Reading Reference
1. Textbook Chapters 2 and 3
2. Molay Reference Text: Chapter 8

WEEK 3 — UNIX PROCESS

- CSCE 313 Spring 2017/

Key Learnings from Week 2

= 44
o DUAL MODE

o “Referee” Role of an OS comes with significant
responsibilities and capabilities

m Enforcing Fairness, Efficiency, and Correctness are perhaps
the most critical of the bunch

m OS is also a piece of software residing in the same memory so
it is the CPU that wears the “referee” hat when it runs the OS
Kernel code and wears the “player” hat when running user
code

m This is called Dual Mode operation

CSCE-313 Spring 2017

Key Learnings from Week 2
I
0 Architectural support for user and kernel modes
in CPU execution implies hardware features
provided to accomplish dual modes transition,
especially
m Privileged Instructions

® Memory Protection
m Timer, etc.

CSCE-313 Spring 2017

A Real-Life Analogy (Approximate)

A Typical Coffee Shop Computer System
Store System
Customer Process or Program or User Application
Barista/Cashier Operating System Kernel, Privileged Code
Coffee Machine CPU
Customer Order System Call
Order item not on Menu Exception
Telephone Call Interrupt
Fire Alarm Signal
>1 Customers being served Process Scheduling
Customer realizing at the Process Context Switching
counter that he needs to go to
ATM to get money

4 CSCE-313 Spring 2017

Key Asides

T
o System Call Handling (Ch. 2.6)

0 How do we execute traps safely and return back
cleanly to resume user code?

o Interrupt handling (Ch. 2.5)

o How do we service an exception that occurs in the
middle of running user code and return back cleanly
(safely) to resume user code?

0 How do we boot an OS Kernel? (Ch. 2.9)

CSCE-313 Spring 2017

Asidel: Handling System Calls

User Program Kernal
rmaim i} | syscalliargl1, arg2) {
syscalllargl1, arg2), do operation
F]
U T oT Je
User Stulb Kernal 5tub
[Z}
syscall {arg1, arg2) [Hardware Trap handler) {
trap -.., Copy argumenits
return A from user memory
} check arguments
- syscalliarg1, arg2)
~ ¥ rgl,argsl;
Trap Return copy return value
(5} into UsEr Memory
return

}
CSCE-313 Spring 2017

Aside2: Handling an Interrupt

I
a. CPU checks for interrupts after each instruction

. Save critical registers on Kernel stack and get in Kernel
Mode

8. Disable Interrupts

c. Referto Interrupt Descriptor Table for handler
location

e, Execute handler
O save process context
O service INT

.. Enable Interrupts. If no other INT, restore control to
interrupted process

c. Continue on normal program execution

CSCE-313 Spring 2017

Aside2: Handling an Interrupt (Before)

Lisee-leres Registers Kermel
Process
code: —| %5 ESP code:
5 EIP
foo () { EFLAGS ha“dlﬂ'rn {
whilal..) | ather pusha
=34, reqisters: -
J =y EAX, EBX, 5
]
Exception
stack: Stack

/

CSCE-313 Spring 2017

User-level
Process

code:

foo {1
wrhile{_] {
x=x+1;
¥ =y-4
]
}

stack:

Registers

55 ESP

C5 EIF

EFLAGS

other

registers:
EAX, EBX,

\

CSCE-313 Spring 2017

Aside2: Handling an Interrupt (During)

Kermel

code:

handlerf} {
pusha

)

Excaption
Stack

55

ESP

EFLAGS

C5

EIF

efror

Aside2: Handling an Interrupt (After)

Llgar-lewval
e Kermel
Process Ragpisters

coda:

code 55 ESP :
fi (1 ﬁjgs. handleri] {
h
wihiled...} { other pusha
w=x+1;

e registers:
y=y-2 EAX, EBX, :

1
]

Excapticm
stack: Stack

55
ESP

EFLAGS

EIP

(all
resgistars|
55
E5F
5
EIF

EAX
EBX

CSCE-313 Spring 2017

Aside?: At the end of handler

I
0 Handler restores saved registers
0 Atomically return to interrupted process/thread
o Restore program counter
o Restore program stack
0 Restore processor status word/condition codes
o Switch to user mode

CSCE-313 Spring 2017

Aside3: PC Booting

Disk

TN

v
bootloader
(1) BIOS copies gSgiI;e;rI;;I
bootloader
(2) bootloader ©
copies OS (3) OS kernel
kernel copies login
application
bootloader OS kernel login app
BIOS |instructions instructions instructions
and data and data and data

Physical Memory

CSCE-313 Spring 2017

Theme of the rest of Week 3

o Unix Process concept and definitions

userl user2 user3 user4

Exceptions

Applications > System calls,

Operating System

[Processor]4=> Memory

Privileged
Operations

Bock 1/O

CSCE-313 Spring 2017

Outline
N T
0 Process — Program in Action
0 Address Spaces
0 Learning about Process with ‘ps’
0 Miscellaneous questions about Process
0 Concurrent Processes
0 Context Switching

CSCE-313 Spring 2017

Prologue™ with Questions

I T
0 “How does Unix run programs? It looks easy
enough: you log in, your shell prints a prompt, you
type a command and press Enter. Soon a program
runs.

o When the program finishes, your shell prints a new
prompt. How does that work?

o What is the shell? What does a shell do? What does the
kernel do? What is a program and what does it mean
to run a program?”

* Understanding Linux /Unix Programming, by Bruce Molay

CSCE-313 Spring 2017

Process Is Program in Action
I T

processe o
ps —a

ps -

files l j :' ! Ll .

Is —a
e s -1
0 In Unix terminology

0 an executable program is a list of machine language instructions
and data

0 a process is the memory space and settings with which the
program runs

0 Data and programs are stored in files on the disk: programs
run in processes

CSCE-313 Spring 2017

Learning about Processes with ‘ps’

[tyagi]@linux2 ~> (09:40:04 02/02/15)

ps

PID TTY

15038 pts/40
15092 pts/40
[tyagi]@linux2 ~> (10:42:46 @89/15/15)

: ps -la

uID
36632
36632

38172
36917
35691
35691
38345
36662
36804
e
e
e
e
5
5

LT WLWLWLWWLWLITWLWWLWLWWWW|mL|ewmaomm

PID
1886
1812
4637
4638
4639
6854
6855
6856

21808
21822
22181
22215
PEEHE
31883
49135
45183
45184
45185
48956
48951
48952

PPID
940
1886
4687
4637
4638
6721
6854
6855
19888
21510
17390
17426
2286
1332
39988
45133
45183
45184
48920
48956
48951

C PRI

a
9

e B o I I v I v I o T e R s R o

Lo I v I o B o o R v

80
80
80
80
80
80
80
80
80
aa
ae
80

80
80
80
80
80
80
80

N

e B o I B v I v I o T o IR o R R s I v I v T |

Lo I o I o I o I o o R v

TIME CMD
00:00:00 bash
00:00:00 ps

ADDR 57 WCHAN

3195 wait
2947 ¥

9255 7
22611 wait
3638 ¥

9255 ¥
22611 wait
3604 ¥
28939 futex_
29218 futex_
4960 ?

AggB 7

5696 pause
9255 7
22611 wait
3637 7
9255 7
22611 wait
3729 ¢

TTY
pts/6
pts/6
pts/@
pts/@
pts/@
pts/1
pts/1
pts/1
pts/14
pts/25
pts/17
nts/22

pts/2
pts/9
pts/9
pts/9
pts/13
pts/13
pts/13

08 :
a3
08 :
a8 :
8 :
8 :
8 :
0e:
0e:
8a:
8o:
86 :

08 :
08 :
08 :
08 :
08 :
a8 :
8 :

TIME

08 :
83
08 :
a8 :
a8 :
0 :
0 :
08 :
08 :
ga:
8o:
86 :

08 :
08 :
08 :
08 :
08 :
a8 :
a8 :

ae

ae
1)
515}
515}
515}
5%}
5%}
ae
ae
(5%}

ae
ae
ae
ae
ae
1)
515}

CMD
sh
my allocator
sudo
su
bash
sudo
su
LET
ghc
ghc
vim
vim

screen
sudo
su
bash
sudo
su

bash

(09:40:07 02/02/15)

[tyagi] @linux2 ~>

ps -a

PID TTY TIME CMD
4633 pts/0 00:00:00 sudo
4634 pts/0 00:00:00 su
4635 pts/0 00:00:00 bash
5612 pts/14 00:00:00 ghc
8479 pts/7 00:00:00 vim

10943 pts/28 00:00:01 ghc
12185 pts/23 00:00:15 a.out
12239 pts/23 00:00:37 a.out
12402 pts/32 00:00:00 ghc
14197 pts/22 00:00:00 a.out
14411 pts/19 00:00:00 wvim
15447 pts/20 00:00:00 a.out
15540 pts/40 00:00:00 ps
28496 pts/5 00:00:00 sudo
28497 pts/5 00:00:00 su
28498 pts/5 :00:00

CSCE-313 Spring 2017

Processes

N
0 Definition: A process is an instance of a ‘running’ program
0 Process provides each program with two key abstractions:

o Logical control flow

m Each program seems to have exclusive use of the CPU

o Private address space

m Each program seems to have exclusive use of main memory

0 How are these illusions maintained?
0 Process executions interleaved (multitasking)
o Address spaces managed by virtual memory system

CSCE-313 Spring 2017

Logical Control Flows

T
Each process has its own logical control flow

Process A Process B Process C

Time

CSCE-313 Spring 2017

Private Address Spaces

I
0 Each process has its own private address space

Oxffffffff
user stack

(created at runtime)

“— %esp (stack pointer)

?

memory mapped region for
shared libraries

T

run-time heap
(managed by malloc)

0x40000000

“— brk

read/write segment

(.data, .bss) » loaded from the

read-only segment executable file

0x08048000 NIt .text, .rodata) |

0 unused

CSCE-313 Spring 2017

Process Management and File

Management
_

0 ‘ps’ shows that processes have many attributes
0 ‘Is” does something similar but for files

0 The kernel stores several processes in the memory
just like it stores files on the disk

CSCE-313 Spring 2017

Computer Memory and Programs

0 Memory can be viewed as an
expanse of space containing

‘ the kernel and user
applications (processes)
%proces B
o \‘ 0 Memory as an array of pages
= and split processes into one or
more pages

“S’ ‘ o The array of pages may be

t" stored physically in solid state
chips

CSCE-313 Spring 2017

Concurrent Processes

I
0 Two processes run concurrently (are concurrent) if
their flows overlap in time
0 Otherwise, they are sequential

0 Examples:
o Concurrent: A& B, A&C
o Sequential: B& C

Process A Process B Process C

Time

CSCE-313 Spring 2017

User View: Concurrent Processes

I T
0 Control flows for concurrent processes are
physically disjoint in time (except on multi-core
machines)

0 However, we can think of concurrent processes as
running in ‘parallel” with each other

Process A Process B Process C

Time

CSCE-313 Spring 2017

Context Switching

I
0 Processes are managed by the kernel

o Important: the kernel runs as part of (or on behalf of) user processes

0 Control flow passes from one process to another via a context

switch
user code
kernel code } context switch
B T 0 = -
I user code
e
v kernel code } context switch

user code

CSCE-313 Spring 2017

Some questions to ponder about

rocesses
IﬂlJ=llllllllllllllllllllllllllllllllll

0 How is a process created?
0 How is a process deleted?

0 Is there a user process and kernel process

0 Where do we keep information about a
process

0 Does a process have to run through
completion from start to finish or can it be
interrupted?

CSCE-313 Spring 2017

Some questions to ponder about

rocesses
lﬁlJ;llllllllllllllllllllllllllllllllll

0 Do processes have priorities?

0 What are the relationships between multiple
processes in a system?

0 Can we have multiple processes related to the
same program? Would multiple processes of the
same program share addresses during execution?

0 How does a program create and run a program?
0 How does a parent wait for a child to exit?

CSCE-313 Spring 2017

OK, so what have we learnt so far...
T

0 Concept and Definition of a Process
0 Example viewed through UNIX ‘ps’

0 Outlined some questions about processes for
forthcoming discussions

0 Process concurrency and context switching

I
Process A I Process B

kernel code

user code

kernel code

} context switch Tin

Process A Process B Process C

} context switch

CSCE-313 Spring 2017

What’s coming up next?

I S,
0 Process Operations and Programming Interface
(Chapter 3)

0 We will also start answering some of the questions
posed earlier about a process

0 Executing a program from within a program. How does
a shell work?

o Creating a new process

o Introducing Wait dependencies between parent and
child processes

CSCE-313 Spring 2017

What is a Shell?
I
o Shell is a program which
o Runs programs
o Manages inputs and outputs
oCan be programmed

CSCE-313 Spring 2017

Shell = Running Programs

] The Commaﬂds |S, [tyagi]@linux2 ~> (21:12:39 ©2/08/16)
grep, date, etc. are

tvagil@linux2 -~ 21:12:47 0©2/08/16
regular programs. The fdiaieitgs :

L L.

shell loads these

[tyagi]@linux2 ~> (21:12:58 ©2/088/16)

prOgramS |ntO 1+ 1s csce313/* > foo
memory and runs [tyagi]@linux2 ~> (21:13:09 02/08/16)

::+ TZ=PST8PDT; export TZ; date; TZ=CSTeCDT
tf]earT1 lon Feb 8 19:14:02 PST 2016

[tyagi]@linux2 ~> (19:14:02 ©82/08/16)
= dake
fon Feb 8 21:14:09 CST 2016

CSCE-313 Spring 2017

Shell — Managing /O

0 Using >, ‘|’ etc. the user tells the shell to attach the

output to a file on disk, or to another process, etc.

[tyagi]@linux2 ~> (21:19:21 ©82/08/16)
: ¢ whoami > myname

[tyagi]@linux2 ~> (21:19:28 82/08/16)
=i 1s

foo yb: myname

[tyagil@linux2 ~> (21:19:37 082/08/16)
cat myname
tyagi

CSCE-313 Spring 2017

Shell - Programming

o Shell is also a programming language with

variables and flow control

[tyagi]@linux2 ~> (@89:57:51 02/09/16)
.+ NAME=tyagi

[tyagi]@linux2 ~> (09:59:43 02/09/16)
: : whoami > myname

[tyagi]@linux2 ~> (89:59:49 02/09/16)

:: if grep $NAME myname; then echo hello $NAME; fi
tyagi

hello tyagi

[tyagi]@linux2 ~> (©9:59:53 02/09/16)

CSCE-313 Spring 2017

How does the Shell Run Programs?

A. The user types a.out in the shell

B. The shell creates a new
process to run the program

C. The shell load the program Process momt

system

from the disk into the memory

D. The program runs in its

process until it is done ooy

Ref: Understanding Unix /Linux Programming by Bruce Molay

CSCE-313 Spring 2017

The Main Loop of a Shell

[tyagil@linux2 ~> (16:06:00 B2/84/15)
s a 15

[:5:a313 mybin play

[tyagil@linux2 ~= (16:06:81 BZ2/04/15)
t: ps
PID TTY TIME CMD
52787 pts/S1z2 BR:2B:B0 bash
S2B35 pts/sl2 BB:00:88 ps

[tyagil@linux2 ~= (16:06:84 BZ2/084/15)

— -3

:».‘RQ..R...II.!)

wait for exit

Ref: Understanding Unix/Linux Programming by Bruce Molay CSCE-313 Spring 2017

To Write a Shell, we need to...

I T
0 Run a Program
0 Create a Process

0 Wait for Exit

CSCE-313 Spring 2017

How do we get a new process?

0 A process calls FORK to replicate itself
0 Usage: fork (); /* takes no arguments™®/

o After a process invokes fork,
User Parent process Child process control passes to the KERNEL.
The Kernel does this:

User

o Allocates address space and
data structures

o Copies the original process
into the new process

o Adds the new process to
the set of running
processes

- o Returns control back to

both processes

CSCE-313 Spring 2017

How do we get a new process?

0 A process calls FORK to replicate itself
0 Usage: fork (); /* takes no arguments™®/

0 After a process invokes fork, control passes
to the KERNEL. The Kernel does this:

o Allocates address space and data
structures

Parent process Child process

User

o Copies the original process into the new
process

o Adds the new process to the set of
running processes

o Returns control back to both processes

CSCE-313 Spring 2017

Example: Fork

* forkdemol.c

*shows how fork creates two processes, distinguishable
- *by the different return values from fork()

" |

* Bruce Molay */

tinclude<stdio.h>
ain()
int ret from fork, mypid;

mypid = getpid(); /* who am i? */
printf("Before: my pid is %d\n", mypid); /* tell the world*/

ret from fork = fork();

/* sleep(1);*/
printf("After: my pid is %¥d, fork() said %d\n",
getpid(), ret from fork);

CSCE-313 Spring 2017

Example: Fork
40

[tyagi]@linux2 ~/csce313/sp15/forkdemol> (10:38:51 02/09/16)
;1 a.out

Before: my pid 1s 32759
After: my pid is 32759, fork() said 32760
After: my pid is 32760, fork() said @

0 Why is the “After” message printed twice but
“Before” message only once?

Because Fork created a child process and both parent

and child execute the rest of the code following the
fork

CSCE-313 Spring 2017

Example: Fork
T
0 Why is the “After” message printed twice but
“Before” message only once?

Parent process Child process

CSCE-313 Spring 2017

An Observation and A Question

I
0 Observation

o Fork does a wonderful job of creating a copy of the
process that goes on to execute the same code as the
parent

0 Question

o If that is the case, how in the world do we get a
process to create a child process that does something
different than the parent?

CSCE-313 Spring 2017

How does a Program run a Program?

o Process (Program) calls - / Sk
1

“execvp”

0 Kernel loads program from
disk into the process

31

‘array jof strings

0 Kernel copies arglist into the
Orocess

0 Kernel calls main(argc, argv)

CSCE-313 Spring 2017

Example: Program running a program

#include <stdio.h>

/* execl.c - Show how a program runs a program

o

main()

{
char*arglist[2];

arglist[@] = "1s";

arglist[1] = "-1";

printf("* * About to exec 1ls -1\n");
execvp("1s" , arglist);

printf("* * 1s is done. bye\n");

CSCE-313 Spring 2017

Example: contd.

[tyagi]@linux2 ~/csce313/spl5/exec> (10:19:33 02/09/16)
1 1s
execl.c exptl.c

[tyagi]@linux2 ~/csce313/spl5/exec> (10:19:34 02/09/16)
£ EEE Bxedl.e

[tyagi]@linux2 ~/csce313/spl5/exec> (10:19:40 02/09/16)

-rwxr-xr-x 1 tyagi CSE csfac 11987 Feb 9 10:19 a.out
-rw-r--r-- 1 tyagi CSE csfac 247 Feb 9 10:18 execl.c
-rw-r--r-- 1 tyagl games 288 Feb 19 2015 exptl.c

CSCE-313 Spring 2017

Example: contd.

ftinclude <stdio.h> 0o Where is the second
message?
/* execl.c - Show how a program runs a program The exec system call clears
X/ out the machine language
code of the current
main() program from the current
r process and then in the now
1 _ empty process puts the
char*arglist[2]; code of the program named
in the exec call and then
arglist[0] = "1s"; runs the new program
arglist[1] = "-1"; 0 execvp does not return if it
printf("* * About to exec 1s -1\n"); succeeds
execwp("1s" , arglist); 0 execvp is like a brain
printf(ls is done. bye\n"); transplant

CSCE-313 Spring 2017

Fork and Exec
Ilﬁ'l

int main(int argc, char* argv[]) {
int pid = fork();
if (pid==0) {
execvp("date", argv);

/* parent sleeps for 2sec t@ let \child go first*/
wait(2);
printf("Finished the parent procgss\n"

" - tHe child won't get here-

see this orfce\n");
return O;

} 2 ofas-out

Sun Jan 29 14:43:45 CST 2017
inished the parent process
— the child won't get here--you will only see this once

wait: Synchronizing With Children

= 000

O 1int wait(int *child status)
o Suspends current process until one of its children
terminates
o Return value is pid of child process that terminated

olfchild status != NULL, then integer it points to
will be set to indicate why child terminated

CSCE-313 Spring 2017

wait: Synchronizing With Children

=

Void wait demo() {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");

}

else {
printf ("HP: hello from parent\n");
wait (&child status) ; HC Bye

printf ("CT: child has terminated\n"); f
}
printf ("Bye\n") ;
exit (0) ;

HP CT Bye

CSCE-313 Spring 2017

Some questions to ponder about

rocesses
lﬁlJ;llllllllllllllllllllllllllllllllll

v How is a process created?

How is a process deleted?
Is there a user process and kernel process
Where do we keep information about a process

Does a process have to run through completion
from start to finish or can it be interrupted?
0 Do processes have priorities?

0 What are the relationships between multiple processes in a system?

o Can we have multiple processes related to the same program? Would
multiple processes of the same program share addresses during
execution?

v How does a program run a program?
v How does a parent wait for a child to exit?

< O O O

CSCE-313 Spring 2017

Key Learnings

I T
o Shell Basics

0 Replacing Program Executed by Process

o Call execv (or variant)
m One call, (normally) no return

0 Spawning Processes
o Callto fork

m One call, two returns

0 Reaping Processes
oCallwait

CSCE-313 Spring 2017

What’s coming up in Week 47?

s
0 More about process fork, exec, and new functions
related to process data and control

0 Process Life-Cycle

0 What does it take to execute the life-cycle?
0 Orphan, Zombie Processes

0 Problem Solving related to Process Execution

CSCE-313 Spring 2017

