Machine Problem 1: A High Performance Linked List

Introduction:

In a traditional implementation of a linked list, memory is allocated for each newly
inserted item. When an item on this list is deleted, the memory allocated for it is freed
and given back to the operating system. Consequently, each allocation/de-allocation
request for insertions or deletions respectively involves interacting with the operating
system’s memory manager. System calls have a large overhead associated with them.
The processor must stop the execution of the user process, switch to executing system
code, spend time performing the requested system function, and as such, the calls to the
memory manager hinder the performance of the linked list. In this assignment, we will
explore a solution to this problem which will produce a high performance and efficient
implementation of a linked list.

In this assignment, the program you create will serve as the memory manager instead of
relying on the operating system to do the dirty work. Your program should obtain/reserve a
fixed amount of memory from the operating system’s memory manager during initialization
(this is done by calling either malloc or new). After initially acquiring memory from the
system, your program should use this memory to manage the linked list throughout its
execution. Consequently, extraneous and expensive calls to the system’s memory manager
will no longer be necessary.

Each element of the linked list occupies a specific amount of space, known as the basic
block size and denoted by the variable b. The memory size as a whole is determined by
the parameter m. As such, there can be at most m /b elements in the list. Any insertion
requests that would attempt to insert more than m/b elements into the list should be
immediately rejected.

The list should be managed through a Head Pointer (HP) and a Free Pointer (FP). The
former points to the head of the list, and the latter points to where the next insertion
should happen.

Each linked list item can be separated into two sections: a header and a payload. The
header contains necessary information for maintaining the list (i.e. the next pointer, the
previous pointer (for doubly linked lists), other metadata, etc...). The payload portion
consists of a key-value pair. The key is a 4 byte integer, and the value is of variable length,
but has a maximum size that is determined by the header and key size. In addition, each
header contains a value length that denotes the size of the current data item. Since the
value is variable length, there’s no way, as is, to know where the end is. Some languages
solve this problem by ending strings with a null terminating byte that is never found
in normal text (represented as \0). When you find the null character, you know that

you have reached the end of the string. In this implementation, we will instead store the
length of the payload in an integer named value length. This is less efficient than a null
terminator since integers consume at least 4 bytes (compared to 1 byte with the null
terminator). However, its use here is more pedagogical and will help you understand how
implementations are set up behind the scenes.

Figure #1 visually demonstrates how a singly linked list should be organized. In the top
of the figure, a linked list item is shown in detail. Note that the size of pointers depend
on the machine/OS type (i.e. in a 64-bit machine, pointers are 8-bytes as opposed to the
4-byte pointers present in 32-bit machines).

Figure #1: Structural view of a linked list in memory

Header Payload

Next Ptr Vel

(8B) Key(4B) (L4eBr; Value @

- b e >

Linked List Free Pointer
Head (FP)
y//,—\\ MemgryPool (MP) Vv
L4 \ o’
H| P [|H| P H| P
5 ad
- o~ /'M >

e ——

Assignment:

Part 1 - Singly-Linked List, Due 2/3/17

You are to implement a singly-linked list with the mentioned features in either C or C++.

e There should be three files in your program: main.c, linked_list.h, and linked list.c.
Sample code containing bare bones versions of each of these programs will be given
to you.

e Your implementation should define, in linked_list.c, all of the functions declared in
linked_list.h. The implementation of each declared function is up to you. However,
do not change any of the declarations from the ones that are given to you. A grading
script is used to test your project and to assign grades based on those tests. If you
change the API from what the script is expecting, the script will not be able to
grade your assignment. As an unfortunate consequence, you'll get a 0.

e Use the getopt() C library function to parse the command line for arguments. The
usage for your program should be as follows:

testlist [-b <blocksize>] [-s <memsize>]

-b <blocksize> | Defines the basic block size, b, in bytes. Default = 128 bytes
-s <memsize> | Defines size of memory allocated in bytes. Default = 512 kB

e Make sure that your program does not crash in any case. Here are the scenarios
that your program should account for. In these cases, your program should simply
print an error, skip the given instruction, and continue to work (i.e. do not exit for
any reason).

— Deleting non-existent keys from the list.
— Trying to insert keys after the given memory is full.
— Trying to insert values that do not fit in the payload section.

Part 2 - Stratified Linked List, Due 2/10/17

Modify the linked list you implemented in part 1 to make a multi-tiered list that groups
keys into a number of disjoint intervals and keeps numbers from those intervals in separate
lists. Take another integer, ¢, add input that indicates how many levels/tiers you will
have in the tiered linked list. Total memory, indicated by M, stays the same as in Part 1,
which means that every tier now will contain M/t bytes of memory. Each of these regions
will act as an independent linked list as in Part 1.

In order to distribute numbers onto these separate linked lists, divide the integer number
space (i.e. [0, 23! - 1] or [0, INT_MAX] for signed integers (Side note, the value INT_MAX
is contained in the header file: climits), you can safely assume that the input keys to your
program are all non-negative) equally into t regions. Note that you are only dividing the
entire number space equally, and this division should not depend on the particular input
array you are working with. Therefore, it is possible that a particular input sequence
could be placed into only one out of the t tiers simply because all the numbers in the
sequence map to that tier. However, if, in general, there is a uniform sample of input keys
in the range of [0, INT_MAX], then the tiers should contain roughly the same number of
keys.

Figure 2 (shown below) demonstrates the organization of a 4-tier list. All numbers in
tier ¢ should be less than those in tier ¢ + 1. You are NOT allowed to use the modulus
operation on an input to determine its tier. Instead, you should use either division or bit
shift operations. The following are requirements of your program (Remember, like part 1,
part 2 must be implemented in C or C++):

e There should be three files in your program: main.c, linked list2.h, and linked list2.c/cpp.

Similar to partl, a sample main file will be provided that includes some test cases
for you to experiment with.

e Provide implementations for all of the functions listed in part 1. Note that those
functions may work differently in the tiered design. In some cases, the function
arguments will also change. For example, the Init(M, b) function will change to
Init(M, b, t). Furthermore, the PrintList function will change as well. Do not print
empty tiers (i.e. where no insertions have occurred).

e Name your program testlist2, and this time, your program should accept the following
command line arguments:

testlist2 [-b <blocksize>| [-s <memsize>] [-t <tiers>]

Figure #2: Organization of a tiered linked list

> (HLP H P Hl P
1

2 1| |Hl P H| P
=1,

Report Documentation

Provide a PDF report describing your findings in both Parts 1 and 2. You only have to
write one report! Do not write two separate reports for the two parts of this machine
problem. For part 1, do you notice any wastage of memory when items are deleted? If
s0, can your program avoid such wastage? How would you do so? Can you think of a
scenario where there is space in the memory but no insertion is possible? What is the
maximum size of the value when the pointers are 8 bytes? For Part 2, derive a general
expression for the range of numbers that go into the i-th tier of the list.

Submission Instructions

Submit a zipped folder that contains two folders named MP1partl and MP1part2, and a
PDF report named MP1.pdf. Both folders (MP1partl and MP1part2) should contain 3
c¢/cpp/h files. Demonstrate your work during lab meetings. Make sure that your program
runs on the CSE department’s linux server (linux2.cse.tamu.edu). Remember that we
are using a new platform Vocareum (available at vocareum.com) for submitting machine
problems. Please register as a student on this website, play around with it, and become

4

familiar with it so that there will be no issues before the assignment’s deadline. Please
don’t be afraid to talk to your TA or instructor if you have any issues.

Grading Rubric:

Points will be assigned according to the following rubric. Each of the two parts of the
assignment are worth 80 points for a total of 160 points. The report portion of the
assignment is worth 40 points, bringing the overall assignment total to 200 possible points.

Basic things to note: do your best to account for every single edge/corner case that you
can think of. The grading script will specifically test these cases to ensure that your
program is completely correct. Also, your program should not produce segmentation
faults. If your program does segfault while testing a function, you will receive a zero for
that function and any other related functions. The grading script will still try to give you
as much credit as possible in the event of segmentation faults.

o Partl & Part2:

— Init: 16 points, Full credit will be awarded for correctly initializing variables
and setting up the list (i.e. your code should completely set up the list of nodes
starting at the head pointer and connect them all into one big list using the
next pointers. The nodes will be uninitialized when you set them up and should
contain no payload).

— Destroy: 6 points, Full credit will be awarded for correctly deleting every element
in the list and then returning any used heap memory to the operating system
using either free or delete.

— Insert: 16 points, Full credit will be awarded for correctly inserting elements
into the list that can be looked up afterwards. Inserts into a full list should fail.

— Delete: 16 points, Full credit will be awarded for correctly removing elements
from the list. Ensure that your delete function does not mess up the order of
pointers or result in any segmentation faults.

— Lookup: 8 points, Full credit will be awarded for correctly finding elements that
are in the list and returning NULL when the element is not in the list.

— PrintList: 8 points, This function is hard to grade based on a wide variety of
formatting variations. You will be graded solely on whether or not your function
returns something that is slightly coherent. However, it is strongly recommended
that you put time into developing this function so that you can debug your
program as errors come up.

— Bonus: 10 points, Full credit will be awarded for correctly reclaiming a block to
be used again in a future call to Insert.

