
W4.1 – UNIX PROCESS
ELEMENTS

Aakash Tyagi
CSCE 313 Spring 2017

Reading Reference:

Textbook: Chapter 3

Reference Text (Stevens) Chapter 7,8

 Shell Basics

 Spawning Processes

 Call to fork

 One call, two returns (parent gets child id, child gets 0)

 Replacing Program Executed by Process

 Call to execv (or variant)

 One call, (normally) no return

2

Key Learnings from Week 3

Recap Example 1: Fork and Exec
3

• What would the child print?

• What would the parent print?

• What would happen if the if (pid == 0) check was removed?

wait: Synchronizing With Children

 int wait(int *child_status)

 Suspends current process until one of its children
terminates

 Return value is pid of child process that terminated

 If child_status != NULL, then integer it points to
will be set to indicate why child terminated

4

wait: Synchronizing With Children

5

Void wait_demo() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

}

else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

exit(0);

}

HP

HC Bye

CT Bye

Discussion- Example 2
6

How would you create the process tree. The numbers

inside the circles simply represent the order of process creation

Discussion – Example 3
7

 How many lines will be printed? Will the output always
be the same?

Discussion: Example 4
8 What is the output of this program?

Will it remain the same?

Discussion – Example 5
9

Questions to ponder about processes
– what have we learned so far?

10

 How is a process created?
 How is a process deleted?

 Is there a user process and kernel process

 Where do we keep information about a process

 Does a process have to run through completion
from start to finish or can it be interrupted?

 Do processes have priorities?

 What are the relationships between multiple processes in a system?

 Can we have multiple processes related to the same program? Would
multiple processes of the same program share addresses during
execution?

 How does a program run a program?
 How does a parent wait for a child to exit?

Rest of the Discussion
11

 Process Life-Cycle

 What does it take to execute the life-cycle?

 Orphan, Zombie Processes

OS Bottom Line: Run Programs

 Load instruction and data segments of executable
file into memory

 Create stack and heap

 “Transfer control to it”

 Provide services to it (network, file connections, IO,
etc.)

 while protecting OS and it

int main()

{ … ;

}

e
d
it
o
r

c
o
m

p
ile

r

Program Source Executable

foo.c a.out

L
o
a
d
 &

E
x
e
c
u
te

0x000…

0xFFF…

instructions

data

instructions

data

heap

stack

Memory

Processor

registers

PC:

OS

12

States of a Process

 User view: A process is executing continuously

 In reality: Several processes compete for the CPU and
other resources

 A process may be
 Running: it holds the CPU and is executing instructions

 Blocked(waiting): it is waiting for some I/O event to occur

 Ready: it is waiting to get back on the CPU

ready running

blocked

Exit

(terminated)

Create

(new)

preempt

dispatch

I/O or event wait
I/O or

Event complete

13

Questions
14

 How many processes can be in the running state
simultaneously?

 What state do you think a process is in most of the
time?

 How many processes can a system support? **

The Execution Trace of Processes

 Two processes
and a dispatcher

dispatcher

program A

a

b

d

program B

a
a+1
a+2
a+3
a+4
a+5
a+6
a+7
a+8
a+9
a+10
a+11

b
b+1
b+2
b+3
b+4
b+5
b+6
b+7
b+8
b+9
b+10
b+11

d
d+1
d+2
d+3
d+4

Trace of dispatcher

Traces of processes A and B

b
b+1
b+2
b+3
b+4
d
d+1
d+2
d+3
d+4
a
a+1
a+2
a+3
a+4
d
d+1
d+2
d+3
d+4
b+5
b+6
b+7

...
15

...

Process Data Structures
16

 How does the OS represent a process in the kernel?
 At any time, there are many processes in the system,

each in its particular state

 The OS data structure representing each process is
called the Process Control Block (PCB)

 The PCB contains all of the info about a process

 The PCB also is where the OS keeps all of a process’
hardware execution state (PC, SP, regs, etc.) when the
process is not running
 This state is everything that is needed to restore the

hardware to the same configuration it was in when the
process was switched out of the hardware

Process Control Block (PCB)

process identification process id

parent process id

user id

etc…

processor state information register set

condition codes

processor status

process control information process state

scheduling information

event (wait-for)

memory-mgmt information

owned resources (e.g., list of

opened files)

17

Process Context Switch

 Mechanism of a process switch:

Preempt Process A and store

all relevant information.

Load information about

Process B and continue execution

Preempt Process B and store

all relevant information.

Load information about

Process A and continue execution

(i
d
le

)
(i
d
le

)

(i
d
le

)

Process A Process B

process identification

processor state

information

process control

information

Process Control Block

18

Context Switch: PCB and the Hardware
States

19

 When a process is running, its hardware state (PC, SP,
regs, etc.) is in the CPU
 The hardware registers contain the current values

 When the OS stops running a process, it saves the
current values of the registers into the process’ PCB

 When the OS is ready to start executing a new process,
it loads the hardware registers from the values stored
in that process’ PCB

 The process of changing the CPU hardware state from
one process to another is called a context switch
 This can happen 100 or 1000 or more times a second!

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in
main memory, ready and waiting to execute

 Device queues – set of processes waiting for an
I/O device

 Processes migrate among the various queues

20

Example for the Use of PCBs: Process Queues

ready running

waiting
ready queue

I/O device queues

executing process

disk 1

disk 2

serial I/O

21

Schedulers

 Long-term scheduler (or job scheduler)
 selects which processes should be brought into the ready queue

 controls degree of multiprogramming

 must select a good process mix of I/O-bound and CPU-bound
processes

 Short-term scheduler (or CPU scheduler)
 selects which process should be executed next and allocates CPU

 executes at least every 100ms, therefore must be very fast

 Medium-term scheduler (swapper)
 in some Oss

 sometimes good to temporarily remove processes from memory
(suspended)

22

Schedulers

start

blocked

ready running
suspended

ready

suspended

blocked

long-term (admission) scheduler

medium-term (memory) scheduler

short-term (CPU) scheduler

23

Zombie Process

 Idea

 When process terminates, still consumes system
resources

 Various tables maintained by OS (to store exit status)

 Called a “zombie”

 Living corpse, half alive and half dead

 Reaping

 Performed by parent on terminated child

 Parent is given exit status information

 Kernel discards process

24

Zombie Example

 ps shows child
process as “defunct”

 Killing parent allows
child to be reaped

25

Orphan Process
26

 Without a parent process

 Adopted immediately by the “Init” process

 Sometimes orphans are killed with the SIGHUP signal

 (it can be overruled with the nohup handler)

Summary
27

 What are the units of execution?
 Processes

 How are those units of execution represented?
 Process Control Blocks (PCBs)

 How is work scheduled in the CPU?
 Process states, process queues, context switches

 What are the possible execution states of a process?
 Running, ready, waiting

 How does a process move from one state to another?
 Scheduling, I/O, creation, termination

 How are processes created?
 fork/exec (Unix)

Next Class
28

 Unix I/O

Application Programs/Processes

storage

Processor Memory

user1 user2 user3 user4

return System calls,

Exceptions

Bock I/O INT Character O/P

Privileged

Operations

user1 user2 user3 user4

