51

Kernel System Call Handler

 Locate arguments

 In registers or on user stack

 Copy arguments

 From user memory into kernel memory

 Protect kernel from malicious code evading checks

 Validate arguments

 Protect kernel from errors in user code

 Copy results back

 into user memory

CSCE-313 Spring 2017

52

System Calls

CSCE-313 Spring 2017

53

Summary: User/Kernel (Privileged) Mode

54

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

rtn

interrupt

rfi

FP

exception

CSCE-313 Spring 2017

FP

Exception

error

Example: Web Server (Revisited)

CSCE-313 Spring 201755

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

syscall

Summary of Learnings

CSCE-313 Spring 2017

56

 OS roles and its key challenges (Text: Chap. 1)

 Control Flow in a modern computer system
(Text: Chap. 2)

Normal flow of commands and data versus
anything that happens “out of the ordinary” .. how
do we handle that?

 Architectural Interface to the OS (Text: Chap. 2)

features we design in HW to facilitate the OS
to meet some key challenges

A Real-Life Analogy (Approximate)

57 CSCE-313 Spring 2017

A Typical Coffee Shop Computer System

Store System

Customer Process or Program or User Application

Barista/Cashier Operating System Kernel, Privileged Code

Coffee Machine CPU

Customer Order System Call

Order item not on Menu Exception

Telephone Call Interrupt

Fire Alarm Signal

>1 Customers being served Process Scheduling

Customer realizing at the

counter that he needs to go to

ATM to get money

Process Context Switching

Next Week
58

 Process and Programming Interface

CSCE-313 Spring 2017

Application Programs/Processes

storage

Processor Memory

user1 user2 user3 user4

return System calls,

Exceptions

Bock I/O INT Character O/P

Privileged

Operations

user1 user2 user3 user4

System calls,

Exceptions

