
WEEK 5: UNIX IO

Aakash Tyagi
CSCE 313 Spring 2017

Reference:
Advanced Programming in the UNIX Environment, Third Edition, W. Richard Stevens and

Stephen A. Rago, Addison-Wesley Professional Computing Series, 2013. Chapter 3

Computer Systems: A Programmer's Perspective, Randal E. Bryant and David R. O'Hallaron,

Prentice Hall, 3rd edition, 2016, Chapter 10

Acknowledgment: A number of examples in a box with

this color are taken from CSAPP book cited above

Unix IO
2

 How do we communicate with IO Devices?

Application Programs/Processes

storage

Processor Memory

user1 user2 user3 user4

return System calls,

Exceptions

Bock I/O INT Character O/P

Privileged

Operations

user1 user2 user3 user4

Motivation

 I/O is the process of copying data between main
memory and external devices (disk drives, terminals,
networks)

 Language run-time systems provide higher-level
facilities for performing I/O (e.g. printf, scanf)

 On Unix systems, these higher-level I/O functions are
implemented using System-Level Unix I/O functions
provided by the Kernel

CSCE-313 SP 2017

3

Unix Files

 A Unix file is a sequence of m bytes:
 B0 , B1 , , Bk , , Bm-1

 All I/O devices (networks, disks, terminals) are
represented as files:
 /dev/sda2 (/usr disk partition; a is the order and #2 is

the partition)

 /dev/tty2 (terminal)

 Even the kernel is represented as a file:
 /dev/kmem (kernel memory image)

 /proc (kernel data structures)

 All I/O is performed by reading and writing the
appropriate files

CSCE-313 SP 2017

4

Files are not always “Files”: I/O Devices

CPU

modem network

mouse printer

keyboard mass storage

graphics

memory

CSCE-313 SP 2017

5

Unix File Types

 Regular file

 File containing user/app data (binary, text, whatever)

 Directory file

 A file that contains the names and locations of other files

 Character special and block special files

 Terminals (character special) and disks (block special)

 FIFO (named pipe)

 A file type used for inter-process communication

 Socket

 A file type used for network communication between processes

CSCE-313 SP 2017

6

Unix I/O

 Key Features

 Elegant mapping of files to devices allows kernel a
simple interface called Unix I/O

 Important idea: All input and output is handled in a
consistent and uniform way

7

CSCE-313 SP 2017

Unix I/O

 Basic Unix I/O operations (system calls):

Opening and closing files

open()and close()

Reading and writing a file

read() and write()

Changing the current file position (seek)

Kernel maintains a file position (initially 0) for each
open file

 indicates next (byte) offset into file to read or write

lseek() B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

8

Opening Files

 Opening a file informs the kernel that you are getting
ready to access that file

 Returns a small identifying integer file descriptor

fd == -1 indicates that an error occurred

 Kernel keeps track of all information about the open file.
The application only keeps track of the descriptor

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0)

{

perror("open");

exit(1);

}

CSCE-313 SP 2017

9

Opening Files

 Each process created by a Unix shell begins life
with three open files associated with a terminal:

0: standard input

1: standard output

2: standard error

CSCE-313 SP 2017

10

Closing Files

 Closing a file informs the kernel that you are finished
accessing that file

 The kernel responds by freeing the data structures
associated with the file and restoring the descriptor to
the available pool of available descriptors

 When a process terminates for any reason, the kernel
closes all open files and frees their memory resources

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

CSCE-313 SP 2017

11

Example

 What is the output of the following program?

 Unix processes begin life with open descriptors assigned to
stdin (fd=0), stdout (fd=1), and stderr (fd=2). The open
function always returns the lowest unopened descriptor so
the output will be “fd2=3”

int main ()

{

int fd1, fd2;

fd1 = open(“foo.txt”, O_RDONLY, 0);

close(fd1);

fd2 = open(“baz.txt”, O_RDONLY, 0);

printf(“fd2=%d\n”, fd2);

exit(0);

}

CSCE-313 SP 2017

12

Reading Files

 Reading a file copies bytes from the current file
position to memory, and then updates file position

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) <

0) {

perror("read");

exit(1);

}
CSCE-313 SP 2017

13

Reading Files

 Returns number of bytes read from file fd into buf

Return type ssize_t is signed integer

nbytes < 0 indicates that an error occurred

 Short counts (nbytes < sizeof(buf)) are
possible and are not errors (eg. EOF, reading text
from terminal etc.)

CSCE-313 SP 2017

14

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

Writing Files

 Writing a file copies bytes from memory to
the current file position, and then updates
current file position

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes written*/

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}
CSCE-313 SP 2017

15

Writing Files

Returns number of bytes written from buf to file fd

 nbytes < 0 indicates that an error occurred

 As with reads, short counts are possible and are not
errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes written*/

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

CSCE-313 SP 2017

16

Simple Unix I/O example

 Copying standard in to standard out, one
byte at a time

int main(void)

{

char c;

while(read(STDIN_FILENO, &c, 1) != 0)

write(STDOUT_FILENO, &c, 1);

exit(0);

}

CSCE-313 SP 2017

17

File Metadata

 Metadata is data about data, in this case file data

 Per-file metadata maintained by kernel

 accessed by users with the stat function
/* Metadata returned by the stat function */

struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection and file type */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */

off_t st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/O */

unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last change */

};

CSCE-313 SP 2017

18

Accessing Directories

 Reading Directory Entries

 dirent structure contains information about a directory entry

 DIR structure contains information about directory while stepping through
its entries

#include <sys/types.h>

#include <dirent.h>

{

DIR *directory;

struct dirent *de;

...

if (!(directory = opendir(dir_name)))

error("Failed to open directory");

...

while (0 != (de = readdir(directory))) {

printf("Found file: %s\n", de->d_name);

}

...

closedir(directory);

}

CSCE-313 SP 2017

20

File Representation to User

 The kernel represents open files using three related data structures

 Descriptor Table

 Each process has its own separate descriptor table whose
entries are indexed by the process’s open file descriptors. Each
open descriptor entry points to an entry in the file table.

 v-node Table

 Each entry (per file) contains information in the stat structure

 File Table

 Shared by all processes. Each entry consists of the current file
position, reference count of # of descriptor entries that point
to it, and a ptr to the entry in the v-node table, along with
status flags

CSCE-313 SP 2017

21

How the Unix Kernel Represents Open
Files
 Two descriptors referencing two distinct open disk files.

Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

Refcnt = # of descriptor entries
pointing to a file

CSCE-313 SP 2017

22

File Sharing

 Two distinct descriptors sharing the same disk file through
two distinct open file table entries
 E.g., calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

Entry#x File A (disk)

Entry#y File A (disk)

CSCE-313 SP 2017

23

Example

 Suppose the disk file foobar.txt consists of the six ASCII characters “foobar”. Then
what is the output of the following program:

 Answer: The descriptors fd1 and fd2 each have their own open file table entry so
each descriptor has its own file position for foobar.txt. Thus the read from fd2
reads the first byte of foobar.txt and the output is “c=f” and NOT “c=o”

int main ()

{

int fd1, fd2;

char c;

fd1 = open(“foobar.txt”, O_RDONLY, 0);

fd2 = open(“foobar.txt”, O_RDONLY, 0);

read(fd1, &c, 1);

read(fd2, &c, 1);

printf(“c=%c\n”, c);

exit(0);

}

CSCE-313 SP 2017

24

File Descriptors and fork()

 With fork(), child
inherits content of
parent’s address space,
including most of
parent’s state:

 scheduling
parameters

 file descriptor table

 signal state

 environment

 etc.

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)

CSCE-313 SP 2017

25

File Descriptors and fork() (II)

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)

int main(void) {

char c = ‘!’;
int myfd;

myfd = open(‘myf.txt’, O_RDONLY);

fork();

read(myfd, &c, 1);

printf(‘Process %ld got %c\n’,
(long)getpid(), c);

return 0;

}

CSCE-313 SP 2017

26

File Descriptors and fork() (III)

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

E(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)
int main(void) {

char c = ‘!’;
int myfd;

fork();

myfd = open(‘myf.txt’, O_RDONLY);

read(myfd, &c, 1);

printf(‘Process %ld got %c\n’,
(long)getpid(), c);

return 0;

}

E (“myf.txt”)

CSCE-313 SP 2017

27

Example

 Suppose the disk file foobar.txt consists of the six ASCII characters “foobar”. Then
what is the output of the following program:

 Answer: The child inherits the parent’s descriptor table and all processes share the same file
table. Thus the descriptor fd in both the parent and child points to the same open file table
entry. When the child reads the first byte of the file, the file position increments by 1. Thus
the parent reads the second byte and output is “c=o”

int main ()

{

int fd;

char c;

fd = open(“foobar.txt”, O_RDONLY, 0);

if (fork() == 0) {

read(fd, &c, 1);

exit(0);

}

wait(NULL)

read(fd, &c, 1);

printf(“c=%c\n”, c);

exit(0);

}

CSCE-313 SP 2017

28

I/O Redirection

 Question: How does a shell implement I/O redirection?

unix> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function

 Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

CSCE-313 SP 2017

29

I/O Redirection Example

 Step #1: open file to which stdout should be redirected

 Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

CSCE-313 SP 2017

30

I/O Redirection Example (cont.)

 Step #2: call dup2(4,1)
 cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos
refcnt=2

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

CSCE-313 SP 2017

31

Example

 Because we are redirecting fd1 to fd2, the output is
c=o

int main()

{

int fd1, fd2;

char c;

fd1 = Open(fname, O_RDONLY, 0);

fd2 = Open(fname, O_RDONLY, 0);

Read(fd2, &c, 1);

Dup2(fd2, fd1);

Read(fd1, &c, 1);

printf("c = %c\n", c);

return 0;

}

• Assuming that the disk file

foobar.txt consists of six ASCII

characters “foobar” what is the

output?

CSCE-313 SP 2017

32

Practice: Fun with File Descriptors (1)

 What would this program print for file containing “abcde”?

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

fd2 = Open(fname, O_RDONLY, 0);

fd3 = Open(fname, O_RDONLY, 0);

Dup2(fd2, fd3);

Read(fd1, &c1, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

}

CSCE-313 SP 2017

33

Practice: Fun with File Descriptors (2)

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = Open(fname, O_RDONLY, 0);

Read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

Read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

Read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

}

CSCE-313 SP 2017

34

Practice: Fun with File Descriptors (3)

 What would be the contents of the resulting file?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname = argv[1];

fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

Write(fd1, "pqrs", 4);

fd3 = Open(fname, O_APPEND|O_WRONLY, 0);

Write(fd3, "jklmn", 5);

fd2 = dup(fd1); /* Allocates descriptor */

Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

return 0;

}

CSCE-313 SP 2017

35

Standard I/O Functions

 The C standard library (libc.so) contains a
collection of higher-level standard I/O functions

 Documented in Appendix B of K&R.

 Examples of standard I/O functions:

 Opening and closing files (fopen and fclose)

 Reading and writing bytes (fread and fwrite)

 Reading and writing text lines (fgets and fputs)

 Formatted reading and writing (fscanf and
fprintf)

CSCE-313 SP 2017

36

Standard I/O Streams

 Standard I/O models open files as streams
 Abstraction for a file descriptor and a buffer in memory.

 C programs begin life with three open streams
(defined in stdio.h)
 stdin (standard input)

 stdout (standard output)

 stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

fprintf(stdout, "Hello, world\n");

}

CSCE-313 SP 2017

37

Buffering in Standard I/O

 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n” or fflush() call

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

CSCE-313 SP 2017

38

Unix I/O vs. Standard I/O

 Standard I/O is implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

CSCE-313 SP 2017

39

Pros and Cons of Unix I/O

 Pros

 Unix I/O is the most general and lowest overhead form of I/O

 All other I/O packages are implemented using Unix I/O
functions

 Unix I/O provides functions for accessing file metadata

 Cons

 Dealing with short counts is tricky and error prone

 Efficient reading of text lines requires some form of buffering,
also tricky and error prone

 Both of these issues are addressed by standard I/O packages

CSCE-313 SP 2017

40

Pros and Cons of Standard I/O

 Pros:
 Buffering increases efficiency by decreasing the

number of read and write system calls

 Short counts are handled automatically

 Cons:
 Provides no function for accessing file metadata

 Standard I/O is not appropriate for input and output on
network sockets
 There are poorly documented restrictions on streams that

interact badly with restrictions on sockets (CS:APP2e, Sec
10.9)

CSCE-313 SP 2017

41

Choosing I/O Functions

 General rule: use the highest-level I/O functions you can

 Many C programmers are able to do all of their work using the
standard I/O functions

 When to use standard I/O

 When working with disk or terminal files

 When to use raw Unix I/O

 Inside signal handlers, because Unix I/O is async-signal-safe

 In rare cases when you need absolute highest performance

CSCE-313 SP 2017

42

For Further Information

 The Unix bible:

 W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 3nd Edition,
Addison Wesley, 2013

 Computer Systems: A Programmer's Perspective,
Randal E. Bryant and David R. O'Hallaron,

 Prentice Hall, 3rd edition, 2016, Chapter 10

CSCE-313 SP 2017

43

