
WEEK 3 – UNIX PROCESS

CSCE 313 Spring 2017

Reading Reference

1. Textbook Chapters 2 and 3

2. Molay Reference Text: Chapter 8

Key Learnings from Week 2
2

 DUAL MODE

 “Referee” Role of an OS comes with significant
responsibilities and capabilities

 Enforcing Fairness, Efficiency, and Correctness are perhaps
the most critical of the bunch

 OS is also a piece of software residing in the same memory so
it is the CPU that wears the “referee” hat when it runs the OS
Kernel code and wears the “player” hat when running user
code

 This is called Dual Mode operation

CSCE-313 Spring 2017

Key Learnings from Week 2
3

 Architectural support for user and kernel modes
in CPU execution implies hardware features
provided to accomplish dual modes transition,
especially

 Privileged Instructions

Memory Protection

 Timer, etc.

CSCE-313 Spring 2017

A Real-Life Analogy (Approximate)

4 CSCE-313 Spring 2017

A Typical Coffee Shop Computer System

Store System

Customer Process or Program or User Application

Barista/Cashier Operating System Kernel, Privileged Code

Coffee Machine CPU

Customer Order System Call

Order item not on Menu Exception

Telephone Call Interrupt

Fire Alarm Signal

>1 Customers being served Process Scheduling

Customer realizing at the

counter that he needs to go to

ATM to get money

Process Context Switching

Key Asides

CSCE-313 Spring 2017

5

 System Call Handling (Ch. 2.6)

 How do we execute traps safely and return back
cleanly to resume user code?

 Interrupt handling (Ch. 2.5)

 How do we service an exception that occurs in the
middle of running user code and return back cleanly
(safely) to resume user code?

 How do we boot an OS Kernel? (Ch. 2.9)

Aside1: Handling System Calls

CSCE-313 Spring 2017

6

Aside2: Handling an Interrupt

CSCE-313 Spring 2017

7

A. CPU checks for interrupts after each instruction
D. Save critical registers on Kernel stack and get in Kernel

Mode
B. Disable Interrupts
C. Refer to Interrupt Descriptor Table for handler

location
E. Execute handler

 save process context
 service INT

F. Enable Interrupts. If no other INT, restore control to
interrupted process

G. Continue on normal program execution

Aside2: Handling an Interrupt (Before)

CSCE-313 Spring 2017

8

Aside2: Handling an Interrupt (During)

CSCE-313 Spring 2017

9

Aside2: Handling an Interrupt (After)

CSCE-313 Spring 2017

10

Aside2: At the end of handler

 Handler restores saved registers

 Atomically return to interrupted process/thread

 Restore program counter

 Restore program stack

 Restore processor status word/condition codes

 Switch to user mode

CSCE-313 Spring 2017

11

Aside3: PC Booting
12

CSCE-313 Spring 2017

Theme of the rest of Week 3
13

 Unix Process concept and definitions

CSCE-313 Spring 2017

Application Programs/Processes

storage

Processor Memory

user1 user2 user3 user4

return System calls,

Exceptions

Bock I/O INT Character O/P

Privileged

Operations

user1 user2 user3 user4

Outline

CSCE-313 Spring 2017

14

 Process – Program in Action

 Address Spaces

 Learning about Process with ‘ps’

 Miscellaneous questions about Process

 Concurrent Processes

 Context Switching

Prologue* with Questions

CSCE-313 Spring 2017

15

 “How does Unix run programs? It looks easy
enough: you log in, your shell prints a prompt, you
type a command and press Enter. Soon a program
runs.

 When the program finishes, your shell prints a new
prompt. How does that work?

 What is the shell? What does a shell do? What does the
kernel do? What is a program and what does it mean
to run a program?”

* Understanding Linux/Unix Programming, by Bruce Molay

Process is Program in Action

CSCE-313 Spring 2017

16

 In Unix terminology
 an executable program is a list of machine language instructions

and data
 a process is the memory space and settings with which the

program runs

 Data and programs are stored in files on the disk: programs
run in processes

files

processes

ls

ls –a

ls -l

ps

ps –a

ps -l

Learning about Processes with ‘ps’

CSCE-313 Spring 2017

17

Run these commands in your linux/unix system and then also read the ‘man’ pages

Processes

 Definition: A process is an instance of a ‘running’ program

 Process provides each program with two key abstractions:

 Logical control flow
 Each program seems to have exclusive use of the CPU

 Private address space

 Each program seems to have exclusive use of main memory

 How are these illusions maintained?

 Process executions interleaved (multitasking)

 Address spaces managed by virtual memory system

CSCE-313 Spring 2017

18

Logical Control Flows

Time

Process A Process B Process C

Each process has its own logical control flow

CSCE-313 Spring 2017

19

Private Address Spaces

 Each process has its own private address space

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

unused
0

%esp (stack pointer)

brk

0xffffffff

0x08048000

0x40000000

read/write segment

(.data, .bss)

read-only segment

(.init, .text, .rodata)

loaded from the

executable file

CSCE-313 Spring 2017

20

Process Management and File
Management

CSCE-313 Spring 2017

21

 ‘ps’ shows that processes have many attributes

 ‘ls’ does something similar but for files

 The kernel stores several processes in the memory
just like it stores files on the disk

Computer Memory and Programs

CSCE-313 Spring 2017

22

 Memory can be viewed as an
expanse of space containing
the kernel and user
applications (processes)

 Memory as an array of pages
and split processes into one or
more pages

 The array of pages may be
stored physically in solid state
chips

kernel process A process B

Concurrent Processes

 Two processes run concurrently (are concurrent) if
their flows overlap in time

 Otherwise, they are sequential

 Examples:

 Concurrent: A & B, A & C

 Sequential: B & C

Time

Process A Process B Process C

CSCE-313 Spring 2017

23

User View: Concurrent Processes

 Control flows for concurrent processes are
physically disjoint in time (except on multi-core
machines)

 However, we can think of concurrent processes as
running in ‘parallel’ with each other

Time

Process A Process B Process C

CSCE-313 Spring 2017

24

Context Switching

 Processes are managed by the kernel

 Important: the kernel runs as part of (or on behalf of) user processes

 Control flow passes from one process to another via a context
switch

Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

CSCE-313 Spring 2017

25

Some questions to ponder about
processes

CSCE-313 Spring 2017

26

 How is a process created?

 How is a process deleted?

 Is there a user process and kernel process

 Where do we keep information about a
process

 Does a process have to run through
completion from start to finish or can it be
interrupted?

Some questions to ponder about
processes

CSCE-313 Spring 2017

27

 Do processes have priorities?

 What are the relationships between multiple
processes in a system?

 Can we have multiple processes related to the
same program? Would multiple processes of the
same program share addresses during execution?

 How does a program create and run a program?

 How does a parent wait for a child to exit?

OK, so what have we learnt so far…
28

 Concept and Definition of a Process

 Example viewed through UNIX ‘ps’

 Outlined some questions about processes for
forthcoming discussions

CSCE-313 Spring 2017

Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

Time

Process A Process B Process C

 Process concurrency and context switching

What’s coming up next?
29

 Process Operations and Programming Interface
(Chapter 3)

 We will also start answering some of the questions
posed earlier about a process

 Executing a program from within a program. How does
a shell work?

 Creating a new process

 Introducing Wait dependencies between parent and
child processes

CSCE-313 Spring 2017

What is a Shell?

CSCE-313 Spring 2017

30

 Shell is a program which

Runs programs

Manages inputs and outputs

Can be programmed

Shell – Running Programs

CSCE-313 Spring 2017

31

 The commands ls,
grep, date, etc. are
regular programs. The
shell loads these
programs into
memory and runs
them.

Shell – Managing I/O

CSCE-313 Spring 2017

32

 Using ‘>’, ‘|’ etc. the user tells the shell to attach the
output to a file on disk, or to another process, etc.

Shell - Programming

CSCE-313 Spring 2017

33

 Shell is also a programming language with
variables and flow control

How does the Shell Run Programs?

CSCE-313 Spring 2017

34

User

$ a.out
ShellNew process

process mgmt.

system

program

A

D
B

C

D. The program runs in its
process until it is done

A. The user types a.out in the shell

B. The shell creates a new
process to run the program

C. The shell load the program
from the disk into the memory

Ref: Understanding Unix/Linux Programming by Bruce Molay

The Main Loop of a Shell

CSCE-313 Spring 2017

35

 The shell consists of the following loop:

 while (! end_of_input)

 get command

 execute command

 wait for command to finish

Ref: Understanding Unix/Linux Programming by Bruce Molay

To Write a Shell, we need to…

CSCE-313 Spring 2017

36

 Run a Program

 Create a Process

 Wait for Exit

How do we get a new process?

CSCE-313 Spring 2017

37

 A process calls FORK to replicate itself

 Usage: fork (); /* takes no arguments*/

Before

fork()

After

fork

 After a process invokes fork,
control passes to the KERNEL.
The Kernel does this:

 Allocates address space and
data structures

 Copies the original process
into the new process

 Adds the new process to
the set of running
processes

 Returns control back to
both processes

Before Fork

Kernel

User

Before

fork()

After

fork

Before

fork()

After

Parent process Child process

After Fork

Kernel

User

How do we get a new process?

CSCE-313 Spring 2017

38

 A process calls FORK to replicate itself

 Usage: fork (); /* takes no arguments*/

Before

fork()

After

fork

Before

fork()

After

Parent process Child process
 After a process invokes fork, control passes

to the KERNEL. The Kernel does this:

 Allocates address space and data
structures

 Copies the original process into the new
process

 Adds the new process to the set of
running processes

 Returns control back to both processes

After Fork

Kernel

User

CSCE-313 Spring 2017

39

Example: Fork

Example: Fork

CSCE-313 Spring 2017

40

 Why is the “After” message printed twice but
“Before” message only once?

Because Fork created a child process and both parent
and child execute the rest of the code following the
fork

Example: Fork

CSCE-313 Spring 2017

41

 Why is the “After” message printed twice but
“Before” message only once?

Before

fork()

After

fork

Before

fork()

After

fork

Before

fork()

After

Parent process Child process

Before Fork After Fork

An Observation and A Question

CSCE-313 Spring 2017

42

 Observation

 Fork does a wonderful job of creating a copy of the
process that goes on to execute the same code as the
parent

 Question

 If that is the case, how in the world do we get a
process to create a child process that does something
different than the parent?

How does a Program run a Program?

CSCE-313 Spring 2017

43

 Process (Program) calls
“execvp”

 Kernel loads program from
disk into the process

 Kernel copies arglist into the
process

 Kernel calls main(argc, argv)
program to run

array of strings

process

2

3

1

Example: Program running a program

CSCE-313 Spring 2017

44

Example: contd.

CSCE-313 Spring 2017

45

Example: contd.

CSCE-313 Spring 2017

46

 Where is the second
message?
 The exec system call clears

out the machine language
code of the current
program from the current
process and then in the now
empty process puts the
code of the program named
in the exec call and then
runs the new program

 execvp does not return if it
succeeds

 execvp is like a brain
transplant

Fork and Exec

CSCE-313 Spring 2017

47

wait: Synchronizing With Children

 int wait(int *child_status)

 Suspends current process until one of its children
terminates

 Return value is pid of child process that terminated

 If child_status != NULL, then integer it points to
will be set to indicate why child terminated

CSCE-313 Spring 2017

48

wait: Synchronizing With Children

CSCE-313 Spring 2017

49

Void wait_demo() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

}

else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

exit(0);

}

HP

HC Bye

CT Bye

Some questions to ponder about
processes

CSCE-313 Spring 2017

50

 How is a process created?
 How is a process deleted?

 Is there a user process and kernel process

 Where do we keep information about a process

 Does a process have to run through completion
from start to finish or can it be interrupted?

 Do processes have priorities?

 What are the relationships between multiple processes in a system?

 Can we have multiple processes related to the same program? Would
multiple processes of the same program share addresses during
execution?

 How does a program run a program?
 How does a parent wait for a child to exit?

 Shell Basics

 Replacing Program Executed by Process

 Call execv (or variant)

 One call, (normally) no return

 Spawning Processes

 Call to fork

 One call, two returns

 Reaping Processes

 Call wait

CSCE-313 Spring 2017

51

Key Learnings

What’s coming up in Week 4?

CSCE-313 Spring 2017

52

 More about process fork, exec, and new functions
related to process data and control

 Process Life-Cycle

 What does it take to execute the life-cycle?

 Orphan, Zombie Processes

 Problem Solving related to Process Execution

